Matrix Factorization and Matrix Completion

Piyush Rai

Machine Learning (CS771A)

Sept 21, 2016

• Given a matrix **X** of size $N \times M$, approximate it as a product of two matrices

• U: $N \times K$ latent factor matrix

- U: $N \times K$ latent factor matrix
 - ullet Each row of $oldsymbol{U}$ represents a K-dim latent factor $oldsymbol{u}_n$

- U: $N \times K$ latent factor matrix
 - ullet Each row of $oldsymbol{U}$ represents a K-dim latent factor $oldsymbol{u}_n$
- V: $M \times K$ latent factor matrix

- U: $N \times K$ latent factor matrix
 - ullet Each row of $oldsymbol{U}$ represents a K-dim latent factor $oldsymbol{u}_n$
- V: $M \times K$ latent factor matrix
 - Each row of **V** represents a K-dim latent factor \mathbf{v}_n

- U: $N \times K$ latent factor matrix
 - Each row of U represents a K-dim latent factor u_n
- V: $M \times K$ latent factor matrix
 - Each row of **V** represents a K-dim latent factor \mathbf{v}_n
- Each entry of **X** can be written as: $X_{nm} \approx \boldsymbol{u}_n^{\top} \boldsymbol{v}_m = \sum_{k=1}^K u_{nk} v_{mk}$

- U: $N \times K$ latent factor matrix
 - Each row of **U** represents a K-dim latent factor u_n
- V: $M \times K$ latent factor matrix
 - Each row of **V** represents a K-dim latent factor \mathbf{v}_n
- Each entry of **X** can be written as: $X_{nm} \approx \boldsymbol{u}_n^{\top} \boldsymbol{v}_m = \sum_{k=1}^K u_{nk} v_{mk}$
- If X_{nm} is large (small) then u_n and v_m should be similar (dissimilar)

• The latent factors can be used/interpreted as "embeddings" or "features"

• The latent factors can be used/interpreted as "embeddings" or "features"

- Especially useful for learning good features for "dyadic" or relational data
 - Examples: Users-Movies ratings, Users-Products purchases, etc.

• The latent factors can be used/interpreted as "embeddings" or "features"

- Especially useful for learning good features for "dyadic" or relational data
 - Examples: Users-Movies ratings, Users-Products purchases, etc.
- If $K \ll \min\{M, N\}$ \Rightarrow then can also be seen as dimensionality reduction or a "low-rank factorization" of the matrix \mathbf{X}

• Can also predict the missing/unknown entries in the original matrix

ullet Note: The latent factor matrices ullet and ullet can be learned even when the matrix ullet is only partially observed (as we will see shortly)

- Note: The latent factor matrices U and V can be learned even when the matrix X is only partially observed (as we will see shortly)
- After learning **U** and **V**, any missing X_{nm} can be approximated by $\boldsymbol{u}_n^{\top} \boldsymbol{v}_m$

- Note: The latent factor matrices U and V can be learned even when the matrix X is only partially observed (as we will see shortly)
- After learning **U** and **V**, any missing X_{nm} can be approximated by $\boldsymbol{u}_n^{\top}\boldsymbol{v}_m$
- ullet **UV** is the best low-rank matrix that approximates the full **X**

- ullet Note: The latent factor matrices ullet and ullet can be learned even when the matrix ullet is only partially observed (as we will see shortly)
- After learning **U** and **V**, any missing X_{nm} can be approximated by $\boldsymbol{u}_n^{\top}\boldsymbol{v}_m$
- $\bullet~ \textbf{U} \textbf{V}^\top$ is the best low-rank matrix that approximates the full X
- Note: The "Netflix Challenge" was won by a matrix factorization method

Interpreting the Embeddings/Latent Factors

• Embeddings/latent factors can often be interpreted. E.g., as "genres" if \mathbf{X} represents a user-movie rating matrix. A cartoon with K=2 shown below

Interpreting the Embeddings/Latent Factors

• Embeddings/latent factors can often be interpreted. E.g., as "genres" if \mathbf{X} represents a user-movie rating matrix. A cartoon with K=2 shown below

• Similar things (users/movies) get embedded nearby in the embedding space (two things will be deemed similar if their embeddings are similar). Thus useful for computing similarities and/or making recommendations

Interpreting the Embeddings/Latent Factors

Another illustation of 2-D embeddings of the movies only

• Similar movies will be embedded at nearby locations in the embedding space

Solving Matrix Factorization

- Recall our matrix factorization model: $\mathbf{X} \approx \mathbf{U} \mathbf{V}^{\top}$
- Goal: learn **U** and **V**, given a subset Ω of entries in **X** (let's call it X_{Ω})
- Some notations:
 - $\Omega = \{(n, m)\}: X_{nm}$ is observed
 - Ω_{r_n} : column indices of observed entries in row n of **X**
 - Ω_{c_m} : row indices of observed entries in column m of X

• We want X to be as close to UV^{\top} as possible

• We want X to be as close to UV^{\top} as possible

• Let's define a squared "loss function" over the observed entries in X

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2$$

• We want X to be as close to UV^{\top} as possible

• Let's define a squared "loss function" over the observed entries in X

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (X_{nm} - \boldsymbol{u}_n^{\top} \boldsymbol{v}_m)^2$$

• Here the latent factors $\{u_n\}_{n=1}^N$ and $\{v_m\}_{m=1}^M$ are the unknown parameters

• We want X to be as close to UV^{\top} as possible

• Let's define a squared "loss function" over the observed entries in X

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2$$

- Here the latent factors $\{u_n\}_{n=1}^N$ and $\{v_m\}_{m=1}^M$ are the unknown parameters
- Squared loss chosen only for simplicity; other loss functions can be used

• We want **X** to be as close to $\mathbf{U}\mathbf{V}^{\top}$ as possible

Let's define a squared "loss function" over the observed entries in X

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (X_{nm} - \boldsymbol{u}_n^{\top} \boldsymbol{v}_m)^2$$

- Here the latent factors $\{u_n\}_{n=1}^N$ and $\{v_m\}_{m=1}^M$ are the unknown parameters
- Squared loss chosen only for simplicity; other loss functions can be used
- How do we learn $\{\boldsymbol{u}_n\}_{n=1}^N$ and $\{\boldsymbol{v}_m\}_{m=1}^M$?

• We will use an ℓ_2 regularized version of the squared loss function

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (\mathbf{X}_{nm} - \mathbf{u}_n^{\top} \mathbf{v}_m)^2 + \sum_{n=1}^{N} \lambda_U ||\mathbf{u}_n||^2 + \sum_{m=1}^{M} \lambda_V ||\mathbf{v}_m||^2$$

• We will use an ℓ_2 regularized version of the squared loss function

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (\mathbf{X}_{nm} - \mathbf{u}_n^{\top} \mathbf{v}_m)^2 + \sum_{n=1}^{N} \lambda_U ||\mathbf{u}_n||^2 + \sum_{m=1}^{M} \lambda_V ||\mathbf{v}_m||^2$$

• A non-convex problem. Difficult to optimize w.r.t. \boldsymbol{u}_n and \boldsymbol{v}_m jointly.

ullet We will use an ℓ_2 regularized version of the squared loss function

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (\mathbf{X}_{nm} - \mathbf{u}_n^{\top} \mathbf{v}_m)^2 + \sum_{n=1}^{N} \lambda_U ||\mathbf{u}_n||^2 + \sum_{m=1}^{M} \lambda_V ||\mathbf{v}_m||^2$$

- A **non-convex** problem. Difficult to optimize w.r.t. u_n and v_m jointly.
- One way is to solve for \boldsymbol{u}_n and \boldsymbol{v}_m in an alternating fashion, e.g.,

ullet We will use an ℓ_2 regularized version of the squared loss function

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (\mathbf{X}_{nm} - \mathbf{u}_n^{\top} \mathbf{v}_m)^2 + \sum_{n=1}^{N} \lambda_U ||\mathbf{u}_n||^2 + \sum_{m=1}^{M} \lambda_V ||\mathbf{v}_m||^2$$

- A **non-convex** problem. Difficult to optimize w.r.t. u_n and v_m jointly.
- One way is to solve for \boldsymbol{u}_n and \boldsymbol{v}_m in an alternating fashion, e.g.,
 - $\forall n$, fix all variables except u_n and solve the optim. problem w.r.t. u_n

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

ullet We will use an ℓ_2 regularized version of the squared loss function

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (\mathbf{X}_{nm} - \mathbf{u}_n^{\top} \mathbf{v}_m)^2 + \sum_{n=1}^{N} \lambda_U ||\mathbf{u}_n||^2 + \sum_{m=1}^{M} \lambda_V ||\mathbf{v}_m||^2$$

- A **non-convex** problem. Difficult to optimize w.r.t. u_n and v_m jointly.
- One way is to solve for \boldsymbol{u}_n and \boldsymbol{v}_m in an alternating fashion, e.g.,
 - $\forall n$, fix all variables except u_n and solve the optim. problem w.r.t. u_n

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

• $\forall m$, fix all variables except \mathbf{v}_m and solve the optim. problem w.r.t. \mathbf{v}_m

$$\arg\min_{\mathbf{v}_m} \sum_{n \in \Omega_{C_m}} (X_{nm} - \mathbf{u}_n^\top \mathbf{v}_m)^2 + \lambda_V ||\mathbf{v}_m||^2$$

ullet We will use an ℓ_2 regularized version of the squared loss function

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (\mathbf{X}_{nm} - \mathbf{u}_n^{\top} \mathbf{v}_m)^2 + \sum_{n=1}^{N} \lambda_U ||\mathbf{u}_n||^2 + \sum_{m=1}^{M} \lambda_V ||\mathbf{v}_m||^2$$

- A **non-convex** problem. Difficult to optimize w.r.t. u_n and v_m jointly.
- One way is to solve for \boldsymbol{u}_n and \boldsymbol{v}_m in an alternating fashion, e.g.,
 - $\forall n$, fix all variables except u_n and solve the optim. problem w.r.t. u_n

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

• $\forall m$, fix all variables except \mathbf{v}_m and solve the optim. problem w.r.t. \mathbf{v}_m

$$\arg\min_{\boldsymbol{v}_m} \sum_{n \in \Omega_{c_m}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_V ||\boldsymbol{v}_m||^2$$

Iterate until not converged

• We will use an ℓ_2 regularized version of the squared loss function

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (\mathbf{X}_{nm} - \mathbf{u}_n^{\top} \mathbf{v}_m)^2 + \sum_{n=1}^{N} \lambda_U ||\mathbf{u}_n||^2 + \sum_{m=1}^{M} \lambda_V ||\mathbf{v}_m||^2$$

- A **non-convex** problem. Difficult to optimize w.r.t. u_n and v_m jointly.
- One way is to solve for \boldsymbol{u}_n and \boldsymbol{v}_m in an alternating fashion, e.g.,
 - $\forall n$, fix all variables except u_n and solve the optim. problem w.r.t. u_n

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

• $\forall m$, fix all variables except \mathbf{v}_m and solve the optim. problem w.r.t. \mathbf{v}_m

$$\arg\min_{\mathbf{v}_m} \sum_{n \in \Omega_{\mathsf{C}_m}} (X_{nm} - \mathbf{u}_n^\top \mathbf{v}_m)^2 + \lambda_V ||\mathbf{v}_m||^2$$

- Iterate until not converged
- Each of these subproblems has a simple, convex objective function

ullet We will use an ℓ_2 regularized version of the squared loss function

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (\mathbf{X}_{nm} - \mathbf{u}_n^{\top} \mathbf{v}_m)^2 + \sum_{n=1}^{N} \lambda_U ||\mathbf{u}_n||^2 + \sum_{m=1}^{M} \lambda_V ||\mathbf{v}_m||^2$$

- A **non-convex** problem. Difficult to optimize w.r.t. u_n and v_m jointly.
- One way is to solve for \boldsymbol{u}_n and \boldsymbol{v}_m in an alternating fashion, e.g.,
 - $\forall n$, fix all variables except u_n and solve the optim. problem w.r.t. u_n

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

• $\forall m$, fix all variables except \mathbf{v}_m and solve the optim. problem w.r.t. \mathbf{v}_m

$$rg \min_{oldsymbol{v}_m} \sum_{n \in \Omega_{cm}} (X_{nm} - oldsymbol{u}_n^ op oldsymbol{v}_m)^2 + \lambda_V ||oldsymbol{v}_m||^2$$

- Iterate until not converged
- Each of these subproblems has a simple, convex objective function
- Convergence properties of such methods have been studied extensively

The Solutions

• Easy to show that the problem

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

The Solutions

Easy to show that the problem

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

.. has the solution

$$oldsymbol{u}_n = \left(\sum_{m \in \Omega_{r_n}} oldsymbol{v}_m oldsymbol{v}_m^ op + \lambda_U oldsymbol{I}_K
ight)^{-1} \left(\sum_{m \in \Omega_{r_n}} oldsymbol{X}_{nm} oldsymbol{v}_m
ight)$$

Easy to show that the problem

$$rg \min_{oldsymbol{u}_n} \sum_{m \in \Omega_{In}} (X_{nm} - oldsymbol{u}_n^ op oldsymbol{v}_m)^2 + \lambda_U ||oldsymbol{u}_n||^2$$

.. has the solution

$$\boldsymbol{u}_n = \left(\sum_{m \in \Omega_{r_n}} \boldsymbol{v}_m \boldsymbol{v}_m^\top + \lambda_U \boldsymbol{\mathsf{I}}_K\right)^{-1} \left(\sum_{m \in \Omega_{r_n}} \boldsymbol{X}_{nm} \boldsymbol{v}_m\right)$$

Likewise, the problem

$$\arg\min_{\mathbf{v}_m} \sum_{n \in \Omega_{Cm}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_V ||\boldsymbol{v}_m||^2$$

Easy to show that the problem

$$rg \min_{oldsymbol{u}_n} \sum_{m \in \Omega_{In}} (X_{nm} - oldsymbol{u}_n^ op oldsymbol{v}_m)^2 + \lambda_U ||oldsymbol{u}_n||^2$$

.. has the solution

$$\boldsymbol{u}_n = \left(\sum_{m \in \Omega_{r_n}} \boldsymbol{v}_m \boldsymbol{v}_m^\top + \lambda_U \boldsymbol{\mathsf{I}}_K\right)^{-1} \left(\sum_{m \in \Omega_{r_n}} \boldsymbol{X}_{nm} \boldsymbol{v}_m\right)$$

• Likewise, the problem

$$rg \min_{oldsymbol{v}_m} \sum_{n \in \Omega_{c_m}} (X_{nm} - oldsymbol{u}_n^ op oldsymbol{v}_m)^2 + \lambda_V ||oldsymbol{v}_m||^2$$

.. has the solution

$$\mathbf{v}_m = \left(\sum_{n \in \Omega_{c_m}}^{n \in \Omega_{c_m}} \mathbf{u}_n \mathbf{u}_n^\top + \lambda_V \mathbf{I}_K\right)^{-1} \left(\sum_{n \in \Omega_{c_m}} X_{nm} \mathbf{u}_n\right)$$

Easy to show that the problem

$$\arg\min_{oldsymbol{u}_n}\sum_{m\in\Omega_r}(X_{nm}-oldsymbol{u}_n^{ op}oldsymbol{v}_m)^2+\lambda_U||oldsymbol{u}_n||^2$$

.. has the solution

$$\boldsymbol{u}_n = \left(\sum_{m \in \Omega_{r_n}} \boldsymbol{v}_m \boldsymbol{v}_m^\top + \lambda_U \boldsymbol{\mathsf{I}}_K\right)^{-1} \left(\sum_{m \in \Omega_{r_n}} X_{nm} \boldsymbol{v}_m\right)$$

Likewise, the problem

$$rg \min_{oldsymbol{v}_m} \sum_{n \in \Omega_{c_m}} (oldsymbol{X}_{nm} - oldsymbol{u}_n^ op oldsymbol{v}_m)^2 + \lambda_V ||oldsymbol{v}_m||^2$$

.. has the solution

$$\mathbf{v}_m = \left(\sum_{n \in \Omega_{c_m}} \mathbf{u}_n \mathbf{u}_n^\top + \lambda_V \mathbf{I}_K\right)^{-1} \left(\sum_{n \in \Omega_{c_m}} X_{nm} \mathbf{u}_n\right)$$

Note that this is very similar to (regularized) least squares regression

Easy to show that the problem

$$\operatorname{arg\,min}_{\boldsymbol{u}_n} \sum_{m \in \Omega_r} (X_{nm} - \boldsymbol{u}_n^{\mathsf{T}} \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

.. has the solution

$$\boldsymbol{u}_n = \left(\sum_{m \in \Omega_{r_n}} \boldsymbol{v}_m \boldsymbol{v}_m^\top + \lambda_U \boldsymbol{\mathsf{I}}_K\right)^{-1} \left(\sum_{m \in \Omega_{r_n}} X_{nm} \boldsymbol{v}_m\right)$$

Likewise, the problem

$$\arg\min_{\boldsymbol{v}_m} \sum_{n \in \Omega_{c_m}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_V ||\boldsymbol{v}_m||^2$$

.. has the solution

$$\mathbf{v}_m = \left(\sum_{n \in \Omega_{c_m}} \mathbf{u}_n \mathbf{u}_n^\top + \lambda_V \mathbf{I}_K\right)^{-1} \left(\sum_{n \in \Omega_{c_m}} X_{nm} \mathbf{u}_n\right)$$

- Note that this is very similar to (regularized) least squares regression
- Thus matrix factorization can be also seen as a sequence of regression problems (one for each latent factor)

Suppose we are solving for v_m (with U and all other v_m 's fixed)

Suppose we are solving for v_m (with U and all other v_m 's fixed)

Suppose we are solving for \mathbf{v}_m (with \mathbf{U} and all other \mathbf{v}_m 's fixed)

type problem for solving for $\mathbf{v}_{_{\mathrm{m}}}$

Can think of solving for u_n (with V and all other u_n 's fixed) in the same way

• A very useful way to understand matrix factorization

- A very useful way to understand matrix factorization
- Can modify the regularized least-squares like objective

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U \boldsymbol{u}_n^\top \boldsymbol{u}_n$$

.. using other loss functions and regularizers

- A very useful way to understand matrix factorization
- Can modify the regularized least-squares like objective

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U \boldsymbol{u}_n^\top \boldsymbol{u}_n$$

- .. using other loss functions and regularizers
- Some possible modifications:

- A very useful way to understand matrix factorization
- Can modify the regularized least-squares like objective

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U \boldsymbol{u}_n^\top \boldsymbol{u}_n$$

- .. using other loss functions and regularizers
- Some possible modifications:
 - If entries in the matrix **X** are binary, counts, etc. then we can replace the squared loss function by some other loss function (e.g., logistic or Poisson)

- A very useful way to understand matrix factorization
- Can modify the regularized least-squares like objective

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U \boldsymbol{u}_n^\top \boldsymbol{u}_n$$

- .. using other loss functions and regularizers
- Some possible modifications:
 - If entries in the matrix X are binary, counts, etc. then we can replace the squared loss function by some other loss function (e.g., logistic or Poisson)
 - Can impose other constraints on the latent factors, e.g., non-negativity, sparsity, etc. (by changing the regularizer)

- A very useful way to understand matrix factorization
- Can modify the regularized least-squares like objective

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U \boldsymbol{u}_n^\top \boldsymbol{u}_n$$

- .. using other loss functions and regularizers
- Some possible modifications:
 - If entries in the matrix **X** are binary, counts, etc. then we can replace the squared loss function by some other loss function (e.g., logistic or Poisson)
 - Can impose other constraints on the latent factors, e.g., non-negativity, sparsity, etc. (by changing the regularizer)
 - Can think of this also as a probabilistic model (a likelihood function on X_{nm} and priors on the latent factors u_n , v_m) and do MLE/MAP

 \bullet Input: Partially complete matrix \boldsymbol{X}_{Ω}

- Input: Partially complete matrix \mathbf{X}_{Ω}
- Initialize the latent factors $\mathbf{v}_1, \dots, \mathbf{v}_M$ randomly

- Input: Partially complete matrix \boldsymbol{X}_{Ω}
- Initialize the latent factors v_1, \ldots, v_M randomly
- Iterate until not converged

- Input: Partially complete matrix \mathbf{X}_{Ω}
- Initialize the latent factors $\mathbf{v}_1, \dots, \mathbf{v}_M$ randomly
- Iterate until not converged
 - Update each row latent factor u_n , n = 1, ..., N (can be in parallel)

$$\boldsymbol{u}_n = \left(\sum_{m \in \Omega_{r_n}} \boldsymbol{v}_m \boldsymbol{v}_m^\top + \lambda_U \boldsymbol{\mathsf{I}}_K\right)^{-1} \left(\sum_{m \in \Omega_{r_n}} X_{nm} \boldsymbol{v}_m\right)$$

- Input: Partially complete matrix \mathbf{X}_{Ω}
- Initialize the latent factors $\mathbf{v}_1, \dots, \mathbf{v}_M$ randomly
- Iterate until not converged
 - Update each row latent factor u_n , n = 1, ..., N (can be in parallel)

$$oldsymbol{u}_n = \left(\sum_{m \in \Omega_{r_n}} oldsymbol{v}_m oldsymbol{v}_m^ op + \lambda_U oldsymbol{\mathsf{I}}_K
ight)^{-1} \left(\sum_{m \in \Omega_{r_n}} oldsymbol{X}_{nm} oldsymbol{v}_m
ight)$$

• Update each column latent factor v_m , m = 1, ..., M (can be in parallel)

$$oldsymbol{v}_m = \left(\sum_{n \in \Omega_{c_m}} oldsymbol{u}_n oldsymbol{u}_n^ op + \lambda_V oldsymbol{\mathsf{I}}_K
ight)^{-1} \left(\sum_{n \in \Omega_{c_m}} oldsymbol{\mathsf{X}}_{nm} oldsymbol{u}_n
ight)$$

- Input: Partially complete matrix \mathbf{X}_{Ω}
- Initialize the latent factors $\mathbf{v}_1, \dots, \mathbf{v}_M$ randomly
- Iterate until not converged
 - Update each row latent factor u_n , n = 1, ..., N (can be in parallel)

$$\boldsymbol{u}_n = \left(\sum_{m \in \Omega_{r_n}} \boldsymbol{v}_m \boldsymbol{v}_m^\top + \lambda_U \boldsymbol{\mathsf{I}}_K\right)^{-1} \left(\sum_{m \in \Omega_{r_n}} X_{nm} \boldsymbol{v}_m\right)$$

• Update each column latent factor v_m , m = 1, ..., M (can be in parallel)

$$oldsymbol{v}_m = \left(\sum_{n \in \Omega_{cm}} oldsymbol{u}_n oldsymbol{u}_n^ op + \lambda_V oldsymbol{\mathsf{I}}_K
ight)^{-1} \left(\sum_{n \in \Omega_{cm}} oldsymbol{\mathsf{X}}_{nm} oldsymbol{u}_n
ight)$$

• Final prediction for any (missing) entry: $X_{nm} = \boldsymbol{u}_n^\top \boldsymbol{v}_m$

• Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost $O(K^3)$ for updating each latent factor u_n, v_m)

- Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost $O(K^3)$ for updating each latent factor $\boldsymbol{u}_n, \boldsymbol{v}_m$)
- An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly chosen entry X_{nm} with $(n, m) \in \Omega$

- Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost $O(K^3)$ for updating each latent factor $\boldsymbol{u}_n, \boldsymbol{v}_m$)
- An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly chosen entry X_{nm} with $(n,m) \in \Omega$
- Consider updating \boldsymbol{u}_n . For loss function $\sum_{m \in \Omega_{r_n}} (X_{nm} \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$, the stochastic gradient w.r.t. \boldsymbol{u}_n using this randomly chosen entry X_{nm} is

$$-(X_{nm}-\mathbf{u}_{n}^{\mathsf{T}}\mathbf{v}_{m})\mathbf{v}_{m}+\lambda_{U}\mathbf{u}_{n}$$

- Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost $O(K^3)$ for updating each latent factor $\boldsymbol{u}_n, \boldsymbol{v}_m$)
- An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly chosen entry X_{nm} with $(n,m) \in \Omega$
- Consider updating \boldsymbol{u}_n . For loss function $\sum_{m \in \Omega_{r_n}} (X_{nm} \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$, the stochastic gradient w.r.t. \boldsymbol{u}_n using this randomly chosen entry X_{nm} is

$$-(X_{nm}-\mathbf{u}_{n}^{\mathsf{T}}\mathbf{v}_{m})\mathbf{v}_{m}+\lambda_{U}\mathbf{u}_{n}$$

• Thus the SGD update for u_n will be

$$\boldsymbol{u}_n = \boldsymbol{u}_n - \eta(\lambda_U \boldsymbol{u}_n - (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m) \boldsymbol{v}_m)$$

- Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost $O(K^3)$ for updating each latent factor $\boldsymbol{u}_n, \boldsymbol{v}_m$)
- An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly chosen entry X_{nm} with $(n,m) \in \Omega$
- Consider updating \boldsymbol{u}_n . For loss function $\sum_{m \in \Omega_{r_n}} (X_{nm} \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$, the stochastic gradient w.r.t. \boldsymbol{u}_n using this randomly chosen entry X_{nm} is

$$-(X_{nm}-\boldsymbol{u}_{n}^{\top}\boldsymbol{v}_{m})\boldsymbol{v}_{m}+\lambda_{U}\boldsymbol{u}_{n}$$

• Thus the SGD update for \boldsymbol{u}_n will be

$$\boldsymbol{u}_n = \boldsymbol{u}_n - \eta(\lambda_U \boldsymbol{u}_n - (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m) \boldsymbol{v}_m)$$

• Likewise, the SGD update for \mathbf{v}_m will be

$$\mathbf{v}_m = \mathbf{v}_m - \eta(\lambda_V \mathbf{v}_m - (X_{nm} - \mathbf{u}_n^\top \mathbf{v}_m)\mathbf{u}_n)$$

- Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost $O(K^3)$ for updating each latent factor $\boldsymbol{u}_n, \boldsymbol{v}_m$)
- An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly chosen entry X_{nm} with $(n,m) \in \Omega$
- Consider updating \boldsymbol{u}_n . For loss function $\sum_{m \in \Omega_{r_n}} (X_{nm} \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$, the stochastic gradient w.r.t. \boldsymbol{u}_n using this randomly chosen entry X_{nm} is

$$-(X_{nm}-\boldsymbol{u}_{n}^{\top}\boldsymbol{v}_{m})\boldsymbol{v}_{m}+\lambda_{U}\boldsymbol{u}_{n}$$

• Thus the SGD update for u_n will be

$$\boldsymbol{u}_n = \boldsymbol{u}_n - \eta(\lambda_U \boldsymbol{u}_n - (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m) \boldsymbol{v}_m)$$

• Likewise, the SGD update for \mathbf{v}_m will be

$$\mathbf{v}_m = \mathbf{v}_m - \eta(\lambda_V \mathbf{v}_m - (X_{nm} - \mathbf{u}_n^\top \mathbf{v}_m) \mathbf{u}_n)$$

• The SGD algorithm chooses a random entry X_{nm} in each iteration, updates u_n, v_m , and repeats until convergece $(u_n's, v_m's \text{ randomly initialized})$.

Some Other Extensions of Matrix Factorization

• Can do joint matrix factorization of more than one matrices

- Can do joint matrix factorization of more than one matrices
- Consider two "ratings" matrices with the N users shared in both

- Can do joint matrix factorization of more than one matrices
- Consider two "ratings" matrices with the N users shared in both

• Can assume the following matrix factorization

$$\mathbf{X}_1 pprox \mathbf{U} \mathbf{V}_1^ op$$
 and $\mathbf{X}_2 pprox \mathbf{U} \mathbf{V}_2^ op$

- Can do joint matrix factorization of more than one matrices
- Consider two "ratings" matrices with the N users shared in both

• Can assume the following matrix factorization

$$\mathbf{X}_1 pprox \mathbf{U} \mathbf{V}_1^ op$$
 and $\mathbf{X}_2 pprox \mathbf{U} \mathbf{V}_2^ op$

ullet Note that the user latent factor matrix $oldsymbol{U}$ is shared in both factorizations

- Can do joint matrix factorization of more than one matrices
- Consider two "ratings" matrices with the N users shared in both

• Can assume the following matrix factorization

$$\mathbf{X}_1 pprox \mathbf{U} \mathbf{V}_1^ op$$
 and $\mathbf{X}_2 pprox \mathbf{U} \mathbf{V}_2^ op$

- Note that the user latent factor matrix U is shared in both factorizations
- Gives a way to learn features by combining multiple data sets (2 in this case)

- Can do joint matrix factorization of more than one matrices
- Consider two "ratings" matrices with the N users shared in both

• Can assume the following matrix factorization

$$\mathbf{X}_1 pprox \mathbf{U} \mathbf{V}_1^ op$$
 and $\mathbf{X}_2 pprox \mathbf{U} \mathbf{V}_2^ op$

- Note that the user latent factor matrix **U** is shared in both factorizations
- Gives a way to learn features by combining multiple data sets (2 in this case)
- ullet Can use the alternating optimization to solve for ${f U}$, ${f V}_1$ and ${f V}_2$

- A "tensor" is a generalization of a matrix to more than two dimensions
- Consider a 3-dim (or 3-mode or 3-way) tensor **X** of size $N \times M \times P$

- A "tensor" is a generalization of a matrix to more than two dimensions
- Consider a 3-dim (or 3-mode or 3-way) tensor **X** of size $N \times M \times P$

• We can model each entry of tensor **X** as

$$X_{nmp} \approx \boldsymbol{u}_n \odot \boldsymbol{v}_m \odot \boldsymbol{w}_p = \sum_{k=1}^K u_{nk} v_{mk} w_{pk}$$

- A "tensor" is a generalization of a matrix to more than two dimensions
- Consider a 3-dim (or 3-mode or 3-way) tensor **X** of size $N \times M \times P$

ullet We can model each entry of tensor ${f X}$ as

$$X_{nmp} \approx \boldsymbol{u}_n \odot \boldsymbol{v}_m \odot \boldsymbol{w}_p = \sum_{k=1}^K u_{nk} v_{mk} w_{pk}$$

• Can learn $\{ {\pmb u}_n \}_{n=1}^N, \{ {\pmb v}_m \}_{m=1}^M, \{ {\pmb w}_p \}_{p=1}^P$ using alternating optimization

- A "tensor" is a generalization of a matrix to more than two dimensions
- Consider a 3-dim (or 3-mode or 3-way) tensor **X** of size $N \times M \times P$

• We can model each entry of tensor **X** as

$$X_{nmp} \approx \boldsymbol{u}_n \odot \boldsymbol{v}_m \odot \boldsymbol{w}_p = \sum_{k=1}^K u_{nk} v_{mk} w_{pk}$$

- Can learn $\{u_n\}_{n=1}^N, \{v_m\}_{m=1}^M, \{w_p\}_{p=1}^P$ using alternating optimization
- These K-dim. "embeddings" can be used as features for other tasks (e.g., tensor completion, computing similarities, etc.)

Tensor Factorization

- A "tensor" is a generalization of a matrix to more than two dimensions
- Consider a 3-dim (or 3-mode or 3-way) tensor **X** of size $N \times M \times P$

• We can model each entry of tensor **X** as

$$X_{nmp} \approx \boldsymbol{u}_n \odot \boldsymbol{v}_m \odot \boldsymbol{w}_p = \sum_{k=1}^{K} u_{nk} v_{mk} w_{pk}$$

- Can learn $\{u_n\}_{n=1}^N, \{v_m\}_{m=1}^M, \{w_p\}_{p=1}^P$ using alternating optimization
- These K-dim. "embeddings" can be used as features for other tasks (e.g., tensor completion, computing similarities, etc.)
- The model also be easily extended to tensors having than 3 dimensions

Tensor Factorization

- A "tensor" is a generalization of a matrix to more than two dimensions
- Consider a 3-dim (or 3-mode or 3-way) tensor **X** of size $N \times M \times P$

• We can model each entry of tensor **X** as

$$X_{nmp} \approx \boldsymbol{u}_n \odot \boldsymbol{v}_m \odot \boldsymbol{w}_p = \sum_{k=1}^K u_{nk} v_{mk} w_{pk}$$

- Can learn $\{u_n\}_{n=1}^N, \{v_m\}_{m=1}^M, \{w_p\}_{p=1}^P$ using alternating optimization
- These K-dim. "embeddings" can be used as features for other tasks (e.g., tensor completion, computing similarities, etc.)
- The model also be easily extended to tensors having than 3 dimensions
- Several specialized algorithms for tensor factorization (CP/Tucker decomposition, etc.)

• Many data sets can be naturally represented as tensors

- Many data sets can be naturally represented as tensors
- Knowledge-Graphs (KG) of Knowledge-Bases (KB) is one such example

- Many data sets can be naturally represented as tensors
- Knowledge-Graphs (KG) of Knowledge-Bases (KB) is one such example
- A KG/KB consists of "facts" in form of triplets (e.g. Modi-PM-India)

- Many data sets can be naturally represented as tensors
- Knowledge-Graphs (KG) of Knowledge-Bases (KB) is one such example
- A KG/KB consists of "facts" in form of triplets (e.g. Modi-PM-India)

• KGs are highly incomplete. One goal is to "complete" the KG, i.e., generate new valid facts from existing facts

- Many data sets can be naturally represented as tensors
- Knowledge-Graphs (KG) of Knowledge-Bases (KB) is one such example
- A KG/KB consists of "facts" in form of triplets (e.g. Modi-PM-India)

- KGs are highly incomplete. One goal is to "complete" the KG, i.e., generate new valid facts from
 existing facts
- We can applying tensor factorization to learn features/embeddings of the entities and relations.
 Can use the embeddings to predict the unknown facts

Machine Learning (CS771A)

• We modeled each matrix/tensor entry as an inner product of latent factors

- We modeled each matrix/tensor entry as an inner product of latent factors
- Can also model matrix (or tensor) as a whole, as sum of rank-1 components

- We modeled each matrix/tensor entry as an inner product of latent factors
- Can also model matrix (or tensor) as a whole, as sum of rank-1 components
- E.g., an $N \times M \times P$ tensor **X** as a sum of outer products of column vectors

$$\mathbf{X} pprox \sum_{k=1}^K oldsymbol{u}_k \otimes oldsymbol{v}_k \otimes oldsymbol{w}_k$$
 (tensor SVD view; also generalizes to more than 3 dims)

 $u_k \in \mathbb{R}^N$, $v_k \in \mathbb{R}^M$ and $w_k \in \mathbb{R}^P$ denote the k-th columns of U, V, W resp.

- We modeled each matrix/tensor entry as an inner product of latent factors
- Can also model matrix (or tensor) as a whole, as sum of rank-1 components
- ullet E.g., an $N \times M \times P$ tensor ${f X}$ as a sum of outer products of column vectors

$$\mathbf{X} pprox \sum_{k=1}^K oldsymbol{u}_k \otimes oldsymbol{v}_k \otimes oldsymbol{w}_k$$
 (tensor SVD view; also generalizes to more than 3 dims)

 $u_k \in \mathbb{R}^N$, $v_k \in \mathbb{R}^M$ and $w_k \in \mathbb{R}^P$ denote the k-th columns of **U**, **V**, **W** resp.

• The matrix case is similar (only 2 dimensions)

- We modeled each matrix/tensor entry as an inner product of latent factors
- Can also model matrix (or tensor) as a whole, as sum of rank-1 components
- E.g., an $N \times M \times P$ tensor **X** as a sum of outer products of column vectors

$$\mathbf{X} pprox \sum_{k=1}^K oldsymbol{u}_k \otimes oldsymbol{v}_k \otimes oldsymbol{w}_k$$
 (tensor SVD view; also generalizes to more than 3 dims)

 $u_k \in \mathbb{R}^N$, $v_k \in \mathbb{R}^M$ and $w_k \in \mathbb{R}^P$ denote the k-th columns of **U**. **V**. **W** resp.

- The matrix case is similar (only 2 dimensions)
- With this view, in alternating optimization, can update one column at a time