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Matrix Factorization

@ Given a matrix X of size N x M, approximate it as a product of two matrices

X~UV'
M K M
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X~ UV’
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o U: N x K latent factor matrix
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Matrix Factorization

@ Given a matrix X of size N x M, approximate it as a product of two matrices

X~Uv'
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o U: N x K latent factor matrix

o Each row of U represents a K-dim latent factor u,
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o U: N x K latent factor matrix

o Each row of U represents a K-dim latent factor u,

o V: M x K latent factor matrix
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Matrix Factorization

@ Given a matrix X of size N x M, approximate it as a product of two matrices

X~Uv'
K

u—»
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o U: N x K latent factor matrix

o Each row of U represents a K-dim latent factor u,

o V: M x K latent factor matrix

e Each row of V represents a K-dim latent factor v,

. K
@ Each entry of X can be written as: X, =~ unT Vi = D 1 UnkVimk
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Matrix Factorization

@ Given a matrix X of size N x M, approximate it as a product of two matrices

X~Uv'
K

u—»
5

n
z
c

o U: N x K latent factor matrix

o Each row of U represents a K-dim latent factor u,
e V: M x K latent factor matrix
e Each row of V represents a K-dim latent factor v,
@ Each entry of X can be written as: X, =~ unT Vi = Eszl Unk Vimk
o If X, is large (small) then u, and v, should be similar (dissimilar)
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Why Matrix Factorization?

M
Movies

@ The latent factors can be used/interpreted as “embeddings”’ or “features”
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Why Matrix Factorization?

@ The latent factors can be used/interpreted as “embeddings”’ or “features”
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o Especially useful for learning good features for “dyadic” or relational data

o Examples: Users-Movies ratings, Users-Products purchases, etc.
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Why Matrix Factorization?

@ The latent factors can be used/interpreted as “embeddings”’ or “features”

M
Movies K M

Embeddi

(latent factors) —» VT

of one user
K Movie

Embeddings
N = N UU
Users ser Embeddi
Embeddings (Iatr:nffacltr:)?:)

of one movie

o Especially useful for learning good features for “dyadic” or relational data

o Examples: Users-Movies ratings, Users-Products purchases, etc.

o If K < min{M, N} = then can also be seen as dimensionality reduction or a “low-rank
factorization” of the matrix X
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Why Matrix Factorization?

M
Missing ratings

Movies

@ Can also predict the missing/unknown entries in the original matrix
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Why Matrix Factorization?

@ Can also predict the missing/unknown entries in the original matrix

M
Missing ratings Movies K M
et A
of one user
K Movie
Embeddings
N = N U
Users ! Embeddi
Embeddings| (Ia{:nlelacltnogri)
of one movie

@ Note: The latent factor matrices U and V can be learned even when the matrix X is only partially
observed (as we will see shortly)
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Why Matrix Factorization?

@ Can also predict the missing/unknown entries in the original matrix
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@ Note: The latent factor matrices U and V can be learned even when the matrix X is only partially
observed (as we will see shortly)

o After learning U and V, any missing X, can be approximated by u/ v,
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Why Matrix Factorization?

@ Can also predict the missing/unknown entries in the original matrix

M

Missing ratings Movies K M
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Users ! Embeddi
Embeddings (Ia(’:nlela;tnogri)
of one movie

@ Note: The latent factor matrices U and V can be learned even when the matrix X is only partially

observed (as we will see shortly)

o After learning U and V, any missing X, can be approximated by u/ v,

@ UV is the best low-rank matrix that approximates the full X
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Why Matrix Factorization?

@ Can also predict the missing/unknown entries in the original matrix

M
Missing ratings Movies i M
fepenes, \'A
of one user

K Movie

Embeddings
N = N U

Users o

) Embeddings
Embeddings (latent factors)

of one movie

Note: The latent factor matrices U and V can be learned even when the matrix X is only partially
observed (as we will see shortly)

o After learning U and V, any missing X, can be approximated by u/ v,

@ UV is the best low-rank matrix that approximates the full X

Note: The “Netflix Challenge” was won by a matrix factorization method
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Interpreting the Embeddings/Latent Factors

e Embeddings/latent factors can often be interpreted. E.g., as “genres” if X represents a user-movie

rating matrix. A cartoon with K = 2 shown below

The Color Purple

Serious.

Amadeus

Lethal Weapon

DI %"EI

Senseand -
o sensibilt g Geared
toward X toward
females ) males
m :la
Dave
The Lion Kin Dumband
Dumber
The rnes %

Di

Escapist

Independence|
Day

Gus

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009
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Interpreting the Embeddings/Latent Factors

e Embeddings/latent factors can often be interpreted. E.g., as “genres” if X represents a user-movie
rating matrix. A cartoon with K = 2 shown below

Serious.

- -
The Color Purple Amadeus

Tethal Weapon
Senseand -
Geared Ocearz il M Geared

toward NS toward
females ) males

l
Dave
[The Lion King]
Independence
Diaries Day

Escapist

2

Dumb and
Dumher

Gus

@ Similar things (users/movies) get embedded nearby in the embedding space (two things will be
deemed similar if their embeddings are similar). Thus useful for computing similarities and/or
making recommendations

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009
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Interpreting the Embeddings/Latent Factors

@ Another illustation of 2-D embeddings of the movies only

@ Similar movies will be embedded at nearby locations in the embedding space

Embedding dimension 2 (or latent factor 2)
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Embedding dimension 1 (or latent factor 1)

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009
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Matrix Factorization

@ Recall our matrix factorization model: X ~ UV T

@ Goal: learn U and V, given a subset Q of entries in X (let's call it Xq)

@ Some notations:
o Q={(n,m)}: Xom is observed
e €, : column indices of observed entries in row n of X
e €. : row indices of observed entries in column m of X

K

n
z
c
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Matrix Factorization

@ We want X to be as close to UV as possible

M

i
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Matrix Factorization

@ We want X to be as close to UV as possible

M

n
=

ﬁ_

@ Let's define a squared “loss function” over the observed entries in X

(n,m)eQ

Z (Xom — unT Vm)2
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Matrix Factorization

@ We want X to be as close to UV as possible

M

n
=

ﬁ_

@ Let's define a squared “loss function” over the observed entries in X

Z (Xom — unT Vm)2
(n,m)EQ
o Here the latent factors {u,}"_; and {v,}M_, are the unknown parameters
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Matrix Factorization

@ We want X to be as close to UV as possible

M K M

n
z
c

@ Let's define a squared “loss function” over the observed entries in X

L= Z (Xom — u,,T Vm)?

(n,m)eQ
o Here the latent factors {u,}"_; and {v,}M_, are the unknown parameters

@ Squared loss chosen only for simplicity; other loss functions can be used
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Matrix Factorization

@ We want X to be as close to UV as possible

M K M

n
z
c

@ Let's define a squared “loss function” over the observed entries in X

L= Z (Xom — u,,T Vm)?

(n,m)eQ
o Here the latent factors {u,}"_; and {v,}M_, are the unknown parameters
@ Squared loss chosen only for simplicity; other loss functions can be used

@ How do we learn {u,}N_; and {v,}M_,?
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Alternating Optimization

o We will use an /; regularized version of the squared loss function

N M
L= 37 Xom—uy vm)+ D> Aullunl [+ D Av[vall?

(n,m)EQ n=1 m=1
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Alternating Optimization

o We will use an /; regularized version of the squared loss function

N M
L= 37 Xom—uy vm)+ D> Aullunl [+ D Av[vall?

(n,m)EQ n=1 m=1

@ A non-convex problem. Difficult to optimize w.r.t. u, and v, jointly.
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Alternating Optimization

o We will use an /; regularized version of the squared loss function

N M
L= 37 Xom—uy vm)+ D> Aullunl [+ D Av[vall?

(n,m)EQ n=1 m=1

@ A non-convex problem. Difficult to optimize w.r.t. u, and v, jointly.

@ One way is to solve for u, and v, in an alternating fashion, e.g.,
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Alternating Optimization

o We will use an /; regularized version of the squared loss function

N M
L= 37 Xom—uy vm)+ D> Aullunl [+ D Av[vall?

(n,m)eQ n=1 m=1
@ A non-convex problem. Difficult to optimize w.r.t. u, and v, jointly.
@ One way is to solve for u, and v, in an alternating fashion, e.g.,

e Vn, fix all variables except u, and solve the optim. problem w.r.t. u,
. T N2 2
arg min E (Xom — u, vim)™ + Aullunl|
u

n

mEQr,,
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Alternating Optimization

o We will use an /; regularized version of the squared loss function
N M

L= 30 Kom—uyvm)+ > Aullunll” + 37 Avllvall’
(n,m)eQ n=1 m=1

@ A non-convex problem. Difficult to optimize w.r.t. u, and v, jointly.
@ One way is to solve for u, and v, in an alternating fashion, e.g.,

e Vn, fix all variables except u, and solve the optim. problem w.r.t. u,
. T N2 2
arg min E (Xom — u, vim)™ + Aullunl|
u

n

mEQr,,

e Vm, fix all variables except v, and solve the optim. problem w.r.t. v,

arg n.;]in Z (Xom — Un—r‘/m)2 + )‘VHVMH2

nEQcm
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Alternating Optimization

o We will use an /; regularized version of the squared loss function

N M
L= 37 Xom—uy vm)+ D> Aullunl [+ D Av[vall?

(n,m)EQ n=1 m=1

@ A non-convex problem. Difficult to optimize w.r.t. u, and v, jointly.
@ One way is to solve for u, and v, in an alternating fashion, e.g.,

e Vn, fix all variables except u, and solve the optim. problem w.r.t. u,
. T N2 2
arg min E (Xom — u, vim)™ + Aullunl|
u

n

mEQr,,
e Vm, fix all variables except v, and solve the optim. problem w.r.t. v,
. T. 2 2
arg min E (Xom — Uy vin)~ + Av||vml|
v
m nEQcm

o lIterate until not converged
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Alternating Optimization

o We will use an /; regularized version of the squared loss function
N M

L= 30 Kom—uyvm)+ > Aullunll” + 37 Avllvall’
(n,m)eQ n=1 m=1

@ A non-convex problem. Difficult to optimize w.r.t. u, and v, jointly.
@ One way is to solve for u, and v, in an alternating fashion, e.g.,

e Vn, fix all variables except u, and solve the optim. problem w.r.t. u,
. T N2 2
arg min E (Xom — u, vim)™ + Aullunl|
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e Vm, fix all variables except v, and solve the optim. problem w.r.t. v,

arg n.;]in Z (Xom — Un—r‘/m)2 + )‘VHVMH2

nEQcm

o lIterate until not converged

@ Each of these subproblems has a simple, convex objective function

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 10



Alternating Optimization

o We will use an /; regularized version of the squared loss function

N M
L= 37 Xom—uy vm)+ D> Aullunl [+ D Av[vall?

(n,m)EQ n=1 m=1

@ A non-convex problem. Difficult to optimize w.r.t. u, and v, jointly.
@ One way is to solve for u, and v, in an alternating fashion, e.g.,

e Vn, fix all variables except u, and solve the optim. problem w.r.t. u,

argmin > (Xom — u; V) + Aol lu |

n

mEQr,,
e Vm, fix all variables except v, and solve the optim. problem w.r.t. v,

arg n.;]in Z (Xom — Un—r‘/m)2 + )‘VHVMH2

nEQcm
o lIterate until not converged

@ Each of these subproblems has a simple, convex objective function

@ Convergence properties of such methods have been studied extensively
Machine Learning (CS771A)
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The Solutions

o Easy to show that the problem

Machine Learning (CS771A)

. T2 2
arg min Z (Xom — tp vin)™ =+ Aul|us||

meQ,,
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The Solutions

o Easy to show that the problem
arg min Z (Xom — ty Vi) + Aul|unl|?

meQ,,
.. has the solution -1
un = < Z VmVrTn+)\UIK> ( Z Xnmvm>
mEan mEQr,,
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The Solutions

o Easy to show that the problem
arg min Z (Xom — ty Vi) + Aul|unl|?

meQ,,
.. has the solution -1
un = < Z VmVrTn+)\UIK> ( Z Xnmvm>
mEan mEQr,,

o Likewise, the problem
P arg min Z (Xom =ty vim)® + Av|vm|

Machine Learning (CS771A) Matrix Factorization and Matrix Completion

11



The Solutions

o Easy to show that the problem
arg m|n Z (Xom — 1y Vi) + Aul|ua|?

meQ,,
. has the solution
u, = < Z VmV m+)\UIK> ( Z Xanm>
mEan mEQr,,

o Likewise, the problem
P arg min Z (Xom — ty Vi) + Av||val[?

Ym neQc,, 1
. has the solution B
Vg = < Z unpu, +)\\/IK> ( Z Xnmun)
n€Qe,, n€Qc,,
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The Solutions

o Easy to show that the problem
arg min Z (Xom — ty Vi) + Aul|unl|?

meQ,,
.. has the solution -1
un = < Z VmVrTn+)\UIK> ( Z Xnmvm>
mEan mEQr,,

o Likewise, the problem
P arg min Z (Xom =ty vim)® + Av|vm|

neQc,,
.. has the solution -t
Vm = < Z Unu;]r + )\VIK> Z Xnmun
neQ,, n€Qc,,

o Note that this is very similar to (regularized) least squares regression
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The Solutions

o Easy to show that the problem
. T 2 2
arg min Z (Xom — u, vim)™ =+ Aul|un|
meQ,,
.. has the solution -1
un = < Z VmVrTn+)\UIK> ( Z Xnmvm>
mEan mEQr,,
@ Likewise, the problem
arg min Z (Xom — ty Vi) + Av||val[?
Vm
neQc,, 1
.. has the solution -
Vm = < Z Unu,T+)\VIK> ( Z Xnmun)
neﬂcm nEQCm

o Note that this is very similar to (regularized) least squares regression

Thus matrix factorization can be also seen as a sequence of regression problems (one for each
latent factor)
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Matrix Factorization as Regression

Suppose we are solving for v, (with U and all other v,,'s fixed)

Observed entries in Columnm
this column m latent factor
. m
........... M

i

Machine Learning (CS771A)
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Matrix Factorization as Regression

Suppose we are solving for v, (with U and all other v,,'s fixed)

Observed entries in Column m
this column m latent factor
. v
. m
___________ B Subset of
: rows of U
= X ~
—~—

—U— Rows latent factors l v

corresponding to the
observed entries in
| column m of X

3

Observed entries
: from columnm —
o —_— inX

- 7

Now becomes a least-squares
type problem for solving for v
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Matrix Factorization as Regression

Suppose we are solving for v, (with U and all other v,,'s fixed)

Observed entries in Column m
this column m latent factor
. v
. m
___________ B Subset of
: rows of U
= X ~
—~—

—U— Rows latent factors l v

corresponding to the
observed entries in
| column m of X

3

Observed entries
: from columnm —
o —_— inX

- 7

Now becomes a least-squares
type problem for solving for v

Can think of solving for u, (with V and all other u,’'s fixed) in the same way
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Matrix Factorization as Regression

@ A very useful way to understand matrix factorization
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Matrix Factorization as Regression

@ A very useful way to understand matrix factorization

@ Can modify the regularized least-squares like objective

argmm Z —u, vm) 24 \gu u,

up

meQ,,

. using other loss functions and regularizers
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Matrix Factorization as Regression

@ A very useful way to understand matrix factorization

@ Can modify the regularized least-squares like objective

argmm Z —u, vm) 24 \gu u,

up

meQ,,

. using other loss functions and regularizers

@ Some possible modifications:
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Matrix Factorization as Regression

@ A very useful way to understand matrix factorization

@ Can modify the regularized least-squares like objective

argmm Z —u, vm) 24 \gu u,

up

meQ,,

. using other loss functions and regularizers
@ Some possible modifications:

o If entries in the matrix X are binary, counts, etc. then we can replace the squared loss function by
some other loss function (e.g., logistic or Poisson)
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Matrix Factorization as Regression

@ A very useful way to understand matrix factorization

@ Can modify the regularized least-squares like objective

argmm Z —u, vm) 24 \gu u,

up

meQ,,

. using other loss functions and regularizers
@ Some possible modifications:

o If entries in the matrix X are binary, counts, etc. then we can replace the squared loss function by
some other loss function (e.g., logistic or Poisson)

o Can impose other constraints on the latent factors, e.g., non-negativity, sparsity, etc. (by changing the
regularizer)

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 13



Matrix Factorization as Regression

@ A very useful way to understand matrix factorization

@ Can modify the regularized least-squares like objective

argmm E —u) vy, yu, u,
o meQ,,

. using other loss functions and regularizers

@ Some possible modifications:
o If entries in the matrix X are binary, counts, etc. then we can replace the squared loss function by
some other loss function (e.g., logistic or Poisson)
o Can impose other constraints on the latent factors, e.g., non-negativity, sparsity, etc. (by changing the
regularizer)

o Can think of this also as a probabilistic model (a likelihood function on X,n, and priors on the latent
factors u,, vim) and do MLE/MAP

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 13



Matrix Factorization: The Complete Algorithm

@ Input: Partially complete matrix Xq
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Matrix Factorization: The Complete Algorithm

@ Input: Partially complete matrix Xq

o Initialize the latent factors vq,..., vy randomly
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Matrix Factorization: The Complete Algorithm

@ Input: Partially complete matrix Xq
o Initialize the latent factors vq,..., vy randomly

@ lterate until not converged
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Matrix Factorization: The Complete Algorithm

@ Input: Partially complete matrix Xq
o Initialize the latent factors vq,..., vy randomly

@ lterate until not converged

e Update each row latent factor u,, n=1,..., N (can be in parallel)
-1
u, = ( Z VmV; +AUIK> < Z Xnm"m)
meQ,, meQ,,
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Matrix Factorization: The Complete Algorithm

@ Input: Partially complete matrix Xq
o Initialize the latent factors vq,..., vy randomly

@ lterate until not converged

e Update each row latent factor u,, n=1,..., N (can be in parallel)
-1
u, = ( Z VmV; +AUIK> < Z Xnm"m)
meQ,, meQ,,
e Update each column latent factor v,, m=1,..., M (can be in parallel)
-1
Vm = ( Z U,,UnT+A\/IK> ( Z Xnm”n)
n€Qc,, neQc,,
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Matrix Factorization: The Complete Algorithm

@ Input: Partially complete matrix Xq
o Initialize the latent factors vq,..., vy randomly

@ lterate until not converged

e Update each row latent factor u,, n=1,..., N (can be in parallel)
-1
u, = ( Z VmV; +AUIK> < Z Xnm"m)
meQ,, meQ,,
e Update each column latent factor v,, m=1,..., M (can be in parallel)
-1
Vm = ( Z U,,UnT+A\/IK> ( Z Xnm”n)
n€Qc,, neQc,,

o Final prediction for any (missing) entry: X,, = u, v,
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A Faster Algorithm via SGD

@ Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost
O(K?3) for updating each latent factor u,, v,,)
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A Faster Algorithm via SGD

@ Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost
O(K?3) for updating each latent factor u,, v,,)

@ An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly
chosen entry X, with (n,m) € Q
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A Faster Algorithm via SGD

@ Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost
O(K?3) for updating each latent factor u,, v,,)

@ An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly
chosen entry X, with (n,m) € Q

o Consider updating u,. For loss function - o (Xam — u,) vin)? + Ayl|un||?, the stochastic
gradient w.r.t. u, using this randomly chosen entry X, is

7(Xnm - unTVm)Vm + Ayu,

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 15



A Faster Algorithm via SGD

Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost
O(K?3) for updating each latent factor u,, v,,)

An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly
chosen entry X, with (n,m) € Q

Consider updating u,. For loss function - (Xom — u,) vim)> 4+ Auy|lu,||?, the stochastic
gradient w.r.t. u, using this randomly chosen entry X, is

7(Xnm - unTVm)Vm + Ayu,
Thus the SGD update for u, will be

u, = u, — n(Ayu, — (Xom — u,,T Vm)Vm)
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A Faster Algorithm via SGD

Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost
O(K?3) for updating each latent factor u,, v,,)

An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly
chosen entry X, with (n,m) € Q

Consider updating u,. For loss function - (Xom — u,) vim)> 4+ Auy|lu,||?, the stochastic

gradient w.r.t. u, using this randomly chosen entry X, is
7(Xnm - unTVm)Vm + Ayu,
Thus the SGD update for u, will be
u, = u, — n(Ayu, — (Xom — u,,T Vm)Vm)
Likewise, the SGD update for v, will be

Vin =V, — U()\va - (Xnm - unT Vm)u")
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A Faster Algorithm via SGD

Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost
O(K?3) for updating each latent factor u,, v,,)

An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly
chosen entry X, with (n,m) € Q

Consider updating u,. For loss function - (Xom — u,) vim)> 4+ Auy|lu,||?, the stochastic

gradient w.r.t. u, using this randomly chosen entry X, is
7(Xnm - unTVm)Vm + Ayu,
Thus the SGD update for u, will be

u, = u, — n(Ayu, — (Xom — u,,T Vm)Vm)

Likewise, the SGD update for v, will be
Vin = Vm — N(Avvy, — (Xom — unT Vm)Up)

The SGD algorithm chooses a random entry X,,,, in each iteration, updates u,, v, and repeats
until convergece (u,'s,vy,'s randomly initialized).
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Joint Matrix Factorization

@ Can do joint matrix factorization of more than one matrices
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Joint Matrix Factorization

@ Can do joint matrix factorization of more than one matrices

o Consider two “ratings” matrices with the N users shared in both
M P
Movies Books

Users Users

@ Can assume the following matrix factorization
X;~UV] and Xo=UV,

Note that the user latent factor matrix U is shared in both factorizations

o Gives a way to learn features by combining multiple data sets (2 in this case)
@ Can use the alternating optimization to solve for U, V; and V,

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 17



Tensor Factorization

@ A "tensor” is a generalization of a matrix to more than two dimensions

o Consider a 3-dim (or 3-mode or 3-way) tensor X of size N x M x P

M X = Number of times
Products nmp

user ‘n’ bought product ‘m’
from store ‘p’

Users | (atensor)
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o Consider a 3-dim (or 3-mode or 3-way) tensor X of size N x M x P

M X = Number of times
Products nmp

user ‘n’ bought product ‘m’
from store ‘p’

Users | (atensor)

@ We can model each entry of tensor X as K

Xnmp RU,OVy O w, = § Unk Vmk Wpk
k=1
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o Consider a 3-dim (or 3-mode or 3-way) tensor X of size N x M x P

M X = Number of times
Products nmp

user ‘n’ bought product ‘m’
from store ‘p’

Users | (atensor)

@ We can model each entry of tensor X as K

Xnmp RU,OVy O w, = § Unk Vmk Wpk
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Tensor Factorization

@ A "tensor” is a generalization of a matrix to more than two dimensions

o Consider a 3-dim (or 3-mode or 3-way) tensor X of size N x M x P

X —_— Number of times

user ‘n’ bought product ‘m’
from store ‘p’

(atensor)

@ We can model each entry of tensor X as K

Xnmp RU,OVy O w, = § Unk Vmk Wpk
k=1
o Can learn {un} ), {vm}NM_;,{w,},_; using alternating optimization

@ These K-dim. “embeddings” can be used as features for other tasks (e.g., tensor completion,
computing similarities, etc.)
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Tensor Factorization

@ A "tensor” is a generalization of a matrix to more than two dimensions

o Consider a 3-dim (or 3-mode or 3-way) tensor X of size N x M x P

X —_— Number of times

user ‘n’ bought product ‘m’
from store ‘p’

(a tensor)

@ We can model each entry of tensor X as K

Xnmp RU,OVy O w, = § Unk Vmk Wpk
k=1
o Can learn {un} ), {vm}NM_;,{w,},_; using alternating optimization

@ These K-dim. “embeddings” can be used as features for other tasks (e.g., tensor completion,
computing similarities, etc.)

@ The model also be easily extended to tensors having than 3 dimensions

@ Several specialized algorithms for tensor factorization (CP/Tucker decomposition, etc.)
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Tensor Factorization: An Application

@ Many data sets can be naturally represented as tensors
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Tensor Factorization: An Application

@ Many data sets can be naturally represented as tensors
e Knowledge-Graphs (KG) of Knowledge-Bases (KB) is one such example
o A KG/KB consists of “facts” in form of triplets (e.g. Modi-PM-India)

-
P e M

N
Head Entities

X =1 (a"fact’)

nmp

if relation ‘p’ is true for
head entity ‘'n’ and
tail entity ‘m’

@ KGs are highly incomplete. One goal is to “complete” the KG, i.e., generate new valid facts from
existing facts
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Tensor Factorization: An Application

@ Many data sets can be naturally represented as tensors
e Knowledge-Graphs (KG) of Knowledge-Bases (KB) is one such example
o A KG/KB consists of “facts” in form of triplets (e.g. Modi-PM-India)

p
Type of Relations,
)(nmp =1 (a “fact”)

if relation ‘p’ is true for
head entity ‘'n’ and
tail entity ‘m’

N
Head Entities

@ KGs are highly incomplete. One goal is to “complete” the KG, i.e., generate new valid facts from
existing facts
@ We can applying tensor factorization to learn features/embeddings of the entities and relations.

Can use the embeddings to predict the unknown facts
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Matrix/Tensor Factorization: Another View

o We modeled each matrix/tensor entry as an inner product of latent factors
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Matrix/Tensor Factorization: Another View

o We modeled each matrix/tensor entry as an inner product of latent factors

@ Can also model matrix (or tensor) as a whole, as sum of rank-1 components

@ E.g., an N x M x P tensor X as a sum of outer products of column vectors

K
X =~ Z ur ® v ® wy (tensor SVD view; also generalizes to more than 3 dims)
k=1

u, € RN, vi € RM and wy € R denote the k-th columns of U, V, W resp.

/ 7/
M V1 VK

Q

x
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@ Can also model matrix (or tensor) as a whole, as sum of rank-1 components

@ E.g., an N x M x P tensor X as a sum of outer products of column vectors

K
X =~ Z ur ® v ® wy (tensor SVD view; also generalizes to more than 3 dims)
k=1

u, € RN, vi € RM and wy € R denote the k-th columns of U, V, W resp.

/ 7/
M V1 VK

Q

x

u, Uy

@ The matrix case is similar (only 2 dimensions)
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Matrix/Tensor Factorization: Another View

o We modeled each matrix/tensor entry as an inner product of latent factors

@ Can also model matrix (or tensor) as a whole, as sum of rank-1 components

@ E.g., an N x M x P tensor X as a sum of outer products of column vectors

K
X =~ Z ur ® v ® wy (tensor SVD view; also generalizes to more than 3 dims)
k=1

u, € RN, vi € RM and wy € R denote the k-th columns of U, V, W resp.

/ 7/
M V1 VK

Q

x

u, Uy

@ The matrix case is similar (only 2 dimensions)

o With this view, in alternating optimization, can update one column at a time
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