PCA (Wrap-up) and Nonlinear Dimensionality
Reduction via Kernel PCA

Piyush Rai
Machine Learning (CS771A)

Sept 7, 2016

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA



Recap/Wrap-up of PCA
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Principal Component Analysis (PCA)

@ PCA basically does the following
o Learns the most important directions (new basis vectors) in the data
o Re-represents data using the new basis vectors (change of basis)

o Throws away “uninteresting” directions without much loss of info. This gives a new lower-dimensional
representation of the original data
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Principal Component Analysis (PCA)

@ PCA basically does the following

o Learns the most important directions (new basis vectors) in the data
o Re-represents data using the new basis vectors (change of basis)

o Throws away “uninteresting” directions without much loss of info. This gives a new lower-dimensional
representation of the original data

@ PCA uses “amount of data variance captured” to define important directions
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Principal Component Analysis (PCA)

@ How does PCA find the “maximum variance” directions (last class)?
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@ How does PCA find the “maximum variance” directions (last class)?

e Using eigen-decomposition of the covariance matrix of data
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Principal Component Analysis (PCA)

@ How does PCA find the “maximum variance” directions (last class)?

e Using eigen-decomposition of the covariance matrix of data
o Each eigenvector represents one such direction

o First (top) eigenvector is the direction that captures the largest variance
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Principal Component Analysis (PCA)

@ How does PCA find the “maximum variance” directions (last class)?
e Using eigen-decomposition of the covariance matrix of data
o Each eigenvector represents one such direction
o First (top) eigenvector is the direction that captures the largest variance

o Each subsequent eigenvector is the next best as per this criterion
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Principal Component Analysis (PCA)

@ How does PCA find the “maximum variance” directions (last class)?
e Using eigen-decomposition of the covariance matrix of data
o Each eigenvector represents one such direction
o First (top) eigenvector is the direction that captures the largest variance
o Each subsequent eigenvector is the next best as per this criterion
@ Steps in Principal Component Analysis

o Compute the covariance matrix S using the centered data as

S= %XXT (note: X assumed D x N here)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA



Principal Component Analysis (PCA)

@ How does PCA find the “maximum variance” directions (last class)?

e Using eigen-decomposition of the covariance matrix of data
o Each eigenvector represents one such direction
o First (top) eigenvector is the direction that captures the largest variance

o Each subsequent eigenvector is the next best as per this criterion

@ Steps in Principal Component Analysis

o Compute the covariance matrix S using the centered data as

S= %XXT (note: X assumed D x N here)

e Do an eigen-decomposition of S. This will give D eigenvectors.
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Principal Component Analysis (PCA)

@ How does PCA find the “maximum variance” directions (last class)?
e Using eigen-decomposition of the covariance matrix of data
o Each eigenvector represents one such direction
o First (top) eigenvector is the direction that captures the largest variance
o Each subsequent eigenvector is the next best as per this criterion
@ Steps in Principal Component Analysis

o Compute the covariance matrix S using the centered data as

S= %XXT (note: X assumed D x N here)

e Do an eigen-decomposition of S. This will give D eigenvectors.

o Take top K leading eigenvectors {u,}5_; with eigenvalues {\¢}5_;
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Principal Component Analysis (PCA)

@ How does PCA find the “maximum variance” directions (last class)?

e Using eigen-decomposition of the covariance matrix of data
o Each eigenvector represents one such direction
o First (top) eigenvector is the direction that captures the largest variance

o Each subsequent eigenvector is the next best as per this criterion

@ Steps in Principal Component Analysis

o Compute the covariance matrix S using the centered data as

S= %XXT (note: X assumed D x N here)

e Do an eigen-decomposition of S. This will give D eigenvectors.
o Take top K leading eigenvectors {u,}5_; with eigenvalues {\¢}5_;

o U=[u1 ... uk]is D x K matrix (each column is a projection direction)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA



PCA as Linear Projection

@ Can use U to linearly project each x, € RP to a K-dim subspace as

T T T T 1T
z,=U'"x,=[uy xp Uy Xy ... UpXy]
Kx1 Kx D Dx1

T

ut
—-— uZ *
= Ut

ul x|

Top K eigenvectors
of covariance matrix of X
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PCA as Linear Projection

@ Can use U to linearly project each x, € RP to a K-dim subspace as

T T T T 1T
z,=U'"x,=[uy xp Uy Xy ... UpXy]
Kx1 Kx D Dx1

T

ut
—-— uZ *
= Ut

ul x|

Top K eigenvectors
of covariance matrix of X

e z, € RX is also called low-dimensional “embedding” of x, € RP
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PCA as Linear Projection

@ Z=[zy zp... z,] is the K x N matrix of embeddings of all the N examples

K XN Kx D D xN

= UT *

@ Z can also be thought of as a new, compact feature representation of X
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PCA based Embeddings of Handwritten Digits

@ Shown below are 2-dim embeddings of PCA on a set of handwritten digits (each digit image was
originally 8 x 8, i.e., 64 dimensional)
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PCA: Data as Combination of Basis Vectors

@ PCA to K-dims is also akin to saying x, =~ Zle ZnkUg. Thus

X~ UZ (matrix factorization)
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PCA: Data as Combination of Basis Vectors

@ PCA to K-dims is also akin to saying x, =~ Zle ZnkUg. Thus

X~ UZ (matrix factorization)

X = u .

@ Example: Each face in a collection can be represented as a combination of a small no of
“eigenfaces” (“template” faces)

X (DxN) U (DxK) Z (KxN)

i Q)E(E@m@rﬂ)(zl... )
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PCA: Data as Combination of Basis Vectors

@ PCA to K-dims is also akin to saying x, =~ Zle ZnkUg. Thus

X~ UZ (matrix factorization)

@ Example: Each face in a collection can be represented as a combination of a small no of
“eigenfaces” (“template” faces)

X (DxN) U (DxK) Z (KxN)

9 Q) o). - |

@ Can thus approximately reconstruct the matrix X using UZ: Do PCA on the N x D data matrix X,
keep U (D x K) and Z (K x N) and throw away X
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PCA: Data as Combination of Basis Vectors

@ PCA to K-dims is also akin to saying x, =~ Zle ZnkUg. Thus

X~ UZ (matrix factorization)

@ Example: Each face in a collection can be represented as a combination of a small no of
“eigenfaces” (“template” faces)

X (DxN) U (DxK) Z (KxN)
9 Q) o). - |
@ Can thus approximately reconstruct the matrix X using UZ: Do PCA on the N x D data matrix X,
keep U (D x K) and Z (K x N) and throw away X
e Substantial storage saving if K < D
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PCA: Data as Combination of Basis Vectors

o Consider doing PCA on a (words x documents) matrix X
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o Consider doing PCA on a (words x documents) matrix X

@ Each entry Xy, in X is the frequency of word d in document n
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PCA: Data as Combination of Basis Vectors

o Consider doing PCA on a (words x documents) matrix X
@ Each entry Xy, in X is the frequency of word d in document n

@ PCA on X will give us eigenvectors that correspond to “topics’ or concepts
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PCA: Data as Combination of Basis Vectors

o Consider doing PCA on a (words x documents) matrix X
@ Each entry Xy, in X is the frequency of word d in document n

@ PCA on X will give us eigenvectors that correspond to “topics’ or concepts

N Documents K “Topics N Documents

z

*
K “Topics”

X

Word-doc frequencies

n
D Words
c

D Words

@ Each document is like a weighted combination of these topics
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PCA: Data as Combination of Basis Vectors

o Consider doing PCA on a (words x documents) matrix X
@ Each entry Xy, in X is the frequency of word d in document n

@ PCA on X will give us eigenvectors that correspond to “topics’ or concepts

N Documents K “Topics N Documents

z

*
K “Topics”

X

Word-doc frequencies

n
D Words
c

D Words

@ Each document is like a weighted combination of these topics

@ This is similar to “Latent Semantic Analysis” (LSA), a well-known document dimensionality
reduction technique in information retrieval (basically, LSA does SVD on X, which is equivalent to
doing PCA on X)
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PCA: Data as Combination of Basis Vectors

@ X is (genes x samples) matrix: Each sample (expression values of a set of D genes) is a weighted
combination of K biological “pathways"”

N Samples K “Pathways” N Samples

4

*
K “Pathways”

X =

Gene-expression values

D Genes
D Genes
c
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PCA: Data as Combination of Basis Vectors

@ X is (genes x samples) matrix: Each sample (expression values of a set of D genes) is a weighted
combination of K biological “pathways"”

N Samples K “Pathways’ N Samples

0
2
g

0 0 * = Z

g g &

[ — [ N

8 X = 3 U ¥

A | cene-expression vaiues a

@ X is (movies x users) matrix: Each user (represented by the vector of his/her ratings of D movies)
is a weighted combination of K genres

N Users K “Genres’ N Users

V4

K “Genres”

X

Ratings

D Movies
n

D Movies
=
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Beyond Linear Projections..

o Consider the swiss-roll dataset (points lying close to a manifold)

PCA (Linear Projection) o

@ Linear projection methods (e.g., PCA) can't capture intrinsic nonlinearities
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Nonlinear Dimensionality Reduction

@ Given: Low-dim. surface embedded nonlinearly in high-dim. space

e Such a structure is called a Manifold

@ Goal: Recover the low-dimensional surface
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Nonlinear Dimensionality Reduction

@ We want to a learn nonlinear low-dim projection

\ Nonlinear Projection p
s
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Nonlinear Dimensionality Reduction

@ We want to a learn nonlinear low-dim projection

\ Nonlinear Projection o 4
s
Lo 1

@ Usually two ways of doing this
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Nonlinear Dimensionality

Reduction

@ We want to a learn nonlinear low-dim projection

@ Usually two ways of doing this
o Nonlinearize a linear dimensional

o Kernel PCA (nonlinear PCA)

Machine Learning (CS771A)

R 1

x ‘ "
S Nonlinear Projection o y
s

ity reduction method. E.g.:
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Nonlinear Dimensionality Reduction

@ We want to a learn nonlinear low-dim projection

\ Nonlinear Projection o
sl ____ ¥

@ Usually two ways of doing this
o Nonlinearize a linear dimensionality reduction method. E.g.:
o Kernel PCA (nonlinear PCA)
o Using manifold based methods that intrinsically preserve nonlinear geometry

Locally Linear Embedding (LLE)
Isomap

Maximum Variance Unfolding
Laplacian Eigenmaps

And others (tSNE, Hessian LLE, etc.)
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Kernel PCA

@ Recall PCA: Given N observations {xi, ..
matrix (assuming centered data -, x, = 0)

., xn}, Vx, € RP, we define the D x D covariance
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Kernel PCA

@ Recall PCA: Given N observations {x1,...,xn}, Vx, € RP, we define the D x D covariance
matrix (assuming centered data -, x, = 0)
L
S= N Zx,,an
n=1

@ PCA computes eigenvectors u; which satisfy Su; = \ju; Vi=1,...,D
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Kernel PCA

@ Recall PCA: Given N observations {xi,...,xn}, Vx, € RP, we define the D x D covariance
matrix (assuming centered data -, x, = 0)
L
S= N Zx,,an
n=1

@ PCA computes eigenvectors u; which satisfy Su; = \ju; Vi=1,...,D

@ Let's assume a kernel k with associated M dimensional nonlinear map ¢
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Kernel PCA

Recall PCA: Given N observations {x1,...,xn}, Vx, € RP, we define the D x D covariance
matrix (assuming centered data -, x, = 0)

PCA computes eigenvectors u; which satisfy Su; = \ju; Vi=1,...,D
Let's assume a kernel k with associated M dimensional nonlinear map ¢

M x M covariance matrix in this space (assume centered data 3, ¢(x.) = 0)

1Y .
C= N ; QS(X,J(ZS(X,,)
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Kernel PCA

Recall PCA: Given N observations {x1,...,xn}, Vx, € RP, we define the D x D covariance
matrix (assuming centered data -, x, = 0)

PCA computes eigenvectors u; which satisfy Su; = \ju; Vi=1,...,D
Let's assume a kernel k with associated M dimensional nonlinear map ¢

M x M covariance matrix in this space (assume centered data 3, ¢(x.) = 0)

1Y .
C= N ; QS(X,J(ZS(X,,)

Kernel PCA: Compute eigenvectors v; satisfying: Cv; = \;jv; Vi=1,....M
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Kernel PCA

Recall PCA: Given N observations {x1,...,xn}, Vx, € RP, we define the D x D covariance
matrix (assuming centered data -, x, = 0)

PCA computes eigenvectors u; which satisfy Su; = \ju; Vi=1,...,D
Let's assume a kernel k with associated M dimensional nonlinear map ¢

M x M covariance matrix in this space (assume centered data 3, ¢(x.) = 0)
N
_ Z T
C - N s QS(X,J(b(X,,)

Kernel PCA: Compute eigenvectors v; satisfying: Cv; = \;jv; Vi=1,....M
We would like to do this without having to compute C or ¢(x,)'s
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Kernel PCA

Right figure: After mapping the data via ¢, data is now close to a linear subspace
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Kernel PCA

@ Goal: Compute eigenvectors v;, i.e., Cv; = \;v;, each v; is M dimensional
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Kernel PCA

@ Goal: Compute eigenvectors v;, i.e., Cv; = \;v;, each v; is M dimensional

@ Plugging in the expression for C, we have

N N
5 S 00k xn) Vi = 1 3 Bxa)élxn) i = A
n=1 n=1
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Kernel PCA

@ Goal: Compute eigenvectors v;, i.e., Cv; = \;v;, each v; is M dimensional

@ Plugging in the expression for C, we have

N N
S B )(xe) vs = =3 dlxn)olx) v = A
n=1 n=1

1

e Denoting avjn = 2y d(xn) " vi, v = SN @iné(x,) (also recall Rep. Thm.)

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA

16



Kernel PCA

@ Goal: Compute eigenvectors v;, i.e., Cv; = \;v;, each v; is M dimensional

@ Plugging in the expression for C, we have

N N
5D 60n)0x) Tvi = 1 D Blxa)o(xn) T vi = A
n=1 1

e Denoting avjn = 2y d(xn) " vi, v = SN @iné(x,) (also recall Rep. Thm.)

@ Thus we can get v; by finding a; = [aj1 ... an]
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Kernel PCA

@ Goal: Compute eigenvectors v;, i.e., Cv; = \;v;, each v; is M dimensional

@ Plugging in the expression for C, we have
1< - 1< o)
N nz::lqb(x,,)qﬁ(x,,) vi= — ; Xn)P(xn) vi=Aivi
o Denoting aip = 5ty d(xn) " vi, vi = SN @iné(x,) (also recall Rep. Thm.)
@ Thus we can get v; by finding a; = [aj1 ... an]
@ Plugging this back in the eigenvector equation Cv; = \;v;
N N N
2 Hxn)0lx) Y cind(xn) = A cni(x,)
n=1 m=1 n=1
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Kernel PCA

@ Goal: Compute eigenvectors v;, i.e., Cv; = \;v;, each v; is M dimensional

Plugging in the expression for C, we have

1 1
Nz¢(xn)¢(xn)TVi = *Z X,, “‘ n T Vi = \jVv;
n=1

n=1

e Denoting avjn = w25 d(xn) Vi, vi = SN @iné(x,) (also recall Rep. Thm.)
@ Thus we can get v; by finding a; = [aj1 ... an]
@ Plugging this back in the eigenvector equation Cv; = \;v;
N N N
1 ‘ ‘
N Z ¢(Xn)¢(xn)-rz Oé'im@(xm) = )\IZ ain@(xn)
n=1 m=1 n=1

Pre-multiplying both sides by ¢(x;)" and re-arranging

N
%Zq&(XZ Xn)z ()L/mﬁb Xn Xm = )\ Z (Y,n¢ Xg O(Xn)
n=1

n=1
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Kernel PCA
o Using ¢(x,) T d(xm) = k(Xn, xm), we get

N N N

1

N Z k(xe,%n) Z Qimk(Xpy Xm) = Ai Z Qink(X¢, Xn)
n=1 m=1 n=1
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Kernel PCA
o Using ¢(x,) T d(xm) = k(Xn, xm), we get
N N N
% Z k(xe, xn) Z Qimk(Xn, Xm) = A Z aink(X¢, Xn)

o Define K as the N x N kernel matrix with K, = k(x,, x,)
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Kernel PCA
o Using ¢(x,) T d(xm) = k(Xn, xm), we get
N N N
% Z k(xe, xn) Z Qimk(Xn, Xm) = A Z aink(X¢, Xn)

o Define K as the N x N kernel matrix with K, = k(x,, x,)

e K is the similarity of two examples x, and x,, in the ¢ space

Machine Learning (CS771A) PCA (Wrap-up) and Nonlinear Dimensionality Reduction via Kernel PCA

17



Kernel PCA
o Using ¢(x,) T d(xm) = k(Xn, xm), we get
N N N
% Z k(xe, xn) Z Qimk(Xn, Xm) = A Z aink(X¢, Xn)

o Define K as the N x N kernel matrix with K, = k(x,, x,)
e K is the similarity of two examples x, and x,, in the ¢ space
e ¢ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)
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Kernel PCA
o Using ¢(x,) T d(xm) = k(Xn, xm), we get
N N N
% Z k(xe, xn) Z Qimk(Xn, Xm) = A Z aink(X¢, Xn)

o Define K as the N x N kernel matrix with K, = k(x,, x,)
e K is the similarity of two examples x, and x,, in the ¢ space
e ¢ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

@ Define ayj as the N x 1 vector with elements «;,
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Kernel PCA
o Using ¢(x,) T d(xm) = k(Xn, xm), we get
N N N
% Z k(xe, xn) Z Qimk(Xn, Xm) = A Z aink(X¢, Xn)

o Define K as the N x N kernel matrix with K, = k(x,, x,)
e K is the similarity of two examples x, and x,, in the ¢ space
e ¢ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

@ Define ayj as the N x 1 vector with elements «;,

@ Using K and «;, the eigenvector equation becomes:
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Kernel PCA
o Using ¢(x,) T d(xm) = k(Xn, xm), we get
N N N
% Z k(xe, xn) Z Qimk(Xn, Xm) = A Z aink(X¢, Xn)

o Define K as the N x N kernel matrix with K, = k(x,, x,)
e K is the similarity of two examples x, and x,, in the ¢ space
e ¢ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

@ Define ayj as the N x 1 vector with elements «;,

@ Using K and «;, the eigenvector equation becomes:

@ Thus «; is an eigenvector of the N x N kernel matrix K
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Kernel PCA
o Using ¢(x,) T d(xm) = k(Xn, xm), we get
N N N
% Z k(xe, xn) Z Qimk(Xn, Xm) = A Z aink(X¢, Xn)

o Define K as the N x N kernel matrix with K, = k(x,, x,)

e K is the similarity of two examples x, and x,, in the ¢ space

e ¢ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)
@ Define ayj as the N x 1 vector with elements «;,

@ Using K and «;, the eigenvector equation becomes:

@ Thus «; is an eigenvector of the N x N kernel matrix K

e Note: Since v,/ v; =1and v; = Z,/Ll aind(x,), we have o Ka; = 1, which means o \iNey; = 1

and o] a; = 1/(X\;N). Thus the original solution with o a; = 1 (eigenvec with norm 1) needs to
be re-scaled as &, = ajp/V/AiN
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Kernel PCA: Centering the Data

o In PCA, we centered the data before computing the covariance matrix

@ For kernel PCA, we need to do the same

- 1
Bxn) = d(xa) = 1 D d(xe)
£=1
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Kernel PCA: Centering the Data

o In PCA, we centered the data before computing the covariance matrix

@ For kernel PCA, we need to do the same

1 N
Bxn) = d(xa) = 1 D d(xe)
£=1

@ Each element of the centered kernel matrix
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Kernel PCA: Centering the Data

o In PCA, we centered the data before computing the covariance matrix

@ For kernel PCA, we need to do the same
- 1
Bxn) = d(xa) = 1 D d(xe)
£=1

@ Each element of the centered kernel matrix

Kom = <l~5(Xn)T<Z~5(Xm)
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Kernel PCA: Centering the Data

o In PCA, we centered the data before computing the covariance matrix

@ For kernel PCA, we need to do the same

d(xn) = ¢(xn)

1
o~
HMZ

@ Each element of the centered kernel matrix

Rom = &(xa) " d(xm)
1 N N

= $(xn) P(xm) — Z¢xn) $lxe) = 5 D lxe xm)+N2 _

£=1 =1

- b(x;) " b(xe)

Mz
M=

-
Il
-
o~
Il
-
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Kernel PCA: Centering the Data

o In PCA, we centered the data before computing the covariance matrix

@ For kernel PCA, we need to do the same
- 1
Bxn) = d(xa) = 1 D d(xe)

@ Each element of the centered kernel matrix
Kom = <l~5(Xn)T<Z~5(Xm)

= 600 0m) = 5 D k) Blxe) = 1 D (ki) blxm) + 15 D3~ 0lx)) T blxe)

1Y 1 & 1 N
= k(xp,Xm) — N Z k(xp, x¢) — N Zk(xz,xm) + = sz(X[’XZ)
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Kernel PCA: Centering the Data

o In PCA, we centered the data before computing the covariance matrix

@ For kernel PCA, we need to do the same

- 1
B(xn) = p(xa) — = > d(xe)

@ Each element of the centered kernel matrix

Rom = &(xn) " ¢(xm)
1 N 1 N 1 N N
= ¢(xn) " d(xm) — v > b(xn) " Blxe) — v S d(xe) T p(xm) + 7 SO>S o(xi) T d(xe)
=1 £=1 j=1 £=1
1 1 1 N
= k(xn,xm) — N Z k(xn, x¢) — N Z k(xe, xm) + 2 Z Z k(xe, x¢)
=1 £=1 j=1 ¢=1

o In matrix notation, the centered K = K — 1yK — K1y + 1yK1y
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Kernel PCA: Centering the Data

o In PCA, we centered the data before computing the covariance matrix

@ For kernel PCA, we need to do the same

Blxn) = b(x2) — —

@ Each element of the centered kernel matrix
Kom = <l~5(Xn)T<Z~5(Xm)

= ¢(xn) P(xm) —

N N
= k(xp,Xm) — % Z k(xp, x¢) — N Zk(xz,xm) + = sz(X[’XZ)

=1 =1 j=1 £=1
o In matrix notation, the centered K = K — 1yK — K1y + 1yK1y

o 1y is the N x N matrix with every element = 1/N
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Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

@ For kernel PCA, we need to do the same

- 1
Bxn) = d(xa) = 1 D d(xe)

@ Each element of the centered kernel matrix
Kom = <l~5(Xn)T<Z~5(Xm)

= ¢(xn) P(xm) —

1 1 NN
k(xn, xm) = S k(xn, xe) — o S k(xe, xm) + 5 > > k(xe, xe)

= £=1 j=1 ¢=1

In matrix notation, the centered K = K — 1yK — K1y + 1yK1y

1y is the N x N matrix with every element = 1/N

o Eigen-decomposition is then done for the centered kernel matrix K
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Kernel PCA: Computing the Embeddings

@ Suppose {a,...,a.} are the top L eigenvectors of kernel matrix K

@ The L-dimensional KPCA projection z,, = [Zm1,- - ., Zmi] Of a point X,

ng:¢(xm)TV4 Ve=1,...,L
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Kernel PCA: Computing the Embeddings

@ Suppose {a,...,a.} are the top L eigenvectors of kernel matrix K

@ The L-dimensional KPCA projection z,, = [Zm1,- - ., Zmi] Of a point X,

zmg:¢(xm)Tvz Ve=1,...,L

@ Using the definition of vy, i.e., vy = leyzl and(xn), we have

N

Zme = d)(xm)TVZ = Zaénk(xnaxm)

n=1
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Kernel PCA: Computing the Embeddings

@ Suppose {a,...,a.} are the top L eigenvectors of kernel matrix K
@ The L-dimensional KPCA projection z,, = [Zm1,- - ., Zmi] Of a point X,
zmg:¢(xm)Tvz Ve=1,...,L
@ Using the definition of vy, i.e., vy = leyzl and(xn), we have
N
Zme = gi)(xm)Tv@ = Zozg,,k(x,,,xm)
n=1

@ Note: Cost of computing the embeddings scales in N
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Kernel PCA: Computing the Embeddings

Suppose {ay,...,a.} are the top L eigenvectors of kernel matrix K

The L-dimensional KPCA projection z, = [Zm1, - - ., Zme] Of a point X,

zmg:¢(xm)Tvz Ve=1,...,L

@ Using the definition of vy, i.e., vy = leyzl and(xn), we have
N
Zme = d)(xm)TVZ = Zaénk(xnaxm)
n=1

@ Note: Cost of computing the embeddings scales in N

Note: For linear kernel, KPCA reduces to PCA (but more efficient if N < D)
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Kernel PCA: Summary of the algorithm

@ Construct the N x N kernel matrix K
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Kernel PCA: Summary of the algorithm

@ Construct the N x N kernel matrix K

e Center K as follows K = K — 1yK — K1y + 1yK1y, where 1y is an N x N matrix of all 1/N
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Kernel PCA: Summary of the algorithm

@ Construct the N x N kernel matrix K
e Center K as follows K = K — 1yK — K1y + 1yK1y, where 1y is an N x N matrix of all 1/N

@ Do eigen-decomposition of K and find top L eigenvecs a1, @iy, . .., ap with eigenvals A1, Aa, ..., AL
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Kernel PCA: Summary of the algorithm

@ Construct the N x N kernel matrix K

e Center K as follows K = K — 1yK — K1y + 1yK1y, where 1y is an N x N matrix of all 1/N

@ Do eigen-decomposition of K and find top L eigenvecs a1, @iy, . .., ap with eigenvals A1, Aa, ..., AL
@ Re-scale each eigenvector as &; = «;/V AN, Vi=1,...,L
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Kernel PCA: Summary of the algorithm

@ Construct the N x N kernel matrix K
e Center K as follows K = K — 1yK — K1y + 1yK1y, where 1y is an N x N matrix of all 1/N
@ Do eigen-decomposition of K and find top L eigenvecs a1, @iy, . .., ap with eigenvals A1, Aa, ..., AL

Re-scale each eigenvector as &; = a;/v/ AN, Vi=1,... L

Finally, compute embedding z,, € Rt of any point x,, as

N
Zme = Z dﬁnk(xm xm)
n=1
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Kernel PCA: Summary of the algorithm

@ Construct the N x N kernel matrix K

e Center K as follows K = K — 1yK — K1y + 1yK1y, where 1y is an N x N matrix of all 1/N

@ Do eigen-decomposition of K and find top L eigenvecs a1, @iy, . .., ap with eigenvals A1, Aa, ..., AL
@ Re-scale each eigenvector as &; = «;/V AN, Vi=1,...,L

Finally, compute embedding z,, € Rt of any point x,, as

N
Zme = Z dﬁnk(xm xm)
n=1

o Note: For compactness, the L x N matrix of all L eigenvectors (each is N dimensional) can be
written as & = [&; & ... &;]". Thus we can also write embedding z,, € Rt as z,,, = ék,,
where k, is N x 1 vector of kernelized similarities of x,, with all the N training data points
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Kernel PCA:

Dimension 2

An Example

Original Data KPCA using 2 PCs

Using kernel
k(z,y) = ("y+1)

New coordinates along second PC

New coordinates along first PC

i r

Dimension 1

Note that even if we throw away the 2nd PC, we get a good 1-D embedding
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