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Clustering

@ Usually an unsupervised learning problem
o Given: N unlabeled examples {x1,...,xn}; no. of desired partitions K

@ Goal: Group the examples into K “homogeneous” partitions
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(@) Input data (b) Desired clustering

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)
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@ Loosely speaking, it is classification without ground truth labels
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Clustering

@ Usually an unsupervised learning problem
o Given: N unlabeled examples {x1,...,xn}; no. of desired partitions K

@ Goal: Group the examples into K “homogeneous” partitions

(@) Input data (b) Desired clustering

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)
@ Loosely speaking, it is classification without ground truth labels

@ A good clustering is one that achieves:

e High within-cluster similarity

o Low inter-cluster similarity
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Similarity can be Subjective

o Clustering only looks at similarities, no labels are given

@ Without labels, similarity can be hard to define
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@ Thus using the right distance/similarity is very important in clustering
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Similarity can be Subjective

o Clustering only looks at similarities, no labels are given

@ Without labels, similarity can be hard to define

@ Thus using the right distance/similarity is very important in clustering

@ Also important to define/ask: “Clustering based on what”?
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Similarity can be Subjective

o Clustering only looks at similarities, no labels are given

@ Without labels, similarity can be hard to define

@ Thus using the right distance/similarity is very important in clustering

@ Also important to define/ask: “Clustering based on what”?

Picture courtesy: http://www.guy-sports.com/humor/videos/powerpoint.presentation-dogs.htm
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Clustering: Some Examples

e Document/Image/Webpage Clustering

o Image Segmentation (clustering pixels)

@ Clustering web-search results
o Clustering (people) nodes in (social) networks/graphs

@ .. and many more..

Picture courtesy: http://people.cs.uchicago.edu/~pff/segment/
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Types of Clustering

@ Flat or Partitional clustering
o Partitions are independent of each other
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Types of Clustering

@ Flat or Partitional clustering
o Partitions are independent of each other

@ Hierarchical clustering
o Partitions can be visualized using a tree structure (a dendrogram)
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Types of Clustering

@ Flat or Partitional clustering
o Partitions are independent of each other

@ Hierarchical clustering
o Partitions can be visualized using a tree structure (a dendrogram)

o Possible to view partitions at different levels of granularities (i.e., can refine/coarsen clusters) using
different K
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Flat Clustering: K-means algorithm (Lloyd, 1957)

o Input: N examples {x1,...,xn}; x, € RP; the number of partitions K

o Initialize: K cluster means py, ..., uy, each u, € RP
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o Input: N examples {x1,...,xn}; x, € RP; the number of partitions K
o Initialize: K cluster means py, ..., uy, each u, € RP

o Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)
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Flat Clustering: K-means algorithm (Lloyd, 1957)

o Input: N examples {x1,...,xn}; x, € RP; the number of partitions K
o Initialize: K cluster means py, ..., uy, each u, € RP

o Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)

o lterate:
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Flat Clustering: K-means algorithm (Lloyd, 1957)

o Input: N examples {x1,...,xn}; x, € RP; the number of partitions K
o Initialize: K cluster means py, ..., uy, each u, € RP

o Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)
o lterate:
o (Re)-Assign each example x, to its closest cluster center (based on the smallest Euclidean distance)

Co={n: k=argmin|x — ps,]}

(Ck is the set of examples assigned to cluster k with center p,)
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Flat Clustering: K-means algorithm (Lloyd, 1957)

o Input: N examples {x1,...,xn}; x, € RP; the number of partitions K
o Initialize: K cluster means py, ..., uy, each u, € RP

o Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)
o lterate:
o (Re)-Assign each example x, to its closest cluster center (based on the smallest Euclidean distance)

Co={n: k=argmin|x — ps,]}

(Ck is the set of examples assigned to cluster k with center p,)
o Update the cluster means

wx = mean(Cy) = Gl Z Xn

neCy
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Flat Clustering: K-means algorithm (Lloyd, 1957)

o Input: N examples {x1,...,xn}; x, € RP; the number of partitions K
o Initialize: K cluster means py, ..., uy, each u, € RP

o Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)
o lterate:
o (Re)-Assign each example x, to its closest cluster center (based on the smallest Euclidean distance)

Co={n: k=argmin|x — ps,]}

(Ck is the set of examples assigned to cluster k with center p,)
o Update the cluster means

wx = mean(Cy) = Gl Z Xn

neCy

o Repeat while not converged
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Flat Clustering: K-means algorithm (Lloyd, 1957)

o Input: N examples {x1,...,xn}; x, € RP; the number of partitions K
o Initialize: K cluster means py, ..., uy, each u, € RP

o Usually initialized randomly, but good initialization is crucial; many smarter initialization heuristics
exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)
o lterate:
o (Re)-Assign each example x, to its closest cluster center (based on the smallest Euclidean distance)

Co={n: k=argmin|x — ps,]}

(Ck is the set of examples assigned to cluster k with center p,)
o Update the cluster means

wx = mean(Cy) = Gl Z Xn

neCy

o Repeat while not converged

@ Stop when cluster means or the “loss” does not change by much
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K-means: Initialization (assume K = 2)

2 0 2
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K-means iteration 1: Assigning points

2
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K-means iteration 1: Recomputing the centers

E; 0 2
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K-means iteration 2:

Assigning points
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K-means iteration 2: Recomputing the centers

2 0 2
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K-means iteration 3: Assigning points

E; 0 2
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K-means iteration 3:

Recomputing the centers
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K-means iteration 4:

Assigning points
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K-means iteration 4:

Recomputing the centers
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What Loss Function is K-means Optimizing?
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What Loss Function is K-means Optimizing?

o Let pq,...,pu, be the K cluster centroids (means)

o Let zy € {0,1} be s.t. zyx = 1 if x,, belongs to cluster k, and 0 otherwise
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What Loss Function is K-means Optimizing?

o Let pq,...,pu, be the K cluster centroids (means)
o Let zy € {0,1} be s.t. zyx = 1 if x,, belongs to cluster k, and 0 otherwise
o Note: z, = [zn1 Zn2 ... Znk] represents a length K one-hot encoding of x,

@ Define the distortion or “loss” for the cluster assignment of x,
K

g(llwxnvzn) = ZzﬂkHXn - ll'k||2
k=1
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What Loss Function is K-means Optimizing?

o Let pq,...,pu, be the K cluster centroids (means)
o Let zy € {0,1} be s.t. zyx = 1 if x,, belongs to cluster k, and 0 otherwise
o Note: z, = [zn1 Zn2 ... Znk] represents a length K one-hot encoding of x,

@ Define the distortion or “loss” for the cluster assignment of x,
K

2
g(llwxnvzn) = Zznk”Xn - ll'k”
k=1
@ Total distortion over all points defines the K-means “loss function”

L(p, X,Z) = Zzznk\lxn ik

n=1 k=1
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What Loss Function is K-means Optimizing?

o Let pq,...,pu, be the K cluster centroids (means)
o Let zy € {0,1} be s.t. zyx = 1 if x,, belongs to cluster k, and 0 otherwise
o Note: z, = [zn1 Zn2 ... Znk] represents a length K one-hot encoding of x,
@ Define the distortion or “loss” for the cluster assignment of x,
K
2
g(llwxnvzn) = Zznk”Xn - ll'k”
k=1
@ Total distortion over all points defines the K-means “loss function”
N K
2 2
L, X, Z) = > >zl xn = gl > = [1X = Za|
n=1 k=1

where Z is N x K (row nis z,) and @ is K x D (row k is )
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What Loss Function is K-means Optimizing?

o Let pq,...,pu, be the K cluster centroids (means)
o Let zy € {0,1} be s.t. zyx = 1 if x,, belongs to cluster k, and 0 otherwise
o Note: z, = [zn1 Zn2 ... Znk] represents a length K one-hot encoding of x,
@ Define the distortion or “loss” for the cluster assignment of x,
K
2
g(llwxnvzn) = Zznk”Xn - ll'k”
k=1
@ Total distortion over all points defines the K-means “loss function”
N K
2 2
L, X, Z) = > >zl xn = gl > = [1X = Za|
n=1 k=1

where Z is N x K (row nis z,) and @ is K x D (row k is )

@ The K-means problem is to minimize this objective w.r.t. u and Z
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What Loss Function is K-means Optimizing?

o Let pq,...,pu, be the K cluster centroids (means)
o Let zy € {0,1} be s.t. zyx = 1 if x,, belongs to cluster k, and 0 otherwise
o Note: z, = [zn1 Zn2 ... Znk] represents a length K one-hot encoding of x,

@ Define the distortion or “loss” for the cluster assignment of x,

K
g(llwxnvzn) = Zzﬂkan - ll'k||2
k=1
@ Total distortion over all points defines the K-means “loss function”
N K
L, X, Z) =D > 2ok xn — | P = ||1X = Zpo| P
n=1 k=1

where Z is N x K (row nis z,) and @ is K x D (row k is )

@ The K-means problem is to minimize this objective w.r.t. u and Z
o Note that the objective only minimizes within-cluster distortions
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K-means Objective

o Consider the K-means objective function

N K
L, X, Z) = 305 zoal o — pual P

n=1 k=1
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K-means Objective

o Consider the K-means objective function

N K
L, X, Z) = 305 zoal o — pual P

n=1 k=1

@ It is a non-convex objective function

e Many local minima possible

@ Also NP-hard to minimize in general (note that Z is discrete)
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o Consider the K-means objective function

N K
L, X, Z) = 305 zoal o — pual P

n=1 k=1

@ It is a non-convex objective function

e Many local minima possible

@ Also NP-hard to minimize in general (note that Z is discrete)

@ The K-means algorithm we saw is a heuristic to optimize this function
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n=1 k=1

@ It is a non-convex objective function

e Many local minima possible

Also NP-hard to minimize in general (note that Z is discrete)
@ The K-means algorithm we saw is a heuristic to optimize this function

@ K-means algorithm alternated between the following two steps
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K-means Objective

o Consider the K-means objective function

N K
L, X, Z) = 305 zoal o — pual P

n=1 k=1

@ It is a non-convex objective function

e Many local minima possible

Also NP-hard to minimize in general (note that Z is discrete)
@ The K-means algorithm we saw is a heuristic to optimize this function
@ K-means algorithm alternated between the following two steps

o Fix p, minimize w.r.t. Z (assign points to closest centers)
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K-means Objective

o Consider the K-means objective function

N K
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@ It is a non-convex objective function

e Many local minima possible

Also NP-hard to minimize in general (note that Z is discrete)

@ The K-means algorithm we saw is a heuristic to optimize this function
@ K-means algorithm alternated between the following two steps

o Fix p, minimize w.r.t. Z (assign points to closest centers)

e Fix Z, minimize w.r.t. p (recompute the center means)
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K-means Objective

o Consider the K-means objective function

N K
L, X, Z) = 305 zoal o — pual P

n=1 k=1

@ It is a non-convex objective function

e Many local minima possible

@ Also NP-hard to minimize in general (note that Z is discrete)
@ The K-means algorithm we saw is a heuristic to optimize this function
@ K-means algorithm alternated between the following two steps
o Fix p, minimize w.r.t. Z (assign points to closest centers)
e Fix Z, minimize w.r.t. p (recompute the center means)
o Note: The algorithm usually converges to a local minima (though may not always, and it may just

convergence “somewhere”). Multiple runs with different initializations can be tried to find a good
solution.
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Convergence of K-means Algorithm

@ Each step (updating Z or pt) can never increase the objective
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Convergence of K-means Algorithm

@ Each step (updating Z or pt) can never increase the objective

e When we update Z from Z(t=1) to Z(9)

L%, 29) < L, x, 207Y)
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Convergence of K-means Algorithm

@ Each step (updating Z or pt) can never increase the objective

e When we update Z from Z(t=1) to Z(9)
L(“(ffl)_’ X, Z(t)) < L(u(t71)7 X, Z(t—l))

because the new Z(t) = argminz L(u(t~1), X, Z)
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Convergence of K-means Algorithm

@ Each step (updating Z or pt) can never increase the objective
e When we update Z from Z(t=1) to Z(9)
LD, %, Z09) < 1(p D, x, 207D)
because the new Z(t) = argminz L(u(t~1), X, Z)
e When we update g from p(t=1) to pu(®)

L(H(f)_ X. Z(f)) < L([_l,<t71), X, Z(f))
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Convergence of K-means Algorithm

@ Each step (updating Z or pt) can never increase the objective

e When we update Z from Z(t=1) to Z(9)

L(“(ffl)_’ X, Z(f)) < L(M(t71)7 X, Z(ffl))
because the new Z(t) = argminz L(u(t~1), X, Z)
e When we update g from p(t=1) to pu(®)

L(H(f)_ X. Z(f)) < L([_l,<t71), X, Z(f))

because the new u() = argmin,, L(u, X, Z(®))
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Convergence of K-means Algorithm

@ Each step (updating Z or pt) can never increase the objective
e When we update Z from Z(t=1) to Z(9)
L0, X, 29) < 1(ut Y, x, Z0D)
because the new Z(t) = argminz L(u(t~1), X, Z)
e When we update g from p(t=1) to pu(®)
L, %, 29) < 1(u), x, 2)
because the new u() = argmin,, L(u, X, Z(®))

@ Thus the K-means algorithm monotonically decreases the objective

woof

K-means objective

o—0—0—0—0
0

1 2 3 4
Iteration number
(blue: after Z updated, red: after i updated)
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K-means: Choosing K

@ One way to select K for the K-means algorithm is to try different values of K, plot the K-means
objective versus K, and look at the “elbow-point”

200

1000

K-means objective

Number of clusters
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K-means: Choosing K

@ One way to select K for the K-means algorithm is to try different values of K, plot the K-means
objective versus K, and look at the “elbow-point”

200

1000

K-means objective

Number of clusters

@ For the above plot, K = 6 is the elbow point
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K-means: Choosing K

@ One way to select K for the K-means algorithm is to try different values of K, plot the K-means
objective versus K, and look at the “elbow-point”

a0

00

200

1000

K-means objective

Number of clusters
@ For the above plot, K = 6 is the elbow point
@ Can also information criterion such as AIC (Akaike Information Criterion)
AIC = 2L(j1, X, Z) + K log D

. and choose the K that has the smallest AIC (discourages large K)
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K-means: Some Limitations

@ Makes hard assignments of points to clusters
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K-means: Some Limitations

@ Makes hard assignments of points to clusters

o A point either completely belongs to a cluster or doesn’t belong at all

o No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point x,, p1 =0.7,p> = 0.2, p3 = 0.1)
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o No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point x,, p1 =0.7,p> = 0.2, p3 = 0.1)

o Works well only is the clusters are roughtly of equal sizes

@ Probabilistic clustering methods such as Gaussian mixture models can handle both these issues
(model each cluster using a Gaussian distribution)
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o A point either completely belongs to a cluster or doesn’t belong at all

o No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point x,, p1 =0.7,p> = 0.2, p3 = 0.1)

o Works well only is the clusters are roughtly of equal sizes

@ Probabilistic clustering methods such as Gaussian mixture models can handle both these issues
(model each cluster using a Gaussian distribution)

@ K-means also works well only when the clusters are round-shaped and does badly if the clusters
have non-convex shapes
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K-means: Some Limitations

@ Makes hard assignments of points to clusters
o A point either completely belongs to a cluster or doesn’t belong at all

o No notion of a soft assignment (i.e., probability of being assigned to each cluster: say K = 3 and for
some point x,, p1 =0.7,p> = 0.2, p3 = 0.1)

o Works well only is the clusters are roughtly of equal sizes

@ Probabilistic clustering methods such as Gaussian mixture models can handle both these issues
(model each cluster using a Gaussian distribution)

@ K-means also works well only when the clusters are round-shaped and does badly if the clusters
have non-convex shapes

o Kernel K-means or Spectral clustering can handle non-convex
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Kernel K-means

@ Basic idea: Replace the Euclidean distance/similarity computations in K-means by the kernelized
versions. E.g., d(xn, pt) = [|¢(xn) — &(se, )| by
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Kernel K-means

@ Basic idea: Replace the Euclidean distance/similarity computations in K-means by the kernelized
versions. E.g., d(xn, pt) = [|¢(xn) — &(se, )| by

[16(xn) = &(e)lI?
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Kernel K-means

@ Basic idea: Replace the Euclidean distance/similarity computations in K-means by the kernelized
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Kernel K-means

@ Basic idea: Replace the Euclidean distance/similarity computations in K-means by the kernelized
versions. E.g., d(xn, pt) = [|¢(xn) — &(se, )| by

lo(xn) = d(IP = 1lo(xa)l? + [1o(ki) 1 = 2(xn) " d(ps)
= k(xn, %n) + k(g i) = 2k(Xn, py)

@ Here k(.,.) denotes the kernel function and ¢ is its (implicit) feature map
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Kernel K-means

@ Basic idea: Replace the Euclidean distance/similarity computations in K-means by the kernelized
versions. E.g., d(xn, pt) = [|¢(xn) — &(se, )| by

lo(xn) = d(IP = 1lo(xa)l? + [1o(ki) 1 = 2(xn) " d(ps)
= k(xn, %n) + k(g i) = 2k(Xn, py)

@ Here k(.,.) denotes the kernel function and ¢ is its (implicit) feature map

o Note: ¢ doesn't have to be computed/stored for data {x,}"_, or the cluster means {p, }X_;
because computations only depend on kernel evaluations
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Kernel K-means

@ Basic idea: Replace the Euclidean distance/similarity computations in K-means by the kernelized
versions. E.g., d(xn, py) = [|6(xn) — &(pey )| by

16(xa) = d(lI> = [[e(xa)ll” + |$(ei) 12 = 26(xn) " H(12s)
= k(Xn,X,,)+ k(u’kap’k) 72k(xm/’1’k)
@ Here k(.,.) denotes the kernel function and ¢ is its (implicit) feature map

o Note: ¢ doesn't have to be computed/stored for data {x,}"_, or the cluster means {p, }X_;
because computations only depend on kernel evaluations

Kernel K-means vs. K-means

xxxxxx

= Nt
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Kernel K-means

@ Basic idea: Replace the Euclidean distance/similarity computations in K-means by the kernelized
versions. E.g., d(xn, py) = [|6(xn) — &(pey )| by

16(xa) = d(lI> = [[e(xa)ll” + |$(ei) 12 = 26(xn) " H(12s)
= k(Xn,X,,)+ k(u’kap’k) 72k(xm/’1’k)
@ Here k(.,.) denotes the kernel function and ¢ is its (implicit) feature map

o Note: ¢ doesn't have to be computed/stored for data {x,}"_, or the cluster means {p, }X_;
because computations only depend on kernel evaluations

Kernel K-means vs. K-means

> . o ““q,:.
(@l ,:t e’
‘\...f' ) H"»-.s"d

e A small technical note: Whencomputlngk(y,k,p,k) and k(xn, p,), remember that ¢(p, ) is the
average of ¢'s the data points assigned to cluster k
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Hierarchical Clustering

! ' J J T bivisive
t=4 t=3 t=2 t=1 t=0

o Agglomerative (bottom-up) Clustering

@ Start with each example in its own singleton cluster
@ At each time-step, greedily merge 2 most similar clusters
© Stop when there is a single cluster of all examples, else go to 2

o Divisive (top-down) Clustering
@ Start with all examples in the same cluster

@ At each time-step, remove the “outsiders” from the least cohesive cluster
© Stop when each example is in its own singleton cluster, else go to 2

o Agglomerative is more popular and simpler than divisive (but less accurarate)
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(Dis)similarity between clusters

We know how to compute the dissimilarity d(x;, x;) between two examples

(]

How to compute the dissimilarity between two clusters R and 57

@ Min-link or single-link: results in chaining (clusters can get very large)
d(R,S) = XRer;ngses d(xr, xs)

o Max-link or complete-link: results in small, round shaped clusters

d(R,S) = XRen;?;;esd(xR, xs)

Average-link: compromise between single and complexte linkage

1
d(R,S):—‘RHS| ST d(xr, xs)

XRER,x5ES

(a) MIN (single link.) (b) MAX (complete link.) (c) Group average.
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Flat vs Hierarchical Clustering

o Flat clustering produces a single partitioning

[

Hierarchical Clustering can give different partitionings depending on the level-of-resolution we are
looking at

Flat clustering is usually more efficient run-time wise

Hierarchical clustering can be slow (has to make several merge/split decisions)
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