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Matrix Factorization

Given a matrix X of size N ×M, approximate it as a product of two matrices

X ≈ UV>

U: N × K latent factor matrix

Each row of U represents a K -dim latent factor un

V: M × K latent factor matrix

Each row of V represents a K -dim latent factor v n

Each entry of X can be written as: Xnm ≈ u>n vm =
∑K

k=1 unkvmk

If Xnm is large (small) then un and vm should be similar (dissimilar)
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Why Matrix Factorization?

The latent factors can be used/interpreted as “embeddings” or “features”

Especially useful for learning good features for “dyadic” or relational data

Examples: Users-Movies ratings, Users-Products purchases, etc.

If K � min{M,N} ⇒ then can also be seen as dimensionality reduction or a “low-rank
factorization” of the matrix X

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 3



Why Matrix Factorization?

The latent factors can be used/interpreted as “embeddings” or “features”

Especially useful for learning good features for “dyadic” or relational data

Examples: Users-Movies ratings, Users-Products purchases, etc.

If K � min{M,N} ⇒ then can also be seen as dimensionality reduction or a “low-rank
factorization” of the matrix X

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 3



Why Matrix Factorization?

The latent factors can be used/interpreted as “embeddings” or “features”

Especially useful for learning good features for “dyadic” or relational data

Examples: Users-Movies ratings, Users-Products purchases, etc.

If K � min{M,N} ⇒ then can also be seen as dimensionality reduction or a “low-rank
factorization” of the matrix X

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 3



Why Matrix Factorization?

Can also predict the missing/unknown entries in the original matrix

Note: The latent factor matrices U and V can be learned even when the matrix X is only partially
observed (as we will see shortly)

After learning U and V, any missing Xnm can be approximated by u>n vm

UV> is the best low-rank matrix that approximates the full X

Note: The “Netflix Challenge” was won by a matrix factorization method
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Interpreting the Embeddings/Latent Factors

Embeddings/latent factors can often be interpreted. E.g., as “genres” if X represents a user-movie
rating matrix. A cartoon with K = 2 shown below

Similar things (users/movies) get embedded nearby in the embedding space (two things will be
deemed similar if their embeddings are similar). Thus useful for computing similarities and/or
making recommendations

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009
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Interpreting the Embeddings/Latent Factors

Another illustation of 2-D embeddings of the movies only

Similar movies will be embedded at nearby locations in the embedding space

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009
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Solving Matrix Factorization
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Matrix Factorization

Recall our matrix factorization model: X ≈ UV>

Goal: learn U and V, given a subset Ω of entries in X (let’s call it XΩ)

Some notations:

Ω = {(n,m)}: Xnm is observed

Ωrn : column indices of observed entries in row n of X

Ωcm : row indices of observed entries in column m of X
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Matrix Factorization

We want X to be as close to UV> as possible

Let’s define a squared “loss function” over the observed entries in X

L =
∑

(n,m)∈Ω

(Xnm − u>n vm)2

Here the latent factors {un}Nn=1 and {vm}Mm=1 are the unknown parameters

Squared loss chosen only for simplicity; other loss functions can be used

How do we learn {un}Nn=1 and {vm}Mm=1?
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Alternating Optimization

We will use an `2 regularized version of the squared loss function

L =
∑

(n,m)∈Ω

(Xnm − u>
n vm)2+

N∑
n=1

λU ||un||2 +
M∑

m=1

λV ||vm||2

A non-convex problem. Difficult to optimize w.r.t. un and vm jointly.

One way is to solve for un and vm in an alternating fashion, e.g.,

∀n, fix all variables except un and solve the optim. problem w.r.t. un

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

∀m, fix all variables except vm and solve the optim. problem w.r.t. vm

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

Iterate until not converged

Each of these subproblems has a simple, convex objective function

Convergence properties of such methods have been studied extensively

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 10



Alternating Optimization

We will use an `2 regularized version of the squared loss function

L =
∑

(n,m)∈Ω

(Xnm − u>
n vm)2+

N∑
n=1

λU ||un||2 +
M∑

m=1

λV ||vm||2

A non-convex problem. Difficult to optimize w.r.t. un and vm jointly.

One way is to solve for un and vm in an alternating fashion, e.g.,

∀n, fix all variables except un and solve the optim. problem w.r.t. un

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

∀m, fix all variables except vm and solve the optim. problem w.r.t. vm

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

Iterate until not converged

Each of these subproblems has a simple, convex objective function

Convergence properties of such methods have been studied extensively

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 10



Alternating Optimization

We will use an `2 regularized version of the squared loss function

L =
∑

(n,m)∈Ω

(Xnm − u>
n vm)2+

N∑
n=1

λU ||un||2 +
M∑

m=1

λV ||vm||2

A non-convex problem. Difficult to optimize w.r.t. un and vm jointly.

One way is to solve for un and vm in an alternating fashion, e.g.,

∀n, fix all variables except un and solve the optim. problem w.r.t. un

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

∀m, fix all variables except vm and solve the optim. problem w.r.t. vm

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

Iterate until not converged

Each of these subproblems has a simple, convex objective function

Convergence properties of such methods have been studied extensively

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 10



Alternating Optimization

We will use an `2 regularized version of the squared loss function

L =
∑

(n,m)∈Ω

(Xnm − u>
n vm)2+

N∑
n=1

λU ||un||2 +
M∑

m=1

λV ||vm||2

A non-convex problem. Difficult to optimize w.r.t. un and vm jointly.

One way is to solve for un and vm in an alternating fashion, e.g.,

∀n, fix all variables except un and solve the optim. problem w.r.t. un

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

∀m, fix all variables except vm and solve the optim. problem w.r.t. vm

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

Iterate until not converged

Each of these subproblems has a simple, convex objective function

Convergence properties of such methods have been studied extensively

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 10



Alternating Optimization

We will use an `2 regularized version of the squared loss function

L =
∑

(n,m)∈Ω

(Xnm − u>
n vm)2+

N∑
n=1

λU ||un||2 +
M∑

m=1

λV ||vm||2

A non-convex problem. Difficult to optimize w.r.t. un and vm jointly.

One way is to solve for un and vm in an alternating fashion, e.g.,

∀n, fix all variables except un and solve the optim. problem w.r.t. un

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

∀m, fix all variables except vm and solve the optim. problem w.r.t. vm

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

Iterate until not converged

Each of these subproblems has a simple, convex objective function

Convergence properties of such methods have been studied extensively

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 10



Alternating Optimization

We will use an `2 regularized version of the squared loss function

L =
∑

(n,m)∈Ω

(Xnm − u>
n vm)2+

N∑
n=1

λU ||un||2 +
M∑

m=1

λV ||vm||2

A non-convex problem. Difficult to optimize w.r.t. un and vm jointly.

One way is to solve for un and vm in an alternating fashion, e.g.,

∀n, fix all variables except un and solve the optim. problem w.r.t. un

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

∀m, fix all variables except vm and solve the optim. problem w.r.t. vm

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

Iterate until not converged

Each of these subproblems has a simple, convex objective function

Convergence properties of such methods have been studied extensively

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 10



Alternating Optimization

We will use an `2 regularized version of the squared loss function

L =
∑

(n,m)∈Ω

(Xnm − u>
n vm)2+

N∑
n=1

λU ||un||2 +
M∑

m=1

λV ||vm||2

A non-convex problem. Difficult to optimize w.r.t. un and vm jointly.

One way is to solve for un and vm in an alternating fashion, e.g.,

∀n, fix all variables except un and solve the optim. problem w.r.t. un

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

∀m, fix all variables except vm and solve the optim. problem w.r.t. vm

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

Iterate until not converged

Each of these subproblems has a simple, convex objective function

Convergence properties of such methods have been studied extensively

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 10



Alternating Optimization

We will use an `2 regularized version of the squared loss function

L =
∑

(n,m)∈Ω

(Xnm − u>
n vm)2+

N∑
n=1

λU ||un||2 +
M∑

m=1

λV ||vm||2

A non-convex problem. Difficult to optimize w.r.t. un and vm jointly.

One way is to solve for un and vm in an alternating fashion, e.g.,

∀n, fix all variables except un and solve the optim. problem w.r.t. un

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

∀m, fix all variables except vm and solve the optim. problem w.r.t. vm

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

Iterate until not converged

Each of these subproblems has a simple, convex objective function

Convergence properties of such methods have been studied extensively

Machine Learning (CS771A) Matrix Factorization and Matrix Completion 10



The Solutions

Easy to show that the problem

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

.. has the solution

un =

( ∑
m∈Ωrn

vmv>m + λU IK

)−1( ∑
m∈Ωrn

Xnmvm

)
Likewise, the problem

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

.. has the solution
vm =

( ∑
n∈Ωcm

unu>n + λV IK

)−1( ∑
n∈Ωcm

Xnmun

)
Note that this is very similar to (regularized) least squares regression

Thus matrix factorization can be also seen as a sequence of regression problems (one for each
latent factor)
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Matrix Factorization as Regression

Suppose we are solving for vm (with U and all other vm’s fixed)

Can think of solving for un (with V and all other un’s fixed) in the same way
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Matrix Factorization as Regression

A very useful way to understand matrix factorization

Can modify the regularized least-squares like objective

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2+λUu>n un

.. using other loss functions and regularizers

Some possible modifications:

If entries in the matrix X are binary, counts, etc. then we can replace the squared loss function by
some other loss function (e.g., logistic or Poisson)

Can impose other constraints on the latent factors, e.g., non-negativity, sparsity, etc. (by changing the
regularizer)

Can think of this also as a probabilistic model (a likelihood function on Xnm and priors on the latent
factors un, vm) and do MLE/MAP
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Matrix Factorization: The Complete Algorithm

Input: Partially complete matrix XΩ

Initialize the latent factors v 1, . . . , vM randomly

Iterate until not converged

Update each row latent factor un, n = 1, . . . ,N (can be in parallel)

un =

( ∑
m∈Ωrn

vmv>m + λU IK

)−1( ∑
m∈Ωrn

Xnmvm

)

Update each column latent factor vm, m = 1, . . . ,M (can be in parallel)

vm =

( ∑
n∈Ωcm

unu>n + λV IK

)−1( ∑
n∈Ωcm

Xnmun

)

Final prediction for any (missing) entry: Xnm = u>n vm
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A Faster Algorithm via SGD

Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost
O(K 3) for updating each latent factor un, vm)

An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly
chosen entry Xnm with (n,m) ∈ Ω

Consider updating un. For loss function
∑

m∈Ωrn
(Xnm − u>n vm)2 + λU ||un||2, the stochastic

gradient w.r.t. un using this randomly chosen entry Xnm is

−(Xnm − u>n vm)vm + λUun

Thus the SGD update for un will be

un = un − η(λUun − (Xnm − u>n vm)vm)

Likewise, the SGD update for vm will be

vm = vm − η(λV vm − (Xnm − u>n vm)un)

The SGD algorithm chooses a random entry Xnm in each iteration, updates un, vm, and repeats
until convergece (un’s,vm’s randomly initialized).
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Some Other Extensions of
Matrix Factorization
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Joint Matrix Factorization

Can do joint matrix factorization of more than one matrices

Consider two “ratings”matrices with the N users shared in both

Can assume the following matrix factorization

X1 ≈ UV>1 and X2 ≈ UV>2

Note that the user latent factor matrix U is shared in both factorizations

Gives a way to learn features by combining multiple data sets (2 in this case)

Can use the alternating optimization to solve for U, V1 and V2
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Tensor Factorization

A “tensor” is a generalization of a matrix to more than two dimensions

Consider a 3-dim (or 3-mode or 3-way) tensor X of size N ×M × P

We can model each entry of tensor X as

Xnmp ≈ un � vm �wp =
K∑

k=1

unkvmkwpk

Can learn {un}Nn=1, {vm}Mm=1, {wp}Pp=1 using alternating optimization

These K -dim. “embeddings” can be used as features for other tasks (e.g., tensor completion,
computing similarities, etc.)

The model also be easily extended to tensors having than 3 dimensions

Several specialized algorithms for tensor factorization (CP/Tucker decomposition, etc.)
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Tensor Factorization: An Application

Many data sets can be naturally represented as tensors

Knowledge-Graphs (KG) of Knowledge-Bases (KB) is one such example

A KG/KB consists of “facts” in form of triplets (e.g. Modi-PM-India)

KGs are highly incomplete. One goal is to “complete” the KG, i.e., generate new valid facts from
existing facts

We can applying tensor factorization to learn features/embeddings of the entities and relations.
Can use the embeddings to predict the unknown facts
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Matrix/Tensor Factorization: Another View

We modeled each matrix/tensor entry as an inner product of latent factors

Can also model matrix (or tensor) as a whole, as sum of rank-1 components

E.g., an N ×M × P tensor X as a sum of outer products of column vectors

X ≈
K∑

k=1

uk ⊗ v k ⊗ w k (tensor SVD view; also generalizes to more than 3 dims)

uk ∈ RN , v k ∈ RM and w k ∈ RP denote the k-th columns of U, V, W resp.

The matrix case is similar (only 2 dimensions)

With this view, in alternating optimization, can update one column at a time
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