
CS498A UGP-II

Report

Walking through Babai’s Algorithm

Bachelor of Technology

in

Computer Science and Engineering

Submitted by

13020 Abhimanyu Yadav

Under the guidance of
Professor Nitin Saxena

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Fall Semester 2016

Contents

1 Introduction 1
1.1 Problem Definition . 1
1.2 Prologue . 1

2 Babai vs Luks 2
2.1 Target Recurrence . 2
2.2 From Luks to Babai . 2

3 Luks’s Algorithm 3
3.1 Group Theoretic Framework 3
3.2 Basics for the framework . 3

3.2.1 Permutation Group . 3
3.2.2 Setting up GI in this framework 3
3.2.3 The giants . 4

4 Trivalent Case 5
4.1 Reducing GI to Graph Automorphism 5

4.1.1 Automorphisms . 5
4.1.2 The Graph Automorphism problem 5
4.1.3 The reduction . 6

4.2 Reducing the Trivalent case 6
4.2.1 Problem Statement . 6
4.2.2 A clever reduction . 6

4.3 Solving for Aute(X) . 7
4.3.1 Understanding πr . 7
4.3.2 Ker(πr) and Img(πr) 7
4.3.3 A scheme for characterizing Ker(πr) 7

5 Babai’s Algorithm 9
5.1 Key aspects: Luks’s Algo . 9
5.2 Consequences of hitting the barrier 9

i

5.3 Giant Representation . 9
5.4 Target Recurrence: Inside a barrier 10
5.5 Breaking the barrier . 10

5.5.1 Local Certificates . 11
5.5.2 Design Lemma . 11
5.5.3 Split or Johnson . 12

References 13

ii

Chapter 1

Introduction

1.1 Problem Definition

Given two graphs X1 = (V1, E1) and X2 = (V2, E2), the graph isomorphism
(GI) problem is the decision problem whether X1

∼= X2. Here, an isomor-
phism is a bijection from V1 to V2 that preserves adjacency i.e. :
∀ i, j s.t. vi, vj ∈ V1 : (vi, vj) ∈ E1 ⇔ (f(vi), f(vj)) ∈ E2.

1.2 Prologue

The following report covers the details of Babai’s algorithm by actually try-
ing to solve to an arbitrary isomorphism problem that is assumed to be
adversarial and will thus touch every aspect of the algorithm.
It is safe to assume in the above problem that | V1 |=| V2 |= n, because
otherwise we could trivially reject isomorphism. It is this number ”n” that
governs the runtime of the algorithms operating on this problem. The previ-
ous known algorithm to solve the problem was given by Eugene Luks in 1982

which had a run time exp(O
√

(n log n)), which is moderately exponential.

This algortihm [2], however, solves the problem in quasipolynomial time i.e.
exp((log n)O(1)).

1

Chapter 2

Babai vs Luks

2.1 Target Recurrence

Babai’s algorithm, just like Luks’ algorithm is a recursive algorithm that
breaks the initial problem into a ”moderate” number of ”significantly smaller”
instances. The following is the target recurrence:

f(n) ≤ q(n)f(9n
10

)

For all sufficiently large values of n, the recursion unfolds into the following:

f(n) ≤ q(n)O(logn)

We observe that for f(x) to be quasipolynomially bounded, q(x) must be
quasipolynomially bounded. And thus our notion of ”moderate” number of
instances becomes ”quasipolynomially bounded” number of instances and
our notion of ”significantly smaller” instances becomes smaller by a fixed
fraction, which is 9

10
in this case.

2.2 From Luks to Babai

We observe that the run time of Luks’s algorithm is not quasipolynomial be-
cause in the process of recursion, for some graphs, we encounter a barrier case
where we are not able to break the problem into quasipolynomially bounded
number of instances and hence the algorithm overshoots the quasipolynomial
bound. The scheme used in the Babai’s algorithm is to use Luks’s method
to solve the problem until we encounter that barrier case. Once we en-
counter that barrier case, we use Babai’s method to break it into the desired
quasipolynomial number of instances.

2

Chapter 3

Luks’s Algorithm

We first describe Luks’s Algorithm and how it reduces the problem of Graph
Isomorphism to an instance of Color Isomorphism problem. Here, we intro-
duce the framework in which we will solve the problem.

3.1 Group Theoretic Framework

By definition, every bijection from a set to itself is also a permutation of the
members of that set. The set of all bijections from any set A to itself forms a
group under the composition operation. This group is called the symmetry
group and falls under the general class of groups called permutation groups.
This realisation opened the doors for solving GI using group theory.

3.2 Basics for the framework

3.2.1 Permutation Group

Consider a set Ω, the permutation domain. This will be the set over which
we will be permuting. Then, Sym(Ω), the set of all permutations over Ω is
called the symmetric group. Any subgroup G ⊆ Ω is called a permutation
group.

3.2.2 Setting up GI in this framework

Embedding of the action on vertices to the action on edges

As mentioned earlier, it is safe to assume that the two graphs are on the same
vertex set V . Let V be the permutation space and let Sym(V) be the group

3

acting on V . In order to define GI in the group theoretic framework, we
need to understand how this action embeds itself over another permutation
domain, namely, the domain of edges. If we consider the set E1 of edges to
be our permutation domain, the symmetric group Sym(E1) is of considerably
larger size than Sym(V). Now, consider σ ∈ Sym(V). The action of σ is
defined over the domain V . We extend the action of σ over the domain E1

in the following manner:
e(σ(vi), σ(vj)) = τe(vi, vj)
Now, it is trivial to show that any such τ is indeed a permutation. Due to this
one to one map, we would only need to consider a small portion of Sym(E1),
which is precisely the embedding of Sym(V) on Sym(E1). For simplicity, we
will denote embedding of the action of any σ ∈ Sym(V) as σ e(vi, vj))

Redefining GI

Let X1 = (V,E1) and X2 = (V,E2) be two graphs over the same vertex set V .
The GI problem, in the group theoretic framework, is to determine whether
∃σ ∈ Sym(V) s.t. X2 = (V, σ(E1)).

3.2.3 The giants

This terminology is specific to Babai’s Algorithm and can be explained using
what we have already discussed. For a given permutation domain Ω, the
groups Sym(Ω) and Alt(Ω) are called giants. The alternating group Alt(Ω)
is set of all even permutations of the members of the domain i.e. σ ∈ Alt(Ω)
can be obtained by using even number of transpositions. The distinction
whether the group whose action is being considered at any point during the
algorithm, is a giant or not will be crucial to the timing of the algorithm.

4

Chapter 4

Trivalent Case

To proceed further, we would need to understand an important framework
upon which Babai’s Algorithm is based. This framework is the one developed
by Eugene Luks in this paper [1]. Valence, here, can be used interchangeably
with degree. This framework essentially takes forward the group theoretic
framework we discussed in the previous chapter.
To understand and appreciate Luks’s framework, we begin by trying to solve
the problem for graphs having degree 3. We would later extend these argu-
ments to degree n.

4.1 Reducing GI to Graph Automorphism

4.1.1 Automorphisms

An automorphism of a graph X = (V,E) is an isomorphism to itself. It
is denoted by Aut(X) In other words, it is a permutation of the vertex set
V that preserves the structure of the graph by mapping edges to edges and
non-edges to non-edges.
Aut(X) ⊆ Sym(V)

4.1.2 The Graph Automorphism problem

Given a graph X = (V,E). The Graph Automorphism problem requires us
to determine a set of generators for Aut(X). ∀σ ∈ Aut(X), X = (V, σ(E))
where the action of σ on the set of edges is as defined previously. The follow-
ing is a polynomial time reduction of GI to graph automorphism problem.

5

4.1.3 The reduction

Consider two graphs X1 = (V1, E1) and X2 = (V2, E2). We need to determine
whether they are isomorphic. We proceed in the following manner. We
take the disjoint union of the two graphs and construct another graph X =
X1∪X2. We haveX = (V1∪V2, E1∪E2). We solve the automorphism problem
on this graph X. Let us try to characterize the members of Aut(X). Any
member to Aut(X1) can be extended to Aut(X) by letting it permute the
elements of V1 and having identity map on the elements of V2. Similarly, we
can extend any member of Aut(X2). An important observation here is that
if X1

∼= X2, then ∃ σ ∈ Aut(X) which maps V1 to V2 and still preserves
the structure of the disjoint graph. The converse is also true. Upon solving
for automorphism, we pick every σ ∈ Aut(X)’s generator set, and check
whether it maps V1 to V2, upon success, we say ”YES” to GI otherwise
”NO”. Reduction complete.

4.2 Reducing the Trivalent case

4.2.1 Problem Statement

Consider two X1 = (V1, E1) and X2 = (V2, E2), each of degree 3. We are
required to determine whether X1

∼= X2. One way to proceed is to reduce
using the above methodology. But, here we are dealing with a special case
of degree 3 and hence there is room for some exploitation.

4.2.2 A clever reduction

We observe that, if X1
∼= X2, then any given e1 ∈ E1 must be mapped to

some e2 ∈ E2. Using this observation, we fix an egde e1 ∈ E1 and pick an
edge e2 ∈ E2. We take one point on each of these edges (v1 on e1 and v2

on e2) and join the two points, call this new edge e. Let X be the resultant
graph. Note that X will also be trivalent. We define Aute(X) ⊆ Aut(X) as
the subgroup consisting of all those σ ∈ Aut(X) that fix the edge e. This
group, as will see prove later turns out to be a 2-group for the trivalent case.
Now, if there is indeed an isomorphism from X1 to X2, that maps e1 to e2,
then ∃ σ ∈ Aute(X) that maps v1 to v2 and vice versa. Therefore, we solve
for Aute(X). We pick every σ ∈ Aut(X)’s generator set, and check whether
it maps v1 to v2. If yes, we say ”YES” to GI and terminate. If no, we pick
another e2 ∈ E2 and repeat the process. If we exhaust all edges in E2, we
say ”NO” to GI. Reduction complete.

6

4.3 Solving for Aute(X)

Consider a trivalent graph X, and an edge e on the graph. The subgroup
Aute(X) is determined iteratively using the following scheme. Xr is a sub-
graph of X consisting of all vertices and all edges of X which appear in paths
of length ≤ r through e. Therefore, X1 will simply be the edge e and Xn−1

will be X itself.Notice that Xr will be embedded inside Xr+1, by the very
definition. Also note that, we may not have to go until Xn−1 to get the graph
X. We now focus on Aute(Xr)’s. The groups are related via the following
homomorphism:
πr : Aute(Xr+1)→ Aute(Xr)

4.3.1 Understanding πr

Consider σ ∈ Aute(Xr+1). The permutation domain here is the vertex set of
Aute(Xr+1). Now, let us focus on the embedding of Xr inside Xr+1. Any σ ∈
Aute(Xr+1) would fix the edge and also preserve the structure around it as it
is an automorphism. Therefore, all the vertices belonging to this embedding
of Xr will have to be mapped among themselves by σ ∈ Aute(Xr+1). Also,
the vertices outside this embedding would have to mapped among themselves
to preserve the structure. So, if we restrict the domain of σ ∈ Aute(Xr+1)
to V (Xr), we know that resulting permutation would stay in that domain.
This restriction is precisely what πr(σ) is.

4.3.2 Ker(πr) and Img(πr)

Let K be the set of generators for Ker(πr). And I be set of pre-image for the
set of generators of Img(πr). Then, it is a trivial exercise to show that K ∪ I
generates Aute(Xr+1. Note that, Aute(X1) is the trivial subgroup would be
the starting point of out iteration. Thus, Img(π1) would be a 2-group. This
observation would come in handy as will realize that subsequent Img(πr)’s
would be 2-groups.

4.3.3 A scheme for characterizing Ker(πr)

From the above description of restriction, the action of any σ ∈ Ker(πr) on
the embedded structure Xr would be the identity permutation. We focus
our attention back to Xr+1. Consider V ′ = V(Xr+1) \ V(Xr). Any vertex
v ∈ V ′ would be connected to either 1, 2 or 3 vertices in V(Xr). Not more
than 3 because of trivalency. To codify this relationship, we define set A as
the set of all subsets of V(Xr) of size 1, 2 or 3. We declare a function called

7

the father function f as follows:
f : V ′ → A
The function takes as input a member of V ′ and returns who are its fathers
from the set V(Xr). Note that, there can’t be more than two vertices with
the same set of fathers to preserve trivalency. Such vertices, if any, will be
called twins. Take any σ ∈ Aut(Xr+1), and see it’s action on v ∈ V ′. As σ is
an automorphism, σ(v) should be a member of V ′ such that the structure is
preserved. Thus, the following is implied:
fσ(v) = σ(f(v))
But, if σ ∈ Ker(πr), then σ(f(v)) = f(v) as f(v) ∈ V (Xr). Therefore, for
σ ∈ Ker(πr) :
f(σ(v)) = f(v)
This means that either, σ(v) = v or v and σ(v) are twins. Doing this,
we have completely characterized the action of every σ ∈ Ker(πr) over the
permutation domain V (Xr+1. For the embedded structure V (Xr), the action
is simply identity and for V ′ = V(Xr+1) \ V(Xr), the action is to simply
interchange the twins. Consider the group generated by the transpositions
mapping a twin to its brother. This group is precisely the Ker(πr), evident
from the discussions mentioned above. It is easy to show that this group will
be elementary abelian 2-group.

8

Chapter 5

Babai’s Algorithm

5.1 Key aspects: Luks’s Algo

The important takeaway from the previous discussion on Luks’s Algorithm
is that we reduce the GI problem to the Color Automorphism problem of a
colored set A which is under the action of a group G. More specifically, we
are required to find generators for the subgroup H of G that fixes the color
classes. The algorithm solves this problem by breaking the set into orbits
when the group action is transitive and into G-Blocks in the intransitive case.
Notice that as we downsize our problem, the size of the group acting on the
smaller set also reduces accordingly.

5.2 Consequences of hitting the barrier

As the problem is recursive, let us place ourselves into one the many instances
that the initial problem broke into. We are working now with some subgroup
G′ of G that is acting on some subset A′ of A. Now, when we attempt to
break the problem further down, we realize that by the method we had been
using, we can’t get a quasipolynomially bounded number of instances as we
desired. And thus, we have hit the barrier case!

5.3 Giant Representation

It turns out that when the barrier case is encountered, it is because the group
G′ is so large that we can find a homomorphism ϕ from G′ to Sym(Γ), such
that the image of G′ is a giant where Γ is any arbitrary set that satisfies the
following inequality:

9

polylog(| A′ |) <| Γ |≤| A′ |

In the case when there is giant homomorphism as described above, we can
establish the following using Lagrange’s theorem:

| G′ |≥| Sym(Γ) |

This means that the size of G′ has a lower bound as follows:

| G′ |≥ 2|Γ|

Now, as | Γ |> polylog(| A′ |), the above inequality implies that the size of
G′ doesn’t have a quasipolynomial bound. Now we are required to work on
this new set Γ and reduce it so that any giant representation of G′ under a
homomorphism has a quasipolynomially bounded size which would in turn
ensure that the size of G′ is quasipolynomially bounded.

5.4 Target Recurrence: Inside a barrier

Recall that we want a quasipolynomial run time of the algorithm. Also, recall
that we are trying to find a subgroup of G′ that fixes the color classes. In
the barrier case, Babai’s algorithms uses the inputs to trim G′ in such a way
that we bring it down to a subgroup of itself that is sure to contain the color
stabilising subgroup. The following is the target recurrence:

f(n,m) ≤ q(n)f(n, 9m
10

)

f(n, polylog(n)) ≤ q(n)lognf(9n
10

)

f(n) ≤ q(n)(logn)2

The idea behind the recursion is that first we use the properties of the
input to trim G′ such that its size attains a quasipolynomial bound. And
once we achieve that, we simply use Luks’s recursion to solve further.

5.5 Breaking the barrier

This section describes the series of steps that the algorithm uses in order to
break the barrier.

10

5.5.1 Local Certificates

Recall that we are interested in computing the subgroup that stabilises the
color classes of a colored set X. Since the only structure in the set X is the
color classes, we can equivalently state the problem as follows:
Given a colored set X, and group G acting on the set, we are required to find
AutG(X).
Using this notation, we proceed to break the set Γ by constructing certificates
of fullness and non-fullness.

Fullness and Non-Fullness Certificates

From the set Γ, we pick small a small subset T s. t. (| T |= t) < log | X |.
Let GT be the setwise stabiliser of T in G. Consider the following equations:

ϕ : G −→ Giant(Γ)

ϕT : GT −→ Giant(T) ??

We know that there is a giant representation of G, but the question whether
there is a giant representation of GT under restriction ϕT is what encodes
fullness and non-fullness. If the answer is yes, we call the set T full and if the
answer is no, we call the set non-full. We use the local certificates algorithm
from the paper to construct these certificates.

5.5.2 Design Lemma

Once we know whether given subset T of size t is full or non-full, we construct
t-ary relations inside the set Γ using the information whether a particular
subset T is full of non-full. We then use the design lemma, which can be
stated as follows:

Given a k-ary relation with symmetry defect ≥ 1
10

, one can find, at mO(k),
either:

• A good canonical coloring (Breaking the set up into orbits)

• A good canonical equipartition (Breaking the set up in to G-Blocks)

• A canonically embedded regular graph

By good, we mean that it is consistent with our target recurrence. So,
the cases 1 and 2 can be solved by Luks recursion. For solving the case 3
without distubing the recursion, we use the split or Johnson routine.

11

5.5.3 Split or Johnson

Given a non trivial regular graph X = (V,E), we can find, at qusipolynomial
multiplicative cost, either:

• A good canonical coloring of V

• A good canonical equipartition of V

• A canonically embedded Johnson graph

Note that cases 1 and 2 can be solve by Luks’ recurrence but if we find
a Johnson graph, it makes the reduction even stronger as we know that any
automorphism must also preserve the structure of the johnson graph.

12

References

[1] Isomorphism of graphs of bounded valence can be tested in poly-
nomial time http://www.sciencedirect.com/science/article/pii/
0022000082900095

[2] Graph Isomorphism in Quasipolynomial Time https://arxiv.org/

abs/1512.03547

13

http://www.sciencedirect.com/science/article/pii/0022000082900095
http://www.sciencedirect.com/science/article/pii/0022000082900095
https://arxiv.org/abs/1512.03547
https://arxiv.org/abs/1512.03547

	Introduction
	Problem Definition
	Prologue

	Babai vs Luks
	Target Recurrence
	From Luks to Babai

	Luks's Algorithm
	Group Theoretic Framework
	Basics for the framework
	Permutation Group
	Setting up GI in this framework
	The giants

	Trivalent Case
	Reducing GI to Graph Automorphism
	Automorphisms
	The Graph Automorphism problem
	The reduction

	Reducing the Trivalent case
	Problem Statement
	A clever reduction

	Solving for Aute(X)
	Understanding r
	Ker(r) and Img(r)
	A scheme for characterizing Ker(r)

	Babai's Algorithm
	Key aspects: Luks's Algo
	Consequences of hitting the barrier
	Giant Representation
	Target Recurrence: Inside a barrier
	Breaking the barrier
	Local Certificates
	Design Lemma
	Split or Johnson

	References

