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Clustering

Usually an unsupervised learning problem

Given: N unlabeled examples {x1, . . . , xN}; no. of desired partitions K

Goal: Group the examples into K “homogeneous” partitions

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)

Loosely speaking, it is classification without ground truth labels

A good clustering is one that achieves:

High within-cluster similarity

Low inter-cluster similarity
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Similarity can be Subjective

Clustering only looks at similarities, no labels are given

Without labels, similarity can be hard to define

Thus using the right distance/similarity is very important in clustering

Also important to define/ask: “Clustering based on what”?

Picture courtesy: http://www.guy-sports.com/humor/videos/powerpoint presentation dogs.htm
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Clustering: Some Examples

Document/Image/Webpage Clustering

Image Segmentation (clustering pixels)

Clustering web-search results

Clustering (people) nodes in (social) networks/graphs

.. and many more..

Picture courtesy: http://people.cs.uchicago.edu/∼pff/segment/
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Types of Clustering

1 Flat or Partitional clustering
Partitions are independent of each other

2 Hierarchical clustering
Partitions can be visualized using a tree structure (a dendrogram)

Possible to view partitions at different levels of granularities (i.e., can refine/coarsen clusters) using
different K
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Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

Initialize: K cluster means µ1, . . . ,µK , each µk ∈ RD

Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K -means++, Arthur & Vassilvitskii, 2007)

Iterate:

(Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean distance)

Ck = {n : k = arg min
k
||xn − µk ||

2}

(Ck is the set of examples assigned to cluster k with center µk)

Update the cluster means

µk = mean(Ck) =
1

|Ck |
∑
n∈Ck

xn

Repeat while not converged

Stop when cluster means or the “loss” does not change by much
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K -means: Initialization (assume K = 2)

Machine Learning (CS771A) Clustering: K -means and Kernel K -means 7



K -means iteration 1: Assigning points

Machine Learning (CS771A) Clustering: K -means and Kernel K -means 8



K -means iteration 1: Recomputing the centers
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K -means iteration 2: Assigning points
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K -means iteration 2: Recomputing the centers
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K -means iteration 3: Assigning points
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K -means iteration 3: Recomputing the centers
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K -means iteration 4: Assigning points
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K -means iteration 4: Recomputing the centers
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What Loss Function is K -means Optimizing?

Let µ1, . . . ,µK be the K cluster centroids (means)

Let znk ∈ {0, 1} be s.t. znk = 1 if xn belongs to cluster k , and 0 otherwise

Note: zn = [zn1 zn2 . . . znK ] represents a length K one-hot encoding of xn

Define the distortion or “loss” for the cluster assignment of xn

`(µ, xn, zn) =
K∑

k=1

znk ||xn − µk ||2

Total distortion over all points defines the K -means “loss function”

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2 = ||X− Zµ||2

where Z is N × K (row n is zn) and µ is K × D (row k is µk)

The K -means problem is to minimize this objective w.r.t. µ and Z

Note that the objective only minimizes within-cluster distortions
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K -means Objective

Consider the K -means objective function

L(µ,X,Z) =
N∑

n=1

K∑
k=1

znk ||xn − µk ||2

It is a non-convex objective function

Many local minima possible

Also NP-hard to minimize in general (note that Z is discrete)

The K -means algorithm we saw is a heuristic to optimize this function

K -means algorithm alternated between the following two steps

Fix µ, minimize w.r.t. Z (assign points to closest centers)

Fix Z, minimize w.r.t. µ (recompute the center means)

Note: The algorithm usually converges to a local minima (though may not always, and it may just
convergence “somewhere”). Multiple runs with different initializations can be tried to find a good
solution.
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Convergence of K -means Algorithm

Each step (updating Z or µ) can never increase the objective

When we update Z from Z(t−1) to Z(t)

L(µ(t−1)
,X,Z(t)) ≤ L(µ(t−1)

,X,Z(t−1))

because the new Z(t) = arg minZ L(µ(t−1),X,Z)

When we update µ from µ(t−1) to µ(t)

L(µ(t)
,X,Z(t)) ≤ L(µ(t−1)

,X,Z(t))

because the new µ(t) = arg minµ L(µ,X,Z(t))

Thus the K -means algorithm monotonically decreases the objective
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K -means: Choosing K

One way to select K for the K -means algorithm is to try different values of K , plot the K -means
objective versus K , and look at the “elbow-point”

For the above plot, K = 6 is the elbow point

Can also information criterion such as AIC (Akaike Information Criterion)

AIC = 2L(µ̂,X, Ẑ) + K logD

.. and choose the K that has the smallest AIC (discourages large K )
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K -means: Some Limitations

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or doesn’t belong at all

No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Works well only is the clusters are roughtly of equal sizes

Probabilistic clustering methods such as Gaussian mixture models can handle both these issues
(model each cluster using a Gaussian distribution)

K -means also works well only when the clusters are round-shaped and does badly if the clusters
have non-convex shapes

Kernel K -means or Spectral clustering can handle non-convex
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Kernel K -means

Basic idea: Replace the Euclidean distance/similarity computations in K -means by the kernelized
versions. E.g., d(xn,µk) = ||φ(xn)− φ(µk)|| by

||φ(xn)− φ(µk)||2 = ||φ(xn)||2 + ||φ(µk)||2 − 2φ(xn)>φ(µk)

= k(xn, xn) + k(µk ,µk)− 2k(xn,µk)

Here k(., .) denotes the kernel function and φ is its (implicit) feature map

Note: φ doesn’t have to be computed/stored for data {xn}Nn=1 or the cluster means {µk}Kk=1

because computations only depend on kernel evaluations

A small technical note: When computing k(µk ,µk) and k(xn,µk), remember that φ(µk) is the
average of φ’s the data points assigned to cluster k
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Extra Slides:
Hierarchical Clustering
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Hierarchical Clustering

Agglomerative (bottom-up) Clustering
1 Start with each example in its own singleton cluster
2 At each time-step, greedily merge 2 most similar clusters
3 Stop when there is a single cluster of all examples, else go to 2

Divisive (top-down) Clustering
1 Start with all examples in the same cluster
2 At each time-step, remove the “outsiders” from the least cohesive cluster
3 Stop when each example is in its own singleton cluster, else go to 2

Agglomerative is more popular and simpler than divisive (but less accurarate)
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(Dis)similarity between clusters

We know how to compute the dissimilarity d(x i , x j) between two examples

How to compute the dissimilarity between two clusters R and S?

Min-link or single-link: results in chaining (clusters can get very large)

d(R, S) = min
xR∈R,xS∈S

d(xR , xS )

Max-link or complete-link: results in small, round shaped clusters

d(R, S) = max
xR∈R,xS∈S

d(xR , xS )

Average-link: compromise between single and complexte linkage

d(R, S) =
1

|R||S|
∑

xR∈R,xS∈S
d(xR , xS )
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Flat vs Hierarchical Clustering

Flat clustering produces a single partitioning

Hierarchical Clustering can give different partitionings depending on the level-of-resolution we are
looking at

Flat clustering is usually more efficient run-time wise

Hierarchical clustering can be slow (has to make several merge/split decisions)
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