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Abstract

We consider the property of algebraic independence of elements over a field. This

is a higher degree generalization of linear independence. Polynomials f1, . . . , fm ∈

F[x1, . . . , xn] are said to be algebraically dependent over the field F if there exists a

non-zero polynomial A ∈ F[y1, . . . , ym] such that A(f1, . . . , fm) = 0. If no such polyno-

mial exists, we say that f1, . . . , fm are algebraically independent.

We consider the problem of testing whether a given set of polynomials is alge-

braically independent. The problem has an efficient (randomized polynomial time) al-

gorithm based on the Jacobian criterion when the polynomials are given over a field of

zero characteristic. However this criterion fails when the polynomials are over fields of

positive characteristic. The best known algorithm for the positive characteristic case

is due to the Witt-Jacobian criterion which puts the problem in the complexity class

NP#P. The thesis aims to find alternative criteria and algorithms to test algebraic

independence of polynomials.

We propose a technique based on polynomial maps and other faithful transforma-

tions which in some special cases, gives a polynomial time algorithm for testing inde-

pendence over fields of positive characteristic. We also give an alternative criterion for

positive characteristic case based on the p-adic valuation of the Jacobian determinant.

This reduces the problem of testing algebraic independence to checking if a rational func-

tion solution exists to a linear first order partial differential equation modulo a prime.

We further prove using Lüroth’s theorem that two algebraically dependent polynomials

over a field of positive characteristic can be lifted such that they become dependent over

the rationals. This again gives a differential equation based criterion for testing indepen-

dence over fields of positive characteristic. We also prove that the minimal annihilating

polynomial of two supersparse polynomials over the rationals is sparse in most of the

cases, giving as well the exact characterization of those cases. We further use this result

to give an alternative randomized polynomial time algorithm for testing independence

of two supersparse polynomials over the rationals. We finally give an efficient higher

derivatives based Jacobian like criterion to test algebraic independence in a special case

over F2.
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Chapter 1

Introduction

1.1 Overview

In 1910, Ernst Steinitz published the prominent paper “Algebraische Theorie der Körper”

(Algebraic Theory of Fields) [Ste10]. The paper is the first to axiomatically study the

properties of fields and define many crucial field theoretic concepts like prime field,

perfect field and the transcendence degree of a field extension.

The motivation of this thesis is to explore the problem of finding transcendence

degree of a field extension in a special case, when the generators of the extension field over

the base field are known and they come from a bigger extension field whose transcendence

degree (≥ 1) over the base field is already known.

Some known interesting cases of the above problem are:

Problem 1 (Transcendence of Numbers): Finding the transcendence degree

of the field extension Q(α)/Q, α ∈ C, i.e. finding if α is transcendental over Q, or

simply: finding whether a given number α ∈ C is transcendental?

Problem 2 (Algebraic Independence of Numbers): Finding the transcen-

dence degree of the field extension Q(α1, . . . , αn)/Q, αi’s ∈ C. In particular, if all the

αi’s are transcendental, finding whether the transcendence degree of the extension is n,

or simply: finding whether the given numbers α1, . . . , αn are algebraically independent?

1



Chapter 1. Introduction 2

Note that Problem 2 is a just generalization of Problem 1.

Problem 3 (Algebraic Independence of Polynomials): Finding the tran-

scendence degree of the field extension F(f1, . . . , fm)/F, where f1, . . . , fm ∈ F[x1, . . . , xn].

In particular if f1, . . . , fm are all non-constant polynomials, finding whether the tran-

scendence degree of the extension is n, or simply: finding whether the given polynomials

f1, . . . , fm are algebraically independent?

The thesis begins with a brief survey on Problem 1 and 2. Due to Cantor’s

uncountability of real numbers [Can92], it follows that almost all complex numbers are

transcendental [BT04]. Still, it has been very difficult to identify them. There are results

like transcendence of Liouville’s and Mahler’s numbers, transcendence of e and π (Her-

mite, Lindemann-Weierstrass Theorem) and, transcendence of eπ and
√

2
√
2

(Hilbert’s

seventh problem, Gelfond-Schneider Theorem. However, transcendence of many inter-

esting numbers are still open: for eg: ee, πe, ζ(3), γ0 (Euler-Mascheroni’s Constant), eπ,

e+ π. Similarly, little progress is there in case of Problem 2 i.e. algebraic independence

of numbers. Main results are Shidlovskii’s results on E-function and Nesterenko’s result

on algebraic independence of π, eπ and Γ(1/4). Open problems include: Is the transcen-

dence degree of the extension Q(e, π)/Q = 2? i.e. whether e and π are algebraically

independent.

Problem 3 is of a different nature. Here the elements (polynomials) come from

a finitely generated extension (F(x1, . . . , xn)) over the base field; unlike the case of

numbers where the extension C/Q has infinite transcendence degree. We look at the

computational aspects of the problem and ask for algorithms to test (efficiently) algebraic

independence of polynomials. which is the focus of this thesis.

1.2 The Problem

We first give a formulation of the property of algebraic independence of polynomials

over a field in terms of the annihilating polynomial.
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Polynomials f1, . . . , fm ∈ F[x1, . . . , xn] are said to be algebraically dependent

over the field F if there exists a non-zero polynomial A ∈ F[y1, . . . , ym] such that

A(f1, . . . , fm) = 0. We call A an annihilating polynomial of f1, . . . , fm. If no such

polynomial A exists, we say that f1, . . . , fm are algebraically independent.

The problem we investigate is:

Given polynomials f1, . . . , fm ∈ F[x1, . . . , xn] over a field F, decide whether they are

algebraically independent in polynomial (or randomized polynomial) time (in the bit-size

of the input).

Algebraic independence of polynomials is a fundamental concept in commutative

algebra. It is to polynomial rings what linear independence is to vector spaces [MSS12].

The computational problem is motivated by several applications in computer science

as well. For instance, [Kal85, ASSS12] use it proving circuit lower bounds, [DGW09,

Dvi12] use it in construction of randomness extractors, [BMS13, ASSS12, MSS12] use

it in identity testing, [L’v84] uses it in program invariants, and [For92, DF93] show its

application in control theory.

1.3 Previous Work

A priori it is not clear whether testing algebraic independence of polynomials is even

computable. It is because of Perron’s degree bound on the annihilating polynomial

[Per32, P lo05], we have a polynomial space algorithm for the problem. Gröbner bases

can also be used to test algebraic independence (see [KR08] , Proposition 3.6.1). This

suggests a doubly exponential time algorithm. We however would want an efficient algo-

rithm for the problem. A randomized polynomial time algorithm is indeed there using

the rank of the Jacobian matrix [DGW09, BMS13]. This however works only for fields

of zero (or large) characteristic [DGW09]. For fields of (small) positive characteristic,

the criterion is only one-sided correct [Sin15]. The only criterion which works for all

prime characteristic is due to [MSS12] - the Witt Jacobian criterion, which improves the

complexity of independence testing over Fp from PSPACE to NP#P.
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So in the literature, we have the problem of testing algebraic independence of poly-

nomials over fields of zero or large characteristic in the complexity class BPP, whereas

over the fields of (small) prime characteristic, it is in the complexity class NP#P. We

however believe the independence testing over Fp should also be in BPP (recall that

BPP ⊆ NP#P ⊆ PSPACE ⊆ EXP). Thus, there is still a huge gap between what is known

and what we would ideally want (a randomized polynomial time algorithm). There is

not much progress known even for interesting special cases. The thesis attempts to

bridge this gap.

1.4 Contribution of the thesis

The first approach we pursue is to transform the input polynomials such that the usual

Jacobian criterion works. We achieve it in certain special cases by transforming given

polynomials using appropriate maps, taking p-th roots, and using ring operations. We

get the correction algorithm for two binomials with exponential degree, and for two

polynomials given as sum of univariates. These correction algorithms are all polynomial

time in input size.

We also prove that n polynomials are algebraically dependent if and only if the

p-adic valuation of their Jacobian determinant can be increased arbitrarily by lifting the

polynomials. Thus, we reduce testing algebraic independence of polynomials over fields

of positive characteristic to finding if a rational function solution exists to a linear first

order partial differential equation modulo p.

We also show that if two polynomials are dependent over Fp, they can be lifted such

that they become dependent over rationals. We find the above lifting using Lüroth’s

theorem. Combining above idea with a known theorem on sparse decomposition, we

come up with an alternative randomized polynomial time algorithm for testing algebraic

independence of two super-sparse polynomials over fields of zero characteristic. The

algorithm doesn’t depend on the Jacobian criterion and seems to have a chance of

generalization to the positive characteristic case.
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We finally give a higher derivatives based efficient criterion to test algebraic inde-

pendence in a special case over F2.

1.5 Organization of the Thesis

Chapter 2 and 3 discuss the preliminaries and the survey related to transcendence and

algebraic independence. Chapter 2 focuses on results on numbers and power series

whereas chapter 3 covers the case of algebraic independence of polynomials. The chapters

4, 5, 6 and 7 span the results. We finally conclude in chapter 8 summarizing our work

and stating the possible future directions this thesis seems to suggest.



Chapter 2

Transcendence and Algebraic

Independence of Numbers and

Power Series

In this chapter, we introduce the notion of transcendence and algebraic independence.

We explore the concept in the context of numbers and power series. We present a survey

on progress on the transcendence theory of numbers and power series.

2.1 Basic Definitions

Definition 2.1. (Algebraic Number) A number α ∈ C is said to be algebraic if it is a

zero of some nonzero polynomial p(z) ∈ Z[z]. Or more generally,

Definition 2.2. (Algebraic Element) Let F be a field and E/F be an extension field. An

element α ∈ E is said to be algebraic over F if it is a zero of some nonzero polynomial

p(z) ∈ F[z].

Definition 2.3. (Irreducible Polynomial) A polynomial p(z) ∈ Z[z] is called irreducible

if it cannot be factored into two polynomials in Q[z] each having degree smaller than

deg(p).

6
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Definition 2.4. (Minimal Polynomial) If α is algebraic, then there exists a unique

irreducible polynomial p(z) ∈ Z[z] with properties that α is a zero of p(z); the leading

coefficient of p(z) is positive; and the coefficients of p(z) are relatively prime integers. We

call this polynomial p(z) the minimal polynomial associated with α. We define degree

of α, deg(α), to be the degree of its minimal polynomial p(z). The zeros of p(z) other

than α are called conjugates of α.

Example 2.1. (Algebraic numbers/elements)

0 is trivially algebraic.

2 is an algebraic number with the minimal polynomial z − 2.

2
5 is an algebraic number with minimal polynomial 5z − 2.

3
√

5 is an algebraic number with minimal polynomial z3 − 5.
√

2 +
√

3 is an algebraic number with minimal polynomial z4 − 10z2 + 1.

i is an algebraic number with minimal polynomial z2 + 1.

√
x is algebraic over F(x) with minimal polynomial z2 − x.

Definition 2.5. (Transcendental Number) A number α ∈ C is said to be transcendental

if it is not algebraic. Similarly, in general

Definition 2.6. (Transcendental Element) An element α ∈ E/F is said to be transcen-

dental over F if it is not algebraic over F.

Example 2.2. (Transcendental number/elements)

e, π are transcendental numbers.

y ∈ Q(x, y) is transcendental over Q(x).

Definition 2.7. (Algebraic and Transcendental Extension) A field extension E/F is said

to be algebraic if all the elements of E are algebraic over F. A field extension is said to

be transcendental if it is not algebraic.

Example 2.3. (Algebraic and Transcendental Extension)

Q(
√

2) is algebraic over Q.

Q(x,y) is transcendental over Q(x).
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We can easily generalize the notion of transcendence, which is a property of an

element, to algebraic independence, which is a property of a set of elements.

Definition 2.8. (Algebraically Independence of Numbers) A given set of numbers

{α1, α2, · · ·αk} ∈ C is said to be algebraically independent if there exists no non-zero

polynomial p(z1, z2, · · · , zk) ∈ Z[z1, z2, · · · , zk] such that p(α1, α2, · · ·αk) = 0. If such

a polynomial exists, we call the set {α1, α2, · · ·αk} algebraically dependent and we call

such a polynomial p(z1, z2, · · · , zk) an annihilating polynomial of {α1, α2, · · ·αk}.

Example 2.4.
√
π and π are algebraically dependent with annihilating polynomial z21 −

z2.

If in a given set, one or more numbers are algebraic, the set is trivially algebraically

dependent. The annihilating polynomial(s) of the algebraic number(s) present in the set

by definition is (are) also the annihilating polynomial(s) of the whole set. Hence, the

problem of algebraic independence of a set of numbers is interesting only when every

number in the given set is transcendental.

2.2 Properties of Algebraic Numbers

Proposition 2.9. The set of all algebraic numbers, A is a field.

Proposition 2.10. The set of algebraic numbers is a countable set.

2.3 Known Transcendental Numbers

Cantor’s proof of uncountability of set of real numbers [Can92], together with Proposi-

tion 2.10 implies that almost all complex numbers are transcendental. However, there

has been little progress in constructing methods to show a given number to be transcen-

dental.



Chapter 2. Numbers and Power Series 9

2.3.1 Liouville’s Theorem: First transcendental Construction

Theorem 2.11. (Liouville’s theorem) Let α be an algebraic over Q and satisfies the

monic irreducible polynomial equation αn + an−1α
n−2 + · · · + a0 = 0 with ai ∈ Q. Now,

suppose ǫ and c > 0 are given. Then, there are only finitely many rationals p/q in lowest

terms such that

|α− p

q
| < c

qn+ǫ
(2.1)

Proof. There is a polynomial f(x) = bnx
n + bn−1x

n−1 + · · ·+ b0 with bi ∈ Z, bn 6= 0. So,

f(α) = 0.

Suppose |α− p
q | < c

qn+ǫ . Also, since f(x) is irreducible, we have |f(pq )| 6= 0. Thus,

|f(
p

q
)| = |bn(

p

q
)n + bn−1(

p

q
)n−1 + · · · + b0| (2.2)

=
|bn(p)n + bn−1(p)n−1q + · · · + b0q

n|
|qn| (2.3)

Clearly, numerator is a positive integer. Thus

|f(
p

q
)| ≥ 1

|qn| =
1

qn
(2.4)

So, the value of |f(pq )| cannot be too small. Now, by the Mean Value Theorem

from calculus, we have

1

qn
≤ |f(

p

q
)| = |f(

p

q
) − f(α)| = |f ′(λ)||p

q
− α|; λ ∈ (

p

q
, α) (2.5)
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Now, as supposed,

|α− p

q
| < c

qn+ǫ
≤ c, or (2.6)

|p
q
| ≤ |α| + c (2.7)

|λ| ≤ |α| + c since λ ∈ (
p

q
, α) (2.8)

Now, since f(x) is a polynomial, there exists a bound M such that |f ′(x)| ≤ M for

|x| ≤ |α| + c. This gives

|f(
p

q
) − f(α)| ≤ M |p

q
− α| (2.9)

1

qn
≤ M |p

q
− α| < M

c

qn+ǫ
qǫ ≤ cM ǫ, c > 0 using (2.5) (2.10)

This bounds q as the above gives q ≤ (cM)1/ǫ which using (2.7) yields |p| ≤ (cM)1/ǫ(|α|+

c). So, |p| and q both are bounded. Hence we get that there will be only finitely many

good rational approximations p
q for a given algebraic number α.

Corollary 2.12. To show α ∈ R is transcendental, it is enough to find an infinite se-

quence of very good rational approximations {pi
qi
}(as sought in the above theorem).

Example 2.5. Liouiville’s Number:
∑∞

n=0 10−n!

For the above number, consider the rational sequence of rational approximations pi
qi

=

∑i
n=0 10−n!

i.e. pi
qi

=
∑i

n=0 10−n! =
∑i

n=0 10
(i!−n!)

10i!

So, |α− pi
qi
| = |∑∞

n=i+1 10−n!| = |10−(i+1)!(1−10−(i+2)!+ · · · )| ≤ 2.10−(i+1)! = 2
(10i!)i+1 =

2
(qi)i+1

Thus, we have an infinite sequence of good approximations for the given number. Hence,

it is transcendental.

Theorem 2.13. (Roth’s Theorem,) [Rot55]. If α is algebraic /∈ Q, ǫ > 0, there are

only finitely many p
q ∈ Q such that

|α− p

q
| < 1

q2+ǫ
. (2.11)
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2.3.2 Lindemann-Weierstrass Theorem: Transcendence of e and π

Johann Heinrich Lambert in 1761 conjectured that e and π were both transcendental in

his paper [Lam98] proving irrationality of π .

Finally Hermite settled the conjecture about e after a century.

Theorem 2.14. (Hermite,1873 [Her74]) e is transcendental.

Lindemann generalized the proof technique of Hermite to prove a result which

settled the transcendence of π.

Theorem 2.15. (Lindemann,1882 [Lin82]) eα is transcendental when α is alge-

braic.

Corollary 2.16. π is transcendental.

Proof. Assume for the sake of contradiction that π is algebraic. So, iπ is also algebraic.

This implies from above theorem that eiπ is transcendental. This contradicts Euler’s

identity eiπ = −1.

Weierstrass provided a stronger generalization.

Theorem 2.17. (Lindemann-Weierstrass Theorem), [Wei04]. If α1, . . . , αn are

algebraic numbers which are linearly independent over Q, then eα1 , . . . , eαn are alge-

braically independent over Q i.e. the extension field Q(eα1 , . . . , eαn) has transcendence

degree n over Q.

Open Problem: To prove algebraic independence (or dependence) of e and π.

Even much weaker question like transcendence of eπ, e + π remain unresolved.

Conjecture 1. (Schanuel) Given α1, . . . , αn ∈ C which are linearly independent over

Q, the extension Q(α1, . . . , αn, e
α1 , . . . , eαn)/Q has transcendence degree at least n. See

[Lan66].
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The conjecture is very strong as it generalizes several known results in transcen-

dental number theory including the Lindemann-Weierstrass theorem.It also resolves al-

gebraic independence of e and π by simply taking n = 2 and setting α1 = 1 and α2 = iπ.

It was given in 1960s, and is still unresolved. However James Ax in 1971 resolved the

power series version of the conjecture.

Theorem 2.18. (Ax,1971)[Ax71] Let f1, . . . , fn ∈ tC[[t]] be linearly independent over

Q. Then the extension C(t, f1, . . . , fn, e
f1 , . . . , efn)/C(t) has transcendence degree at

least n.

2.3.3 Hilbert’s Seventh Problem: Gelfond-Schneider Theorem

In 1900, along with 22 other problems fundamental to mathematics, Hilbert posed the

following problem:

Hilbert’s seventh problem: Is ab always transcendental.for algebraic a /∈ {0, 1} and

irrational algebraic b?

Gelfond-Schneider theorem provides an affirmative answer to Hilbert’s Sev-

enth Problem. It was proved independently by Gelfond [Gel34] and Schneider [Sch34]

in 1934.

Corollary 2.19. 2
√
2 is transcendental

Corollary 2.20. eπ = (eiπ)−i = (−1)−i is transcendental

2.4 Siegel-Shidlovskii result on values of E-functions

Definition 2.21. (See [Mor51], [Sie14], [NoFRS09]). A function

f(z) =

∞
∑

n=0

cn
zn

n!
(2.12)

is said to be an E-function if

(i) All coefficients cn belong to the same algebraic number field K of finite degree over

the rational number field Q,
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(ii) If ǫ > 0 is any positive number, then ¯|cn| = O(nǫn) as n → ∞, and

(iii) For any ǫ > 0, there exists a sequence of natural numbers {qn}n≥1 such that qnck ∈

ZK for k = 0, . . . , n and that qn = O(nǫn).

Note that their power series expansion is very redolent of the exponential series,

hence the term E-function.

Let us now call E the set of all E-functions. It is easy to see that E-functions satisfy the

following properties [NoFRS09]:

(i) E is a ring under the operations of addition and multiplication.

(ii) f(z) ∈ E implies that f ′(z) and
∫ z
0 f(t)dt are both E-functions.

(iii) f(z) ∈ E implies that f(αz) is also in E if α is an algebraic number.

An easy consequence of (iii) is that for any algebraic number α, eαz ∈ E.

For the class of E-functions, Shidlovskii proved the following strong theorem re-

lating algebraic independence of values of E-functions to the algebraic independence of

the functions whose evaluations the numbers are. See [ŠKB89].

Theorem 2.22. (Shidlovskii, 1955) Let

f1(z), . . . , fm(z), m ≥ 1, (2.13)

be a set of E-functions which form a solution of the system of differential equations

y′k = qk0 +

m
∑

j=1

qkjyj , qkj ∈ C(z), k = 1, . . . ,m, (2.14)

and are algebraically independent over C(z). Then α ∈ A, α 6= 0 and different from

singularities of (2.14), the numbers f1(α), . . . , fm(α) are algebraically independent over

Q.

2.4.1 G functions

However there are several numbers of interests which are not known to be evaluations of

E-functions at algebraic points. For example, π is obtained by evaluating 4 arctan(z) at

z = 1 or by evaluating −i log z at z = −1. However, it can be easily seen that log z and
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arctan(z) do not satisfy the definition of E-functions. They belong to a more general

class of functions, called G-functions. Siegel introduced them along with the E-functions.

The hope was to generalize the results on E-function to a more general class of power

series. G-functions’ power series expansion are redolent to geometric series. We now

give the definition of G-functions.

Definition 2.23. A function

f(z) =

∞
∑

n=0

anz
n (2.15)

is said to be a G-function if

(i) All coefficients an belong to the same algebraic number field K of finite degree over

the rational number field Q,

(ii) f(z) satisfies a linear differential equation with coefficients in Q(z), and

(iii) Both ¯|an| and the common denominator den(a0, . . . , an) are bounded by cn where

c > 0 depends only on f .

Note that unlike E-functions, at non-zero algebraic points, G-functions may take

algebraic values as well. For instance, algebraic functions also satisfy the definition of

G-functions. Other examples are arctan(z),− log (1 − z).

However, very little progress is there in case of G-functions. For example, no result

analogous to Shidlovskii’s result on E-function is known.

2.5 Some Transcendence Proofs: Power Series

Lemma 2.24. The exponential function f(x) = ex is transcendental.

Proof. Suppose it to be algebraic, and write

Pd(x)edx + Pd−1(x)e(d−1)x + · · · + P0(x) = 0 (2.16)

where we choose d to be least, whence Pd 6= 0. Then for any x ∈ C,

Pd(x) = −Pd−1(x)e−x − · · · − P0(x)e−dx (2.17)
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Let x ∈ R, x → +∞. Then the right-hand side of the above equation vanishes, which

implies limx→+∞ Pd = 0, a contradiction.

Now, we can run the same argument to prove that ex and ex
2

are algebraically

independent functions over C(x).

Theorem 2.25. log z and ez are algebraically independent functions over C(z).

Proof. Let us assume for the sake of contradiction that log z and ez are algebraically

dependent over C(z) such that Ã ∈ C[x1, x2, x3] annihilates {log z, z, ez}. Then there

exists a minimal annihilating polynomial A ∈ R[y1, y2, y3] which annihilates {u, eu, eeu}.

Let d := degx3A, so that A =
∑0

i=d pi(x1, x2)x
i
3 which gives

0
∑

i=d

pi(u, e
u)ee

u·i = 0 which gives (2.18)

pd(u, eu) +
0

∑

i=d−1

pi(u, e
u)

(eeu)d−i
= 0 (2.19)

sending u → ∞ sends
∑0

i=d−1
pi(u,e

u)
(eeu )d−i to zero. Thus

pd(u, eu) = 0 (2.20)

Similarly pd(x1, x2) = 0. Hence trdegR{u, eu, ee
u} = 3

This generalizes easily to the result that any arbitrary set of transcendental func-

tions which are all asymptotically apart are algebraically independent over C(z).

2.5.1 Mahler’s Construction

Lemma 2.26. [Duv10] Let Ω = {x ∈ C/|x| < 1}. Then the function

f(x) =
∞
∑

n=0

x2
n

(2.21)

which is analytic in Ω, is transcendental
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Proof. Note that f satisfies the functional equation, namely

f(x2) =
∞
∑

n=0

x2
n+1

= f(x) − x (2.22)

Now for contradiction, we assume f to be algebraic. Then for every x ∈ Ω,

(f(x))d + Qd−1(x)(f(x))d−1 + . . . + Q0(x) = 0 (2.23)

where the Qi’s are rational functions with complex coefficients, and d is chosen to be

least. Now if in above equation, we replace x by x2, we get

(f(x) − x)d + Qd−1(x
2)(f(x) − x)d−1 + . . . + Q0(x

2) = 0 (2.24)

Expansion gives

(f(x))d + (Qd−1(x
2) − dx)(f(x))d−1 + . . . = 0 (2.25)

Subtract this to (12.8). Since d is the least, we get Qd−1(x) = Qd−1(x
2) − dx. Now put

Qd−1(x) = A(x)/B(x), with A and B coprime. We have

A(x)B(x2) = A(x2)B(x) − dxB(x)B(x2) (2.26)

Thus B(x2)|A(x2)B(x). As B(x2) and A(x2) are coprime, this implies B(x2)|B(x).

Using degree argument, we deduce that B(x) = b ∈ C and (4.9) becomes A(x) =

A(x2) − bdx. If degA ≥ 1, this is impossible. Therefore deg A = 0 and A(x) = a ∈ C,

which implies b = 0, a contradiction.

The above function takes transcendental values at algebraic points.

Theorem 2.27. [Duv10] Let α be a non-zero algebraic number with |α| < 1, Then

f(α) =
∑+∞

n=0 α
2n is transcendental.



Chapter 3

Algebraic Independence of

Polynomials

Having seen the concept of algebraic independence in the case of numbers in the last

chapter, we move on to study the case of polynomials. We will see in 3.2.1 that the

problem of testing algebraic independence of polynomials over a field is computable. We

will then see in 3.4, an efficient criterion (the Jacobian Criterion) for testing algebraic

independence over fields of zero characteristic. We finally discuss the failure of the

Jacobian Criterion over fields of positive characteristic and discuss the open problem

of finding an efficient algorithm to test algebraic independence over fields of positive

characteristic.

3.1 Basic definitions

Definition 3.1. (Algebraic Independence of Polynomials). Let F be a field. A set

of polynomials {f1, f2, · · · , fm} ∈ F[x1, x2, · · · , xn] is said to be algebraically dependent

over F if there exists a non-zero polynomial A ∈ F[y1, y2, · · · , ym] such that

A(f1, f2, . . . , fm) = 0. We call such a polynomial A, an annihilating polynomial of

f1, f2, · · · , fm. If no such polynomial A exists, we say that the polynomials f1, f2, · · · , fn
are algebraically independent.

17
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Definition 3.2. (Transcendence Basis). A transcendence basis for a set L over a field K

is an algebraically independent set A such that the field extension L/K(A) is algebraic.

Definition 3.3. (Transcendence Degree). For a set L over a field K, it is defined as the

cardinality of its transcendence basis.

Lemma 3.4. All transcendence bases have same cardinality, i.e. the transcendence

degree is well defined.

For a proof, see [Mil03], Lemma 9.9.

Using the above lemma, we can define the transcendence degree for a set of poly-

nomials as the maximum number of algebraically independent polynomials in the set.

3.2 Testing Algebraic Independence

Apriori, it is not clear whether the problem of testing algebraic independence of polyno-

mials is computable. We will now see a result which asserts the computability of testing

algebraic independence.

3.2.1 Degree bound on Annihilating Polynomial

Perron [Per27] established a degree bound for the annihilating polynomial of n + 1

polynomials in n variables. Kayal [Kay09] established a degree bound for the annihilating

polynomial of sets with arbitrary number of polynomials over fields of zero characteristic.

His result depended on the transcendence degree and was independent of the number of

variables. Mittman [Mit13] generalised Kayal’s result to fields of arbitrary characteristic.

Theorem 3.5. [Mit13]. Let f1, . . . , fm ∈ F[x1, . . . , xn] be polynomials of degree at most

δ ≥ 1 and let r := trdegF(f1, . . . , fm). If m > r, then there exists a non-zero polynomial

A ∈ F[y1, . . . , ym] with deg(A) ≤ δr such that A(f1, . . . , fm) = 0.

The following example demonstrates that the degree bound given by the above

theorem is tight.



Chapter 3. Polynomials 19

Example 3.1. [Mit13]. The set of n + 1 polynomials {x1, x2 − xd1, x3 − xd2, . . . , xn −

xdn−1, x
d
n} has transcendence degree n and its minimal annihilating polynomial has degree

dn.

A direct consequence is that the problem of testing algebraic independence be-

comes computable over an arbitrary field. This upper bound gives a simple (though

inefficient) test since f1, . . . , fm are algebraically dependent if and only if {fd1
1 · · · fdn

n |
∑i=m

i=1 di ≤ δm} is F-linearly dependent. This system of linear equation which is

exponential-sized can be solved in PSPACE. In the case of constantly many sparse

polynomials with low (polynomially bounded) degree, as the degree bound of the anni-

hilating polynomial is polynomial in terms of input size, we can test algebraic indepen-

dence in randomized polynomial time. But for constantly many polynomials with high

(exponential) degree, the degree bound is exponential.

3.3 Hardness of Computing Annihilating Polynomial

As the annihilating polynomial’s degree bound can be exponential, explicitly comput-

ing the annihilating polynomial is definitely computationally intractable. Kayal [Kay09]

showed that computing A(0, ..., 0) (mod p) is #P-hard. If the annihilating polyno-

mial had polynomial sized arithmetic circuit that could be computed efficiently, then

A(0, ..., 0) (mod p) could also be computed efficiently. The paper also showed that an-

nihilating polynomials do not have polynomially bounded (in input size) circuits unless

the polynomial hierarchy collapses.

3.4 Efficient Computation: The decision problem

Since computing the annihilating polynomial is provably hard, a natural question would

be to ask for an efficient algorithm for the decision version of the problem i.e. given

a set of polynomials, we want to know whether they are algebraically dependent or

independent.
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The Jacobian criterion gives an efficient RP-algorithm for testing independence in the

case of fields of zero characteristic.

3.4.1 The Jacobian Criterion

Definition 3.6. (Jacobian Matrix). Given polynomials f1, . . . , fm ∈ F[x1, . . . , xn],

their Jacobian matrix is defined as

J(f1, . . . , fm) :=



















∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn



















(3.1)

.

Theorem 3.7. (The Jacobian Criterion) If F is a field of zero characteristic, then

f1, . . . , fm ∈ F[x1, . . . , xn] are algebraically independent if and only if the Jacobian matrix

is full rank. In particular, if m = n, f1, . . . , fm are algebraically dependent if and only

if the Jacobian determinant det(J(f1, . . . , fm)) = 0.

For a proof, one can refer to [BMS13] where it has been shown that the rank of

the Jacobian matrix equals the transcendence degree of the set of polynomials.

It always suffices to consider the n = m case. Since whenever n > m, we can

randomly fix the extraneous variables (possibly from a finite extension of the base field

F) to reduce the number of variables to m. Also whenever n < m, the polynomials

f1, . . . , fm are always algebraically dependent as is shown by the following lemma.

Lemma 3.8. [For92]. The polynomials f1, . . . , fm ∈ F[x1, . . . , xn] are algebraically de-

pendent over F if m > n.

Proof. This is true over an arbitrary field. We consider the extensions:

F ⊆ F(f1, . . . , fm) ⊆ F(x1, . . . , xn) (3.2)
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From field theory, we have for G ⊆ F ⊆ E, trdeg(E/G) = trdeg(E/F ) + trdeg(F/G).

Now since trdeg(F(x1, . . . , xn)/F) = n, the trdeg(F(f1, . . . , fm)/F) cannot be more than

n. So, the trdeg{f1, . . . , fm} ≤ n since any two transcendence bases of E/F have the same

cardinality. But n < m, which implies that f1, . . . , fm are algebraically dependent.

Abstract formulation of the Jacobian criterion: (See [Mit13], [MSS12] for

a detailed exposition). Over fields F of zero characteristic, f1, . . . , fn ∈ F[x1, . . . , xn] are

algebraically dependent if and only df1 ∧ · · · ∧ dfn = 0 as it can be shown that

df1 ∧ · · · ∧ dfn = det(J(f1, . . . , fn))dx1 ∧ · · · ∧ dxn (3.3)

where we have the wedge product or the exterior product as an anti-commutative

product defined by (x∧ y) = −(y ∧ x) and the differential is defined by the Leibniz rule

d(xy) = xdy + ydx.

3.4.2 A Randomized Polynomial Time Algorithm

Since the Jacobian determinant is also a polynomial in F[x1, . . . , xn], and we are inter-

ested in knowing if that polynomial is zero or not, the Jacobian criterion reduces the

problem of algebraic independence testing to the problem of polynomial identity testing

(PIT). Now, PIT has a randomized polynomial time algorithm using the Schwartz-Zippel

lemma in the case of a general arithmetic circuit [Sax09]. So, we get an RP algorithm for

algebraic independence testing as well for polynomials over fields of zero characteristic.

3.5 Algebraic Independence and Resultant

Definition 3.9. Resultant of the polynomials f1, f2 ∈ F[x1, x2] with respect to x1 is

defined as

Rx1(f1 − y1, f2 − y2) = α0

l
∏

i=1

(f1(ϕi) − y1), (3.4)
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where l is the degree of f2 with respect to the variable x1 and the ϕi are the roots

of the equation f2 − y2 = 0 in an appropriate extension of the field F(x2, y2) so that

ϕi = ϕi(x2, y2).

Theorem 3.10. [L’v84] Let f1 = α0x
k
1+· · ·+αk and f2 = β0x

l
1+· · ·+βl be polynomials in

F[x1, x2] that have been expanded in powers of x1. f1 and f2 are algebraically dependent

if and only if the expression

1

αl
0

Rx1(f1 − y1, f2 − y2) (3.5)

is free of x2. Moreover if f1 and f2 are algebraically dependent, then the above expression

will be the degree of an indecomposable polynomial B(y1, y2) such that B(f1, f2) = 0,

where Rx1(f1 − y1, f2 − y2) is the resultant of f1 and f2 with respect to x1.

3.6 Algebraic Independence over Fields of positive char-

acteristic

Motivated by an RP-algorithm for independence testing in the case of polynomials over

fields of zero characteristic, one would like to have an efficient criterion over fields of

positive characteristic as well. The first point of investigation would be to see if the

Jacobian criterion in its original form continues to work in the positive characteristic

case too.

3.6.1 Jacobian Failure:

The proof of the Jacobian criterion asserts that one side of the Jacobian criterion is true

for fields of arbitrary characteristic [BMS13] i.e. if f1, . . . , fn are algebraically dependent,

then det(J(f1, . . . , fn)) = 0. However, the proof of the converse fails in the case of fields

of positive characteristic.

Indeed, one can easily see that the converse is false in the positive characteristic

case:
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Example 3.2. xp1 and xp2 are independent polynomials over Fp. But their Jacobian

determinant determinant vanishes.

So, we do not have the Jacobian criterion in the case of fields of positive character-

istic which leaves us with the PSPACE-algorithm based on the annihilating polynomial

degree bound which works over arbitrary fields.

There has been little progress in terms of the complexity class of the problem of

testing algebraic independence of polynomials in the positive characteristic case. The

first improvement over the PSPACE-algorithm is the Witt Jacobian Criterion given by

[MSS12] which brings the problem in the complexity class NP#P.

Hence, there is still a huge gap between what is best known and what is being

hoped. Even for special cases, no progress is known.

Our attempts to solve this problem are driven by the following four approaches:

• Since the Jacobian criterion in its original form does not work, one can try to

transform the polynomials so that the Jacobian works. We discuss the approach

with the obtained results in Chapter 4.

• One can try to look for a criterion exclusively for the positive characteristic case.

We present such a criterion in Chapter 5. The Witt Jacobian criterion too is one

such criterion.

• Looking for a more general criterion which works for fields of arbitrary character-

istic. We discuss such an idea for a special case in Chapter 6.

• We keep the polynomials same but change the matrix to be considered for checking

the dependence. We cover this in Chapter 7.



Chapter 4

Jacobian Correction

In the last chapter, we saw (section 3.6.1) that there are examples of polynomials over

Fp where the usual Jacobian criterion of checking algebraic dependence by checking the

zeroness of the determinant of the Jacobian matrix fails. In this chapter, we make an

attempt to correct the Jacobian determinant. We explore the transformations which

preserve algebraic independence in 4.2. We show in some special cases that applying

a combination of such transformations on the input polynomials make the Jacobian

criterion work in 4.3. We get a randomized polynomial time algorithm in those special

cases. In [Sin15], it was obtained for monomials and two binomials. Using similar

techniques, we give an efficient algorithm for the two sum of univariates case in 4.4.

Finally in 4.5, we give a characterization of cases with zero Jacobian determinant.

4.1 Jacobian seen over Rationals:

In order to get a criterion which works even for Fp, one natural question one could ask is

whether the Jacobian determinant seen over Q already contains the information about

the dependence over Fp. This can be framed as the following conjecture.

Conjecture: Let A be the set of Jacobian determinants seen over Q of all alge-

braically dependent pairs of bivariate polynomials f1, f2 ∈ Fp[x1, x2]; and let B be the

be the set of Jacobian determinants seen over Q of all algebraically independent pairs.

24
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Then A ∩ B = φ, i.e. the Jacobian determinant of the dependent and the independent

pairs of polynomials go into different disjoint sets.

Clearly this is true in case of independence testing over Q since the Jacobian

determinant of dependent polynomials are all zero and no independent polynomials

have zero Jacobian.For independence testing over Fp, the above conjecture predicts the

existence of a Jacobian determinant based criterion though not necessarily as simple as

checking its zeroness.

Counter Example: f1 = x3 + x2y + xy2 + y3 and f2 = x + y are dependent

polynomials over F2 with f3
1 − f2 = 0.

Now consider the polynomials f ′
1 = x2 + y2 and f ′

2 = xy.

However, the Jacobian determinant seen over Q is J(f1, f2) = J(f ′
1, f

′
2) = 2x2 + 2y2.

The counter example to the conjecture is instructive in the sense that it tells

that the Jacobian determinant seen over Q in itself does not have sufficient information

to check dependence over Fp. So, it means that we cannot reduce testing algebraic

independence to checking some property of the Jacobian determinant (seen over Q).

4.2 Jacobian Correcting Transformations

A potential approach to tackle the above problem is to transform the given polynomials

so that the zeroness and the non-zeroness of the Jacobian determinant of the transformed

polynomials imply respectively the dependence and the independence of the original

polynomials [Sin15]. i.e. f1, . . . , fn 7→ g1, . . . , gn such that J(g1, . . . , gn) = 0 ⇔ f1, . . . , fn

are algebraically dependent.

We know that one direction of the Jacobian criterion is true even over Fp i.e.

a non-zero Jacobian determinant of polynomials g1, . . . , gn implies that they are alge-

braically independent. So, for independent polynomials f1, . . . , fn with failing Jacobian

(i.e. J(f1, . . . , fn) = 0), we are looking for transcendence degree preserving transforma-

tion which makes the Jacobian determinant non-zero.
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So, we call such g1, . . . , gn as independence certifying polynomials for f1, . . . , fn,

the transformation as Jacobian correcting transformation and any transcendence degree

preserving map as a faithful transformation.

It is easy to see that many of the faithful transformations will not correct the Jaco-

bian. Transformations like applying algebraically independent polynomial map cannot

correct Jacobian because chain rule shows that the Jacobian of the transformed poly-

nomials is a multiple of the Jacobian of the original polynomials. But one faithful

transformation can correct the Jacobian, if the polynomials are p-th powers, we can

take the highest possible p-th root of them and then take the Jacobian. This sometimes

may correct the Jacobian.

Example 4.1. Take xp, yp. After taking their p-th roots, Jacobian becomes nonzero.

But there are also algebraically independent polynomials over Fp, none of them

p-th powered, yet their Jacobian determinant is zero.

Example 4.2. Example 2: xp−1y and xyp−1 are independent polynomials with zero

Jacobian over Fp.

Here neither of the polynomials is a p-th power. Yet, the Jacobian determinant is

zero. So it is not always possible to correct the Jacobian by just taking the p-th root.

We show that many such cases can be converted to p-th power after applying

faithful transformation such that we get a non-zero Jacobian after taking their p-th

root.

Let us see how some natural transformations on the polynomials preserves the

transcendence degree and can also help in correcting the Jacobian.

4.2.1 Taking p-th root of the polynomials

We show that taking p-th root is a faithful transformation [Sin15].

Lemma 4.1. fpα1

1 , . . . , fpαm

m are algebraically dependent over Fp if and only if f1, . . . , fm

are algebraically dependent over Fp.
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Proof. ⇒ If fpα1

1 , . . . , fpαm

m are algebraically dependent over Fp, then there exists a

non-zero annihilating polynomial A ∈ Fp[y1, . . . , yn] satisfying A(fpα1

1 , . . . , fpαm

m ) = 0.

Trivially, A(yp
α1

1 , . . . , yp
αn

n ) is an annihilating polynomial of f1, . . . , fm.

⇐ If f1, . . . , fm are algebraically dependent over Fp, then there exists a non-zero

annihilating polynomial B satisfying B(f1, . . . , fm) = 0. Now let αt := max(α1, . . . , αm).

Since over Fp, we have: (a1 + · · ·+ an)p
αt = ap

αt

1 + · · ·+ ap
αt

n and fpαt

i = (fpαi

i )p
αt−αi so,

we take pαt power of B. We get,

Bpαt
(f1, . . . , fm) = B(fpαt

1 , . . . , fpαt

m ) = B((fpα1

1 )p
(αt−α1)

, . . . , (fpαn

m )p
(αt−αn)

) = 0 (4.1)

Thus, B(yp
(αt−α1)

1 , . . . , yp
(αt−αn)

n ) works as an annihilating polynomial for fpα1

1 , . . . , fpαn

m .

4.2.2 Applying polynomial map

We define a polynomial map ϕ as a way of mapping the variables of the polynomials to

the polynomials in the same ring i.e.

(x1, . . . , xn) 7→ (g1, . . . , gn) (4.2)

where gi ∈ F[x1, . . . , xn].

So ϕ(f) := f(g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)).

Lemma 4.2. [Sin15] If f1, . . . , fn are algebraically dependent, then ϕ(f1), . . . , ϕ(fn) are

algebraically dependent. For faithful polynomial maps, the converse is also true.

Proof. If f1, . . . , fn are algebraically dependent, clearly the same annihilating polyno-

mial annihilates f1(g1, . . . , gn), . . . , fn(g1, . . . , gn). Now, we prove the opposite direction,

which requires the map to be algebraically independent. We can view ϕ as a homomor-

phism from F[x1, . . . , xn] → F[g1, . . . , gn]. As g1, . . . , gn are algebraically independent,
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ϕ is injective. For the sake of contradiction, assume f1, . . . , fn to be algebraically in-

dependent but ϕ(f1), . . . , ϕ(fn) to be algebraically dependent. So, there is a nonzero

annihilating polynomial A such that A(ϕ(f1), . . . , ϕ(fn)) = 0. As ϕ is a homomorphism,

ϕ(A(f1, . . . , fn)) = 0. As ϕ is injective, this means A(f1, . . . , fn) = 0. So, we get a

contradiction.

4.2.3 Taking polynomials from the ring or the function field of the

given polynomials

Lemma 4.3. Algebraic independence of any m elements from F(f1, . . . , fm) certifies

algebraic independence of f1, . . . , fm over the field F.

Proof. Consider the field extension:

F ⊆ F(f1, . . . , fm) ⊆ F(x1, . . . , xn) (4.3)

with transcendence degree trdeg(F(f1, . . . , fm) : F) = t. So, if we pick k elements from

the the field F(f1, . . . , fm), the transcendence degree of the set is bounded by t. Also,

trivially the transcendence degree, t is bounded by the number of generators m (i.e.

t ≤ m). Now if the transcendence degree of the chosen set is m, it implies that the

transcendence degree of the extension, t ≥ m. So, we get t = m from above.

Thus f1, . . . , fm are algebraically independent.

Let us see some examples where the above three transformations indeed help in

the Jacobian correction [Sin15].

• f = x2y and g = xy2 over F2. The Jacobian determinant of f and g is zero. But

if we apply the map:

x 7→ x2/y; y 7→ y2/x (4.4)

we get f 7→ x3 and g 7→ y3. Now, using Lemma 4.1, we take cube root of both f

and g to get x and y respectively. Now the Jacobian is nonzero which by Lemma

4.2 certifies the independence of f and g (monomial map and p-th root).



Chapter 4. Jacobian Correction 29

• f = x2 + x3 + y and g = x3 + y over F2. The Jacobian determinant is zero here as

well. But after applying the map:

x 7→ x; y 7→ x3 + y2 (4.5)

we get f 7→ x2 + y2 and g 7→ y2 which after taking square root yields x + y and y

giving a nonzero Jacobian, hence certifying independence of f and g (polynomial

map and p-th root).

• The above example could also be correcting by going to the polynomial ring gen-

erated by above polynomials. For instance if we pick the polynomials f − g and g,

we get the polynomials x2 and x3 + y. Taking square root of f − g yields x and

x3 + y which now has a non-zero Jacobian. Thus,
√
f − g and g are algebraically

independent which by lemma 4.1 and 4.3 implies that f and g are algebraically

independent.

• Take f = u and g = vpu where u, v ∈ Fp[x, y] The Jacobian is zero in this case

too. But if we take fp−1g, we get upvp which on taking taking p-th root yields uv.

Now if J(uv, v) 6= 0, we get independence certificate of f and g (by lemma 4.1 and

4.3).

4.3 Jacobian Correction in special cases

Motivated by the above examples, one can give algorithms to correct the Jacobian

determinant for some special classes of polynomials.

4.3.1 Monomials: The Monomial Map

Here we prove that if we are given n monomials in n-variables, we can always correct

the Jacobian determinant. We do this by using monomial maps.

First we see a criterion for testing algebraic independence for a set of monomials.
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Lemma 4.4. [Mit13]. A set of monomials are algebraically dependent over a field F if

and only if their exponent vectors are linearly dependent over Z.

Proof. If mi = cix
αi1
1 · · ·xαin

n then (αi) = (αi1, . . . , αin) is called the exponent vector of

the monomial mi.

⇐ Now, let us assume that the exponent vectors of the monomials are Z-linearly

dependent, i.e. for some λi’s ∈ Z, we have:

λ1α1 + · · · + λnαn = 0. (4.6)

From this, we can easily show,

mλ1
i · · ·mλn

n = 1. (4.7)

This shows that m1, . . . ,mn are algebraically dependent.

⇒ Conversely, let m1, . . . ,mn be algebraically dependent. If t1, . . . , tr are the terms of

the annihilating polynomial then for all ti, ti(m1, . . . ,mn) is a monomial. As all these

monomials cancel, there are two distinct terms t1 = yλ1
1 , · · · , yλn

n and t2 = yµ1
1 , · · · yµn

n

such that t1(m1, . . . ,mn) = t2(m1, . . . ,mn). Plugging in m1, . . . ,mn in t1 and t2, we

will get

(λ1 − µ1)α1 + · · · + (λn − µn)αn = 0. (4.8)

Now, as t1 and t2 are distinct, not all λi−µi can be zero. This shows that the exponent

vectors are linearly dependent.

The above lemma shows that for monomials, the question of algebraic indepen-

dence of monomials over Fp is same as their independence over Q. Since the Jacobian

does not fail over Q, testing algebraic independence of monomials over Fp becomes easy.

We just need to check if the Jacobian determinant over Q is nonzero.

However, even in the case of monomials, we would like to correct the Jacobian

over Fp itself, hoping that the technique used can be deployed to correct Jacobian in

other cases of Fp as well; since in other cases, we do not have a criterion as strong as

testing dependence over Q as we have in the case of monomials.
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Lemma 4.5. [Sin15]. Jacobian can always be corrected for a set of n-monomials

m1, . . . ,mn ∈ Fp[x1, . . . , xn].

Proof. Case 1: Jacobian determinant, det(J(m1, . . . ,mn)) = 0 over Q:

In this case, they are dependent over Q and hence over Fp as well. So, the Jacobian is

already correct.

Case 2: det(J(m1, . . . ,mn)) 6= 0 over Fp:

Again the Jacobian is already correct and m1, . . . ,mn are algebraically independent.

Case 3: Jacobian is nonzero over Q but zero over Fp:

By the above lemma, m1, . . . ,mn are algebraically independent over Fp. So, the Jaco-

bian fails in this case.

Let us assume the monomials be m1, . . . ,mn such that mi = cix
αi1
1 · · ·xαin

n and the cor-

responding exponent vector for mi is (αi1, . . . , αin).

The exponent matrix of the monomials is thus denoted as:

An,n =



















α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

. . .
...

αn1 αn2 · · · αnn



















. (4.9)

Now computing the Jacobian determinant of m1, . . . ,mn from the definition, we get

det(J(m1, . . . ,mn)) =

n
∏

i=1

ci · detA ·
∏n

i=1mi
∏n

i=1 xi
. (4.10)

Thus zero Jacobian over Fp means that p divides detA. Let us say detA = α · pk, where

k is the highest power of p which divides detA. We now correct the Jacobian by first

introducing a faithful map which sends the variables to a set of algebraically independent

monomials.

(x1, . . . , xn) 7→ (N1, . . . , Nn) (4.11)
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where the exponent matrix of N1, . . . , Nn is given by:

Bn,n =



















β11 β12 · · · β1n

β21 β22 · · · β2n
...

...
. . .

...

βn1 βn2 · · · βnn



















. (4.12)

The monomials m1, . . . ,mn gets mapped to M1, . . . ,Mn. One can easily verify that the

exponent matrix En,n of M1, . . . ,Mn becomes:

An,n 7→ A′
n,n = An,n ·Bn,n (4.13)

Now we know the identity A ·AdjA = detA · In, where AdjA denotes the Adjoint matrix

of the matrix A. Thus if B is chosen to be the same as AdjA, A′ becomes diagonal i.e.

monomials get transformed as

(m1, . . . ,mn) 7→ (xdetA1 , xdetA2 , . . . , xdetAn ) (4.14)

Now since, detA = α · pk, we can take pk-th root of all the transformed monomials,

they get transformed to xα1 , . . . , x
α
n. Now det(J(xα1 , . . . , x

α
n)) 6= 0 since p does not divide

α.

Let us say f = m1 + m2 + · · ·mk and g = M1 + M2 + · · ·Ml. So det(J(f, g)) =

∑

det(J(mi,Mj)) i.e. the Jacobian is equal to the sum of Jacobian of all the monomial

pairs. We believe that the failure of the Jacobian in general is because of its failure at

the level of monomials of the given polynomials.

Conjecture: If Jacobian of no monomial pair, det(J(mi,Mj)) fails, then Jacobian

det(J(f, g)) does not fail.

In the spirit of the above conjecture, we believe that several special cases of failing

Jacobian can be corrected by correcting the failing monomial pairs.

Using the above monomial map technique, one could also give a polynomial time al-

gorithm for testing algebraic independence of two bivariate binomials (see [Sin15] 3.2.2).
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4.4 Sum of Univariates

In this section, we give an algorithm to check algebraic independence of two bivariate

polynomials where each of them are sum of univariate polynomials over Fp. The poly-

nomials are given in the sparse representation where degrees can be exponential in the

input size. e.g. f(x) =
∑

fi(xi) where each fi(xi) is a polynomial in variable xi.

Clearly, the Jacobian criterion does not help directly. We again use the idea of

Jacobian correction taking the p-th root. We first prove the following lemma which helps

us in getting the algorithm.

Lemma 4.6. If two super-sparse sum of univariate polynomials have a zero Jacobian

determinant, the non p−th power part of the two polynomials are constant multiple of

each other.

Proof. Let the given polynomials be:

f(x, y) = f1(x) + f2(y), and g(x, y) = g1(x) + g2(y). We can rewrite f and g by sepa-

rating the p-power parts and the non p-power parts of f1, f2, g1 and g2 i.e.

f(x, y) = fp(x, y) + fnp(x, y) and g(x, y) = gp(x, y) + gnp(x, y)

Using both the above way of rewriting f and g, we get:

f(x, y) = f1p(x) + f1np(x) + f2p(y) + f2npy and

g(x, y) = g1p(x) + g1np)(x) + g2p(y) + g2np(y),

where p and np in the subscript denote the p-power and the non p-power parts respec-

tively. Now the Jacobian matrix of f and g,

J(f, g) =







∂xf ∂yf

∂xg ∂yg






=







∂xf1np(x) ∂yf2np(y)

∂xg1np(x) ∂yg2np(y)






(4.15)

.

Now the Jacobian determinant being zero implies,

det(J(f, g)) = ∂xf1np(x) · ∂yg2np(y) − ∂xg1np(x) · ∂yf2np(y) = 0. This gives:

∂xf1np(x)

∂xg1np(x)
=

∂yf2np(y)

∂yg2np(y)
. (4.16)
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Note that the L.H.S. is a function independent of y and the R.H.S. is a function inde-

pendent of x. Thus both the L.H.S. and the R.H.S. have to be equal to a field constant

i.e.

∂xf1np(x)

∂xg1np(x)
= α, α ∈ Fp (4.17)

∂xf1np(x) = α∂xg1np(x) (4.18)

d f1np(x) − αd g1np(x) = 0 (4.19)

On integration, we get f1np(x) − αg1np(x) ∈ Fp[x
p]. But, we know by definition, that

the terms in f1np(x) or g1np(x) are neither field constants nor p-powers. Thus, we get:

f1np(x) − αg1np(x) = 0 (4.20)

Similarly,

f2np(y) − αg2np(y) = 0 (4.21)

Now, we are in a position to give the independence testing algorithm via Jacobian

correction.

4.4.1 The Algorithm

1. if det(J(f, g)) 6= 0 over Fp,
f and g are algebraically independent over Fp.

2. else, if det(J(f, g)) = 0 over Q,
f and g are algebraically dependent over Q and hence over Fp as well.

3. else, find α such that fnp = α · gnp.
now if deg(fp) ≥ deg(gp),

f := (αf − g)1/p
k

and g := g and go to Step 1, where k is the highest
power of p which divides αf − g.

else if deg(fp) < deg(gp):

g := (αf − g)1/p
k

and f := f and go to Step 1.
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4.4.2 Proof of Correctness

To prove the correctness of the algorithm, we prove the following claims:

(i) The algorithm always terminates after a finite number of steps.

(ii) If f and g are independent, then eventually det(J(f, g)) becomes non-zero over Fp.

(iii) If f and g are dependent, then eventually det(J(f, g)) becomes zero over Q.

Proof. (i) Observe that in step (3), if deg(fp) ≥ deg(gp), g and hence its degree remain

unchanged . Now from our choice of α and Lemma 4.1, it follows that αf − g is a p-th

power. Hence deg(αf − g) ≤ max(deg(fp), deg(gp)). Further taking pk-th root reduces

the degree of updated f . Similar case happens if deg(fp) < deg(gp). Thus in every

iteration in step 3, one of the degrees gets decreased. Hence the algorithm terminates

after finite number of steps.

(ii) and (iii). To prove these, all we need to establish is that the operations in step 3

preserves the transcendence degree of f and g over an arbitrary field.

Well this is also true since it is an easy exercise to show:

a) trdeg(fp, g) = trdeg(f, g), and

b) trdeg(αf + βg, g) = trdeg(f, g) for α 6= 0.

4.4.3 Time Complexity

In each iteration, in step 3, one of the degrees gets reduced by a factor ≥ p. Hence if

d := max(deg(fp),deg(gp)), the number of times the algorithm visits Step 3 ≤ 2 logp d.

Thus, the number of steps is polynomial in input size. Jacobian determinant’s zeroness

in Step 1 can also be checked in randomized polynomial time.

Thus, we get an efficient (RP) algorithm to test algebraic independence of two sum of

univariates.

4.5 Characterization of zero Jacobian

We also give an exact characterization of the cases with zero Jacobian determinant

over F2. We use the fact that every polynomial f ∈ Fp[x1, x2] can also be viewed as a
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polynomial over Fp(x
p
1, x

p
2). For F2, every polynomial f can be viewed as

f̃ = a0 + a1x1 + a2x2 + a3x1x2 (4.22)

where a′is ∈ F2[x
2
1, x

2
2].

Similarly, let us say, we have another polynomial g ∈ F2[x1, x2] such that

g̃ = b0 + b1x1 + b2x2 + b3x1x2 (4.23)

where b′is ∈ F2[x
2
1, x

2
2].

Proposition 4.7. Jacobian determinant, det(J(f, g)) = 0 if and only if a1
b1

= a2
b2

= a3
b3
.

Proof. Now det(J(f, g)) = 0 means det(J(f̃ , g̃)) = 0 ≡ df̃ ∧ dg̃ = 0. Now, we have

df̃ = (a1 + a3x2)dx1 + (a2 + a3x1)dx2 (4.24)

and

dg̃ = (b1 + b3x2)dx1 + (b2 + b3x1)dx2 (4.25)

which on invoking the df̃ ∧ dg̃ = 0 condition, yields

a1 + a3x2
b1 + b3x2

=
a2 + a3x1
b2 + b3x1

(4.26)

which gives
∣

∣

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

∣

∣

· 1 +

∣

∣

∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

∣

∣

· x1 +

∣

∣

∣

∣

∣

∣

∣

a3 a2

b3 b2

∣

∣

∣

∣

∣

∣

∣

· x2 = 0 (4.27)

Now the coefficients of 1, x1 and x2 should all be zero. Hence, we get

a1
b1

=
a2
b2

=
a3
b3

. (4.28)

.
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Alternative Criterion for positive

characteristic: Jacobian Lifting

We have seen that a zero Jacobian determinant over Fp implies that the Jacobian de-

terminant is divisible by p when seen over Q. The question we ask is whether we can

perturb our input polynomials by adding rational functions which are congruent to zero

modulo p (we call this process as ‘lifting’), such that the Jacobian determinant becomes

zero modulo a higher power of p when seen over Q. We show in this chapter (in 5.3.1)

that this can be achieved for an arbitrarily high power of p when the input polyno-

mials are algebraically dependent. We further show using the Witt-Jacobian criterion

given in [MSS12], that one cannot achieve this beyond a certain power of p when the

input polynomials are algebraically independent. We finally show in 5.4 using Lüroth’s

theorem that a much stronger result can be obtained in the two-polynomials case: we

show that the Jaocbian determinant can be made zero over Q by such perturbations,

or equivalently, that the dependence of two polynomials over Fp can be lifted to the

dependence over Q. These results offer differential equation based criteria for testing

algebraic independence.

37
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5.1 Preliminaries

5.1.1 Witt Jacobian Criterion

In [MSS12], a new method was devised to faithfully differentiate polynomials over Fp,

thereby getting a generalization of the Jacobian - the Witt Jacobian. A key idea is to

lift the coefficients of the polynomials from Fp to Ẑp (p-adics), thus moving to a field of

zero characteristic.

Let us say the polynomials f1, . . . , fn ∈ Fp[x1, . . . , xn] get lifted as f1, . . . , fn →

f̂1, . . . , f̂n where f̂1, . . . , f̂n ∈ Ẑp[x1, . . . , xn].

Definition 5.1. For ℓ ≥ 1, the ℓth Witt-Jacobian polynomial is defined as,

WJPℓ(f1, . . . , fn) = (f̂1, . . . , f̂n)p
ℓ−1−1 · det(J(f̂1, . . . , f̂n)) ·

n
∏

i=1

xi. (5.1)

Definition 5.2. A Witt-Jacobian polynomial f is called (ℓ + 1)- degenerate if the

coefficients of xα := xα1
1 · · ·xαn

n in f is divisible by pmin[vp(α),ℓ]+1, ∀ α ∈ Nn where vp(α)

is the highest power of p dividing all αn.

The explicit Witt-Jacobian criterion for algebraic independence is given as:

Theorem 5.3. f1, . . . , fn are algebraically independent over Fp if and only if the (ℓ+1)th

Witt-Jacobian polynomial WJPℓ+1(f1, . . . , fn) = (f̂1, . . . , f̂n)p
ℓ−1−1 · det(J(f̂1, . . . , f̂n)) ·

∏n
i=1 xi. is not (ℓ + 1) degenerate for ℓ ≥ logp[F(x1, . . . , xn) : F(f1, . . . , fn)]insep.

where [F(x1, . . . , xn) : F(f1, . . . , fn)]insep is the inseparability degree of the field

extension F(x1, . . . , xn)/F(f1, . . . , fn) (see [MSS12]). This degree has an upper bound

which depends on the transcendence degree of the polynomials:

[F(x1, . . . , xn) : F(f1, . . . , fn)]insep ≤ δr, (5.2)

where r := trdeg(f1, . . . , fn) and δ is the maximum degree.

We refer to [MSS12] for the proofs.
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Since degeneracy testing involves looking at the coefficients of each monomials, and we

do not have a sub-exponential bound on the sparsity of the WItt-Jacobian polynomial,

it becomes hard to get an efficient algorithm from this criterion to test algebraic inde-

pendence. The algorithm suggested puts the problem in the complexity class NP#P

i.e. we get a polynomial time algorithm on a Nondeterministic Turing Machine with a

#P oracle.

5.1.2 Lüroth’s Theorem

Theorem 5.4. (Lüroth’s Theorem) Let K be a field and M be an intermediate field

between field between K and K(X), for some indeterminate X. Then there exists a ra-

tional function f(X) ∈ K(X) such that M = K(f(X)) i.e. every intermediate extension

between K and K(X) is simple.

Theorem 5.5. (Lüroth’s Theorem for Multivariates) If k ⊂ K ⊂ k(x1, x2, . . . , xn),

tr.deg.K/k = 1 and K 6= k, then K = k(g), g ∈ k(x1, x2, · · · , xn).

Theorem 5.6. (Extended Lüroth’s Theorem) If, under the assumption of Theorem

5.2, K contains a non-constant polynomial over k, then K has a generator which is a

polynomial over k.

For a complete exposition of the proofs, we refer to [Sch00]. For an elementary

proof of the Lüroth’s theorem, see [Ben04].

5.2 Main Results

We need some definitions first to state our results.

Definition 5.7. p-adic valuation of a polynomial f over Q is defined as the highest

power of p which divides the coefficients of every monomial of f .

Example 5.1. 2-adic valuation of 8x2 +16x+4 is 2 since 22 divides all the coefficients.

Definition 5.8. Lifting a polynomial f over Fp is adding to it, a polynomial or ra-

tional function which is zero over Fp, i.e. whose coefficients of every monomial (in the
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numerator) is divisible by p. The added polynomial or rational function is called the

lift.

We now state our main theorems:

Theorem 5.9. For polynomials f1, . . . , fn ∈ Fp[x1, . . . , xn], the p-adic valuation of the

Jacobian determinant det(J(f1, . . . , fn)) can be increased to an arbitrarily high number

by lifting the polynomials if and only if they are algebraically dependent over Fp. In

particular, for independent polynomials f1, . . . , fn, we cannot increase by lifting, the

Jacobian determinant’s p-adic valuation beyond logp [F(x1, . . . , xn) : F(f1, . . . , fn)]insep.

For the two polynomials case, we have a much stronger result.

Theorem 5.10. For polynomials f1, f2 ∈ Fp[x, y] seen over Q, there exist lifts δ1, δ2 ∈

Q[x, y], such that f1 + p · δ1 and f2 + p · δ2 are algebraically dependent over Q if and only

if f1 and f2 are algebraically dependent over Fp.

Corollary 5.11. For polynomials f1, f2 ∈ Fp[x, y] seen over Q, there exists lifts δ1,

δ2 ∈ Q[x, y], such that the p-adic valuation of the Jacobian determinant of the lifted

polynomials, det(J(f1+p·δ1, f2+p·δ2)) is infinity, if and only if f1 and f2 are algebraically

dependent over Fp.

The above two theorems also give each a differential equation based criterion to

test algebraic independence of polynomials over fields of positive characteristic which

we have described later in the chapter.

5.3 Proof of the theorems:

5.3.1 Proof of theorem 5.9: p-adic valuation lifting

Proof. ⇒ (Dependence implies that an arbitrary increase in the p-adic valuation is

possible by lifting). We need the following lemma to prove this direction.

Lemma 5.12. p-adic valuation of the evaluated annihilating polynomial can be increased

to an arbitrarily high number by lifting the polynomials.
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Proof. Let us say, we are given polynomials f1, . . . , fn which are algebraically dependent

over Fp but independent over Q. Let A(y1, . . . , yn) be the minimal annihilating polyno-

mial of f1, . . . , fn.

Now this means that A(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) is a zero polynomial over Fp

but this is not a zero polynomial over Q since f1, . . . , fn are independent over Q. So, p

must divide all the coefficients of the monomials in A(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

We call the highest power of p dividing all the coefficients, as the p-adic valuation of the

evaluated annihilating polynomial.

Let us say, we have

A(y1, . . . , yn) =
t

∑

i=0

aiy
αi,1

1 · · · yαi,n
n . (5.3)

On evaluating, we get:

A(f1, . . . , fn) =
t

∑

i=0

aif
αi,1

1 · · · fαi,n
n ≡ 0 (mod p). (5.4)

Now, we lift the polynomials as

f1 7→ f1 + pδ1, · · · , fn 7→ fn + pδn. (5.5)

For increasing the p-adic valuation by lifting, we want

A(f1 + pδ1, . . . , fn + pδn) ≡ 0 (mod p2) (5.6)

which implies
t

∑

i=0

ai(f1 + pδ1)
αi,1 · · · (fn + pδn)αi,n ≡ 0 (mod p2). (5.7)

On expansion, we get:

∑

aif
αi,1

1 · · · fαi,n
n + p

∑

δk
∑

aiαi,kf
αi,1

1 · · · fαi,k−1
k · · · fαi,n

n ≡ 0 (mod p2) (5.8)

p−1(
∑

aif
αi,1

1 · · · fαi,n
n ) +

∑

δk
∑

aiαi,kf
αi,1

1 · · · fαi,k−1
k · · · fαi,n

n ≡ 0 (mod p) (5.9)
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Note that p|A(f1, . . . , fn), so p−1A(f1, . . . , fn) makes sense. Using it, we can re-write

the above equation as

p−1A(f1, . . . , fn) +
∑

δk(∂ykA) |(f1,...,fn)≡ 0 (mod p). (5.10)

Now due to the minimality of A, at least one of the (∂ykA) |(f1,...,fn) 6= 0 (mod p).

We pick one such k to get the solution

δi = 0, i = 1, . . . , n, i 6= k; δk = −p−1A(f1, . . . , fn)

(∂ykA) |(f1,...,fn)
. (5.11)

Such that δk ∈ Fp(x, y). We can iterate the process j-times to get the lifted polynomials

fk 7→ fk + p2
0
δk,0 + . . . + p2

j−1
δk,j−1 where δk,j−1 is the polynomial by which we lift fk

from (j − 1)-th step to the j-th step. So after j-steps, we get

A(f1, . . . , fn) ≡ 0 (mod p2
j

) (5.12)

Hence lemma 1 follows.

We now claim that the same lifts used for increasing the p-adic valuation of the

evaluated annihilating polynomial, will increase the p-adic valuation of the Jacobian

determinant, det(J(f1, . . . , fn)) to the same level. To prove the claim, we consider the

equation

A(y1, . . . , yn) |f1,...,fn≡ 0 (mod p2
j

) (5.13)

Now we apply the formal derivative on the equation to get

d(A(f1, . . . , fn)) ≡ 0 (mod p2
j

) , or (5.14)

∂y1A(y1, . . . , yn) |(f1,...,fn) df1 + . . .+∂ynA(y1, . . . , yn) |(f1,...,fn) dfn ≡ 0(mod p2
j

) (5.15)

Minimality of A implies there will be at least one ∂ykA(y1, . . . , yn) |(f1,...,fn) 6≡

0(mod p). So we take wedge-product of dA with df1∧· · ·∧dfk−1∧dfk+1∧· · ·∧dfn. Now if

df1∧· · ·∧dfk−1∧dfk+1∧· · ·∧dfn ≡ 0(mod p2
j
), we trivially get df1∧· · ·∧dfn ≡ 0(mod p2

j
),
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since from chapter 3, we have

det(J(f1, . . . , fn)) =
df1 ∧ · · · ∧ dfn
dx1 ∧ · · · ∧ dxn

(5.16)

which gives us that det(J(f1, . . . , fn)) ≡ 0 (mod p2
j
).

While if df1 ∧ · · · dfk−1 ∧ dfk+1 ∧ · · · ∧ dfn 6≡ 0 (mod p2
j
), the wedge product yields

dA(f1, . . . , fn) ∧ (df1 ∧ · · · dfk−1 ∧ dfk+1 ∧ · · · ∧ dfn) ≡ 0 (mod p2
j

) , or (5.17)

(
∑

∂ymA(y1, . . . , yn) |(f1,...,fn) dfm) ∧ (df1 ∧ · · · dfk−1 ∧ dfk+1 ∧ · · · ∧ dfn) ≡ 0 (mod p2
j

)

(5.18)

and we get:

(∂ykA(y1, . . . , yn) |f1,...,fn)df1 ∧ · · · ∧ dfn ≡ 0 (mod p2
j

). (5.19)

Since we picked k such that ∂ykA(y1, . . . , yn) |(f1,...,fn) 6= 0(mod p), we get df1∧· · ·∧dfn ≡

0 (mod p2
j
) and hence det(J(f1, . . . , fn)) ≡ 0 (mod p2

j
).

Thus we have shown that if f1, . . . , fn are algebraically independent over Fp, the

p-adic valuation of the det(J(f1, . . . , fn)) can be increased to an arbitrarily high number.

⇐ (Independence implies that p-adic valuation of the Jacobian cannot be increased

beyond a bound). We use Theorem 5.3 for proving this direction. In particular we show

that an increase in the p-adic valuation cannot be attained after log2(logp[F(x, y) :

F(f, g)]insep + 1) steps.

Proof. We prove it by assuming the contrary.

We assume that the p-adic valuation of the det(J(f1, . . . , fn)) can be increased arbitrar-

ily. So after j steps, we get det(J(f1, . . . , fn)) ≡ 0 (mod p2
j
). From the Witt Jacobian

criterion, we have the Witt Jacobian polynomial:

WJPℓ+1(f1, . . . , fn) = (f̂1, . . . , f̂n)p
ℓ−1−1 · det(J(f̂1, . . . , f̂n)) · ∏n

i=1 xi. So, we also get

that after j lifting steps, WJPℓ+1(f1, . . . , fn) ≡ 0 (mod p2
j
) i.e. p2

j
divides all the coef-

ficients of WJP (f1, . . . , fn), so we call it 2j degenerate.

This happens for arbitrary j. Thus, we pick j to be log2(logp[F(x, y) : F(f1, f2)]insep+1)

such that after j lifting steps, the Witt Jacobian polynomial is logp[F(x, y) : F(f1, f2)]insep+
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1 degenerate. This contradicts Theorem 5.3 when f1, . . . , fn are algebraically indepen-

dent which states that the Witt Jacobian polynomial cannot be (ℓ + 1) degenerate for

ℓ ≥ logp[F(x, y) : F(f1, f2)]insep.

This finishes the proof of the theorem.

Now, using Theorem 5.9, we introduce a criterion for independence testing. We

demonstrate this in the two-polynomials case. So, we start with input f0 and g0 such

that df0 ∧ dg0 ≡ 0 (mod p). If not, we are done already and f0 and g0 are independent.

Now, we try to find rational functions δ1 and µ1 such that

d(f0 + p · δ1) ∧ d(g0 + p · µ1) ≡ 0 (mod p2)

equivalently, it becomes

p−1d(f0 ∧ dg0) + df0 ∧ dµ1 + dδ1 ∧ dg0 ≡ 0 (mod p)

If such a solution exists, we find f1 := f0 + p · δ1 and g1 := g0 + p · µ1.

Now, df1 ∧ dg1 ≡ 0 (mod p2). As the theorem suggests, we repeat the process i = m :=

log2(logp[F(x, y) : F(f, g)]insep+1) many times. At this, stage if fi and gi can be further

lifted, we deduce that f0 and g0 are algebraically independent over Fp. Non-existence

of such lifts will imply algebraic independence of the two polynomials f0 and g0. In

terms of the above differential equations, it is similar to finding δ =
∑m

1 i p
2i−1

δi and

µ =
∑m

1 i p
2i−1

µi where δi, µi ∈ (Z/p2
i−1

Z)(x, y) such that

d(f0 + δ) ∧ d(g0 + µ) ≡ 0 (mod p2
m

) (5.20)

Criterion : Solution to the above differential equation exists if and only if f and g are

algebraically dependent.

For algorithms to find rational function solutions to a linear first order partial

differential equations, we refer to [BCW05].
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Conjecture 1 : If f and g are algebraically independent, J(f, g) can be lifted ex-

actly log2(logp[F(x, y) : F(f, g)]insep + 1) many times.

Conjecture 2 : δi, µi ∈ (Z/p2
i−1

Z)[x, y] suffice i.e. non-existence of polynomial so-

lutions (δ,µ) to the above equation (5.20) is sufficient to establish independence.

5.3.2 Proof of theorem 5.10: Lifting to Rationals

We now use Theorem 5.8 (Extended Lüroth’s theorem) to prove that for two algebraically

dependent polynomials f1 and f2 over Fp, their dependence can be lifted to dependence

over Q.

Proof. If f1,f2 ∈ Fp[x1, x2] are algebraically dependent over Fp, then we can apply

Theorem 5.2 and 5.3 where K = Fp(f1, f2). which implies that there exists h ∈ Fp[x1, x2]

such that f1 = g1(h) and f2 = g2(h), where g ∈ Fp(t) Also note that from Lemma

5.8, univariates g1(t) and g2(t) are algebraically dependent over Q as well. Thus, the

evaluated g1(t), g2(t) at t = h(x1, x2) when the evaluations are seen over Q are also

algebraically dependent over Q. Let us called these evaluated g1(t) and g2(t) as f̃1 and

f̃2 respectively. Thus f̃1 and f̃2 are the lifted f1 and f2 which are dependent over Q

since:

f̃1 ≡ f1 (mod p) and f̃2 ≡ f2 (mod p). We also get the desired lifts as:

δi = p−1(fi − gi(h(x1, x2))) seen over Q.

5.4 Lifting to rationals: Independence testing criteria

The above theorem offers two directions to get an algebraic independence testing algo-

rithm.

• Computing the Lüroth generator which by itself is a certificate for dependence.

Algorithms are known to compute Lüroth generator, for instance refer to [Chè10].

However, no algorithm is known with time complexity polynomial in terms of log

of the degrees of the polynomials.
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• The above lifting of dependence to dependence over Q implies that zero Jacobian

determinant over Fp can be lifted to zero Jacobian determinant over Q if and only if

f1 and f2 are algebraically dependent over Fp. We therefore set up the differential

equation capturing this property and claim that a rational function solution to the

differential equation exists if and only f1 and f2 are algebraically dependent.

d(f1 + pδ1) ∧ d(f2 + pδ2) = 0. (5.21)

.

.



Chapter 6

Alternative Criterion over Zero

Characteristic: Supersparse

Polynomials

Lüroth’s theorem (see section 5.1.2) relates algebraic independence of given two poly-

nomials to their decomposition. It asserts that they have a common generator if they

are algebraically dependent. We use this property to prove results in the supersparse

model of computation. We show in 6.3 that the minimal annihilating polynomial of two

algebraically dependent supersparse polynomials over Q is sparse in most of the cases

(and exactly characterize those cases as well). We further give an alternative random-

ized polynomial time algorithm for testing algebraic independence of two supersparse

polynomials over Q in 6.4. We finally prove in 6.5, a result about two algebraically

dependent homogeneous polynomials.

6.1 Preliminaries

Definition 6.1. [KK05] Supersparse polynomial. A supersparse (lacunary) polyno-

mial

f(x1, . . . , xn) =
t

∑

i=0

aix
αi,1
1 · · ·xαi,n

n (6.1)

47
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is input by a list of its coefficients and corresponding term degree vectors in binary.

One cannot evaluate a supersparse polynomial at algebraic numbers in polynomial-

time in its size, because the value of the polynomial can have exponential size, say 2100

digits. Important exceptions are evaluating at roots of unity. A supersparse polynomial

can be represented by a straight-line program of size O(sizef) via evaluating its terms

with repeated squaring [Kal88].

6.2 Main Results

6.2.1 Degree bound on annihilating polynomial

We prove the following theorem about the annihilating polynomial of two supersparse

polynomials.

Theorem 6.2. If two supersparse polynomials, f1 and f2 ∈ Q[x, y] which do not de-

compose as fi(x, y) = gi(hi(x, y)), where hi(x, y) = xmyn + c, m,n ∈ N, c ∈ Q are

algebraically dependent, their minimal annihilating polynomial, A is sparse.

Let ti be the number of non-zero monomials in the supersparse representation of fi and

t := max(t1, t2), then deg(A) ≤ 5t2.

6.2.2 Algebraic independence testing algorithm

Using the above result, we also give an alternative randomized polynomial time algorithm

for testing algebraic independence of two supersparse polynomials over Q.

6.2.3 Annihilating polynomial of homogeneous polynomials

We give an alternative proof to a known result on homogeneous polynomials. Most of

the references use Lüroth’s theorem to prove it.

Theorem 6.3. Let f, g ∈ F[x, y] be two non-constant homogeneous polynomials of degree

at most δ ≥ 1. Then f, g are algebraically dependent over F if and only if fm = c.gn for

some field constant c.
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6.3 Proof of Theorem 6.2

We first state a key theorem (without proof) which we’ll be using to prove Theorem 6.2.

For the proof, see [Zan07].

Theorem 6.4. (Zannier’07) If f ∈ K[x] where K is a field of zero characteristic such

that f = g(h), h 6= axm + b and f is sparse with number of non-zero terms being l, then

deg (g) ≤ l(2l + 1).

We now prove the lemmas which are also required to prove the theorem.

Lemma 6.5. If polynomials f1(x, y) and f2(x, y) are algebraically dependent over a field

F, there exists a polynomial h ∈ F[x, y] such that f1 and f2 decompose respectively as

f1 = g1(h) and f2 = g2(h), where g1, g2 ∈ K[t].

Proof. This is a direct consequence of Lüroth’s theorem (Theorem 5.5). The Lüroth

generator h, given by the theorem serves the purpose of the lemma.

Note that the h obtained in Lüroth’s theorem satisfies a stronger property than

what is required for the above lemma. The Lüroth generator h, for f and g lives in

F(f, g) which is not required by the above lemma.

Lemma 6.6. [Kay09] Let f1, · · · , fm ∈ F[x1, · · · , xn] be a set of algebraically dependent

polynomials over the field F, such that none of its proper subset is algebraically dependent,

equivalently the transcendence degree of the set of polynomials is n − 1. Then the ideal

of the annihilating polynomials is generated by a unique irreducible (up to a constant

multiple) polynomial A. So in this case, the ideal of the annihilating polynomials is a

principal ideal.

Proof. Let A ∈ F[y1, · · · , ym] be a minimal degree annihilating polynomial of f1, · · · , fm.

First, we prove that it is an F-irreducible polynomial. If it is reducible, it is the product

of two polynomials with smaller degree. Let us assume,

A(y1, · · · , ym) = A1(y1, · · · , ym) ·A2(y1, · · · , ym) (6.2)
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Now, as A(f1, · · · , fm) = 0, either A1(f1, · · · , fm) = 0 or A2(f1, · · · , fm) = 0. In both

the cases, we get an annihilating polynomial of smaller degree, this contradicts the

assumption that A was the minimal degree annihilating polynomial of f1, · · · .fm.

Now, the uniqueness of the minimal irreducible annihilating polynomial can be proved

using resultant. Let B(y1, · · · , ym) be another irreducible annihilating polynomial of

f1, · · · .fm. We have to prove that A = c · B for some field constant c. Since no

proper subset of f1, · · · , fm are algebraically dependent, f2, · · · , fm are algebraically

independent. So, both A and B has y1. Now, let

p(y2, · · · , ym) = RESULTANTy1(A(y1, · · · , ym), B(y1, · · · , ym)). (6.3)

We use y to denote y1, . . . , ym.

From a standard property of resultant, we can find A′(y) and B′(y) such that

p(y2, · · · , ym) = A′(y) ·A(y) + B′(y) ·B(y). (6.4)

Plugging in f1, · · · , fm in place of y1, · · · , ym, we get

p(f2, · · · , fm) = A′(f1, · · · , fm) ·A(f1, · · · , fm) + B′(f1, · · · , fm) ·B(f1, · · · , fm). (6.5)

This implies p(f2, · · · , fm) = 0. But as f2, · · · , fm are algebraically independent,

p must be zero.

now, resultant of A and B is zero implies that they share a common factor. But A

is irreducible as already established. Hence A = c ·B.

Lemma 6.7. If A is the minimal annihilating polynomial of f1(x1, x2) and f2(x1, x2)

over a field k, then A is also the minimal annihilating polynomial(up to a constant

multiple) of the non-constant polynomials f1(x1, c) and f2(x1, c) obtained after fixing

x2 = c ∈ k(x1).
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Proof. Let us call B the minimal annihilating polynomial of f1(x1.c) and f2(x, c). Now

by using the above Lemma 6.6, the set of annihilating polynomials of f1(x, c) and f2(x, c)

form a principal ideal U generated by B. Now since A(f1(x1, x2), f2(x1, x2)) = 0, we

also have A(f1(x, c), f2(x, c)) = 0. Thus A ⊂ U implying that B divides A. But A is

irreducible, hence A = α ·B, where α is a field constant.

Lemma 6.8. Let f1 = g1(h) and f2 = g2(h) be two algebraically dependent bivariate

polynomials over a field k. Then minimal annihilating polynomial of f1 and f2 is same

as the minimal annihilating polynomial of g1(t) and g2(t) (up to a constant multiple).

Proof. Let us call A the minimal annihilating polynomial of g1(t) and g2(t) and B the

minimal annihilating polynomial of f1 and f2. Now since A(g1(t), g2(t)) = 0 and t is

an indeterminate, replacing it with any element h ∈ k(X) preserves the dependence.

Hence A(g1(h), g2(h)) = A(f1, f2) = 0. Thus A annihilates f1 and f2. Now invoking the

irreducibility on A and B, we get the desired result.

Proof Idea of Theorem 6.2:

1. Theorem 6.1 relates the problem of algebraic dependence of two polynomials to the

problem of polynomial decomposition. It asserts the existence of g1, g2 and h for the

dependent polynomials f1 and f2.

2. Lemma 6.6 implies that it suffices to work with g1 and g2 for studying the annihilating

polynomial of f1 and f2.

3. Theorem 6.4 suggests degree bounds on g1 and g2 in terms of the sparsity of f1 and f2

when h is univariate. Lemma 6.5 implies that annihilating polynomial does not change

if we fix one of the variables in h(x, y) to a constant to get a univariate h.

4. Invoke Perron’s bound to get a degree bound on the annihilating polynomial.

Proof. If f and g are algebraically dependent, then by a Corollary to the Extended

Lüroth’s theorem (Theorem 5.4), we get that there exists an h ∈ Q[x, y] such that

f1 = g1(h) and f2 = g2(h). Now by Lemma 6.6, to get a degree bound on the minimal

annihilating polynomial of f1 and f2, getting the degree bounds of g1 and g2 would be

sufficient.
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We fix one of the variables to get two univariate non-constant polynomials f ′
1

and f ′
2 which gives the decomposition f ′

1 = g1(h
′) and f ′

2 = g2(h
′) where h′ is just the

evaluated h obtained by fixing the variable. Indeed Lemma 6.5 guarantees that the

above operation preserves the minimal annihilating polynomial.

We are now set to apply Theorem 6.4 on univariates f ′
1 and f ′

2. Note that in

Theorem 6.4, we get the bound only if h is not of the form axm + b. Hence, in the

bivariate case, we get the bound in the cases in which we can fix one of the variables in

a way that the evaluated h is not of the above form i.e. we get the bounds in the cases

when h′ 6= axm + b or h′ 6= aym + b; a, b ∈ Q.

Case 1: Sparsity of h(x, y) − h(0, 0) ≥ 3.

Clearly in this case, at least one of the variable will have distinct non-zero exponents in

two distinct monomials, allowing us to set the other variable to a field constant α such

that h′ is not of the form axm + b.

Case 2: h(x, y) − h(0, 0) is a binomial.

Again if one of the variables will have distinct non-zero exponents in two distinct mono-

mials, we can easily get the bound. This leaves us with two interesting cases - when

h(x, y)−h(0, 0) is either of the form (i) axmyn + bxm or (ii) axm + byn. In (i), we plugin

y = x and in (ii), we plugin y = x (if m 6= n), or y = x2 (if m = n), to get an h′ not of

the form axm + b.

Case 3: h(x, y)−h(0, 0) is a monomial axmyn. Here, we cannot apply the theorem.

Thus in the cases (1) and (2), we can apply the Theorem to get the desired bound on

g1 and g2. i.e. deg(g1) ≤ t1(2t1 + 1) and deg(g2) ≤ t2(2t2 + 1).

Applying Perron’s bound on g1 and g2, we get deg(A) ≤ deg(g1)· deg(g2) ≤ 5t2.
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6.4 Independence Testing Algorithm:

ALGORITHM 1:

Input : 2 supersparse polynomials f1, f2 ∈ Q[x, y],
ℓi := number of non-zero terms in fi; ℓ := max(ℓ1, ℓ2).
Output : One of the three:
- dependent; (their annihilating polynomial) A(y1, y2).
- dependent; (their decomposition) f1 = g1(h) and f2 = g2(h).
- independent.

Step 1 (Checking for linear dependence):
- if (k1f1 + k2f2 + k3 = 0, for some k1, k2, k3 ∈ Q)

output “dependent”.
- else, proceed to Step 2.

Step 2 (Checking for decomposition into a monomial):
gcdi := GCD of the exponent vectors of the monomials in fi(x, y) − fi(0, 0).
- if (gcd1 exists && gcd2 exists && gcd(gcd1, gcd2) exists)

let (m,n) := gcd(gcd1, gcd2), then h = xmyn;
compute the decompositions f1 = g1(h) and f2 = g2(h);
output “dependent”; output h, g1, g2.

- else, if (gcd1 does not exist && gcd2 does not exist)
proceed to Step 3.

- else, output “independent”.
Step 3 (Finding the Annihilating Polynomial):

- if (A(y1, y2) exists such that A(f1, f2) = 0, deg(A)≤ 5ℓ2)
output “dependent”; output A(y1, y2).

- else, output “independent”.

6.4.1 Proof of Correctness

Proof. Here we have two cases

Case 1: At least one of f1 and f2 is indecomposable.

In this case, there will be no Lüroth generator for f1 and f2. So, f1 and f2 are alge-

braically independent.

Indeed if any of f1 and f2 is indecomposable, no corresponding GCD exists in Step 1,

and the algorithm outputs f1 and f2 as algebraically independent polynomials.

Case 2: f1 and f2 are both decomposable. There are three cases:

2 (a). Exactly one of f1 and f2 decomposes as fi = gi(x
myn).

By Lüroth’s theorem, f1 and f2 will be algebraically independent. Indeed if one of the
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polynomials does not decompose as gi(x
myn), no corresponding GCD exists in Step 1

and the algorithm outputs f1 and f2 as algebraically independent polynomials.

2 (b). Both f1 and f2 decompose as fi = gi(x
m
i yni ).

If gcd of ((m1, n1), (m2, n2)) exists and is equal to xmyn, then f1 = g′1(h) and f2 = g′2(h),

where h = xmyn which implies by Lüroth’s theorem that f1 and f2 are dependent. Step

2 of the algorithm asserts that the algorithm outputs the same.

2 (c). Neither of f1 and f2 decompose as fi = gi(x
myn).

By Theorem 6.3, when they are dependent, the minimal annihilating polynomial will

have a degree ≤ 5l2. Step 3 of the algorithm searches for an annihilating polynomial of

degree ≤ 5l2 and outputs it if one exists. Also, clearly it will not find the annihilating

polynomial if f1 and f2 are independent.

Note that the algorithm use the following three subroutines:

1) Finding the GCD of the exponent vectors of the monomials of a given polynomial.

ii) Finding decomposition in Step 2.

iii) Finding the annihilating polynomial with a given degree bound.

We conjecture that Theorem 6.2 and the above algorithm works for polynomials

over fields of positive characteristic as well. However, to prove it, one needs to generalize

Theorem 6.4 to fields of positive characteristic as well..

6.5 Homogeneous Polynomials

We use Lemma 6.6 to give an alternative proof to a known result on homogeneous

polynomials. Most of the references (for example, see [Mit13]) use Lüroth’s theorem to

prove it.

Theorem 6.9. Let f, g ∈ F[x, y] be two non-constant homogeneous polynomials of degree

at most δ ≥ 1. Then f, g are algebraically dependent over F if and only if fm = c.gn for

some field constant c.

Proof. We have:

f = α1x
a1yb1 + · · · + αnx

anybn (6.6)
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with a being the total degree of each monomial; and

g = β1x
c1yd1 + · · · + βmxcmydm (6.7)

with c being the total degree of each monomial.

Now, we apply the map x 7→ x and y 7→ kx where k is chosen such that the polynomials

do not vanish. So, the polynomials get transformed to:

f ′ = (
n
∑

i=1

αik
bi)xa (6.8)

g′ = (
m
∑

i=1

βik
di)xc. (6.9)

The annihilating polynomial of f ′ and g′ is clearly of the form (f ′)c = α(g′)a. Now, as

a consequence of Lemma 6.6, f and g too will have the same annihilating polynomial.



Chapter 7

Higher Derivatives

In Chapter 3, we saw that checking linear independence of the first order derivatives

of the input polynomials is not sufficient to test their algebraic independence over Fp.

Naturally, one could ask whether higher derivatives come to rescue in such cases. In

this chapter, we give a higher derivatives based method which gives a criterion relating

algebraic independence of polynomials to linear independence of their derivatives, similar

to the Jacobian criterion. The operators we use are inspired by the Hasse-Schmidt

derivatives which over positive characteristic are well behaved relative to the usual higher

derivatives (see [Tra98]). With our proof technique, we first show the correctness of the

Jacobian Criterion for separable extensions F2(x, y)/F2(f, g) in 7.2.1. Finally, using

the operator defined in 7.1.1, we give an efficient independence testing criterion for the

extensions of inseparable degree 2 over F2 in 7.2.2.

7.1 Preliminaries

7.1.1 Separability

We first give some basic definitions and properties of separable and inseparable exten-

sions. For the proofs, one can refer to any standard textbook on field theory, for example:

[Nag77].

56
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Definition 7.1. (Separable Polynomial). A nonzero polynomial f(X) ∈ F[X] is called

separable when it has distinct roots in the algebraic closure of F. That is, each root of

f(X) has multiplicity 1. If f(X) has a multiple root then f(X) is called inseparable.

Example 7.1. In C[X], the polynomial X2 − 4X is separable, since its roots are 0 and

4. In F3[X], the polynomial X3 − 2 is inseparable since X3 − 2 = X3 + 1 = (X + 1)3,

implying that it has a multiple root at X = 1.

Definition 7.2. (Separable Element). An element α, algebraic over F is called separable

over F if its minimal polynomial in F[X] is separable.

Theorem 7.3. For any field F, an irreducible polynomial in F[X] is separable if and

only if it has a non-zero derivative.

Corollary 7.4. Every irreducible polynomial in F[X] is separable, when F has char-

acteristic 0, whereas for F with characteristic p, an irreducible polynomial in F[X] is

separable if and only if it is not a polynomial in Xp.

Definition 7.5. (Separable Extension). A finite extension E/F is called separable if

every element of E is separable over F. When E/F is not separable, it is called inseparable.

More generally, a finite extension E/F is separable if it has a transcendence basis

B ⊂ E such that the finite extension E/F(B) is separable.

Theorem 7.6. Let E/F be a finite extension and write E = F(α1, . . . , αr). Then, E/F

is separable if and only if each αi is separable over F.

Proposition 7.7. For a field F of zero characteristic, the field extension F(x, y)/F(f, g)

is always separable for algebraically independent polynomials f, g ∈ F[x, y].

Proof. We can write F(x, y) as F(f, g, x, y) or F(f, g)(x, y) since F(f, g) ⊆ F(x, y).

Now both x and y are algebraic over F(f, g) since f and g are algebraically independent.

Also by the definition, minimality implies irreducibilty as well. So the minimal anni-

hilating polynomials of x and y over F(f, g) would be irreducible and hence separable

(by Corollary 7.4). Thus, both x and y are separable over F(f, g). Finally, applying

Theorem 7.6 on F(f, g)(x, y) gives the desired result.
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More generally, it is true that every algebraic extension of a field of zero charac-

teristic is separable.

Definition 7.8. (Inseparable degree) For an inseparable extension E/F, it is defined as

the minimum d such that for every element α ∈ E, αd is separable over F.

Proposition 7.9. Over fields of characteristic p, the inseparable degree d of a field

extension E/F is always of the form pn for some n. We call n the inseparable index of

the extension.

7.1.2 The Operator H2

We define the operators we would be using as

H1(f) := df =
∂f

∂x
(dx) +

∂f

∂y
(dy), and (7.1)

H2(f) :=
1

2!

∂2f

∂x2
(dx)2 +

1

2!

∂2f

∂y2
(dy)2 +

∂2f

∂x∂y
(dx · dy). (7.2)

We now define our main operator H2 as:

H2(f) := H1(f) + H2(f). (7.3)

Proposition 7.10. H2(f) = 0 if and only if f ∈ F2[x
4, y4].

Proof. Clearly if f ∈ F2[x
4, y4], by (7.1), we get H1(f) = 0 and (7.2) gives H2(f) = 0.

So, we have H2(f) = 0.

For the converse, note that H2(f) = 0 implies that H2(f) = 0 which gives

1

2!

∂2f

∂x2
=

1

2!

∂2f

∂y2
=

∂2f

∂x∂y
= 0. (7.4)

1
2!

∂2f
∂x2 = 0 implies that every monomial in f has the exponent of x of the form 4k or

4k + 1. Similarly, for y, we get that every monomial in f has the exponent of y of the

form 4k or 4k + 1. However, ∂2f
∂x∂y = 0 implies that f ∈ F2[x

2, y2]. The three conditions,

together give that f ∈ F2[x
4, y4].
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The Product Rule:

It is easy to verify that the following product rules hold:

H1(fg) = fH1(g) + gH1(f). (7.5)

H2(fg) = fH2(g) + gH2(f) + H1(f)H1(g). (7.6)

H2(fg) = H1(fg) + H2(fg) = fH2(g) + gH2(f) + H1(f)H1(g). (7.7)

Over F2, one can also verify the following:

H2(f
i) = if i−1H2(f) +

i(i− 1)

2
f i−2(H1(f))2. (7.8)

7.2 Main Results

We give an efficient criterion to test algebraic independence of two polynomials over

F2 when the inseparable degree of the field extension [F(x, y) : F(f, g)]insep = 2 i.e the

inseparable index is 1.

As a warm up, we give the proof that the Jacobian criterion works when the field

extension F2(x, y)/F2(f, g) is separable.

7.2.1 Separable Extension: Jacobian Criterion

Theorem 7.11. Let f, g ∈ F2[x, y] be such, that the extension F2(f, g)/F2(x, y) is sep-

arable. Then f and g are algebraically dependent if and only if H1(f) ∧H1(g) = 0.

Proof. ⇒ If f and g are algebraically dependent, then there exists a minimal A ∈

F2[y1, y2] such that A(f, g) = 0 =
∑

j,k αj,kf
jgk = 0. Applying H1 on the equation gives

d(A(f, g)) =
∑

j,k

αj,kf
j · kgk−1d(g) +

∑

j,k

αj,kg
k · jf j−1d(f) = 0. (7.9)

Now because of the minimality of A, we
∑

j,k αj,kf
j ·kgk−1 cannot be zero unless all the

k’s are even. But all the k’s and j’s cannot be both simultaneously even, else A becomes
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a square contradicting the minimality. So, coefficient of at least one of H1(f) and H1(g)

is non-zero in the above equation. So, H1(f) and H1(g) are linearly dependent over

F2(x, y). We define U as the subspace generated by F(x, y){H1(f), H1(g)} over F(x, y).

Thus we have rank {U} < 2 i.e. H1(f) ∧H1(g) = 0. Degenerate cases also satisfy this

since when one or both of H1(f), H1(g) is/are zero, we trivially get rank{U} to be 1 and

0 respectively.

⇐ Let us say f and g are algebraically independent. Now, separability of the exten-

sion F2(x, y)/F2(f, g) implies that there exist minimal, separable A1, A2 ∈ F2[y1, y2, y3]

such that A1(x, f, g) = 0 and A2(y, f, g) = 0 satisfying ∂y1A1, ∂y1A2 6= 0 We start with

the equation

A1(x, f, g) =
∑

i,j,k

αi,j,kx
if jgk = 0. (7.10)

We apply the operator H1 as defined above on this equation to obtain

d(A1(x, f, g)) =
∑

i,j,k

αi,j,k · ixi−1 · dx · f jgk +
∑

i,j,k

αi,j,kx
i · d(f jgk) = 0. (7.11)

Note that separability implies the presence of atleast one odd i in A1. So, we have

atleast one non-zero term
∑

i,j,k αi,j,k · ixi−1 · dx · f jgk. Now the overall sum too cannot

be zero because of the minimality of A1. Using this observation and the product rule

on H1(f
jgk) = f j · kgk−1H1(g) + gk · jf j−1H1(f), we deduce that

dx ∈ U . (7.12)

Similar operation on A2 gives

dy ∈ U . (7.13)

So, we have two linearly independent elements dx, dy ∈ U . So rank {U} = 2 i.e. H1(f)∧

H1(g) 6= 0.

Now, we see a lemma which establishes that the failure of the Jacobian criterion

is directly related to the inseparable nature of the field extension Fp(f, g)/Fp(x, y).
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Lemma 7.12. For algebraically independent polynomials f, g ∈ Fp[x, y], the Jacobian

criterion fails if the field extension Fp(x, y)/Fp(f, g) is inseparable.

Proof. Since f and g are algebraically independent, the extension Fp(x, y)/Fp(f, g) is

algebraic. So, there exist minimal polynomials for both x, y over Fp(f, g). Let us call

them A1 and A2 respectively. Now, if the extension Fp(x, y)/Fp(f, g) is inseparable, by

Theorem 7.6 at least one of x and y is inseparable over Fp(f, g). Let us assume that x is

inseparable over Fp(f, g). Then by Corollary 7.4, the minimal annihilating polynomial,

A1 of x over Fp(f, g) is a polynomial in xp. Thus, we have

A1(x) =
∑

αi(f, g)(xp)i =
∑

αi,j,k(xp)if jgk = 0 (7.14)

where αi(f, g) ∈ Fp(f, g), and αi,j,k ∈ Fp.

Applying H1 on the above equation, we get

d(
∑

αi,j,k(xp)if jgk) =
∑

αi,j,k(xp)i · d(f jgk) = 0. (7.15)

This is similar to 7.9. By the arguments similar to the ones used there, we get H1(f) ∧

H1(g) = 0 i.e. df ∧ dg = 0 Thus, the Jacobian criterion fails.

We now use the operator H2 to give a criterion which works in the inseparable

index 1 case over F2. ‘

7.2.2 Inseparable extension: inseparable index 1

Using Definition 7.8 and Proposition 7.9, we call the extension F2(f, g)/F2(x, y) to be of

inseparable index 1 when the extension F2(f, g)/F2(x, y) is inseparable but the extension

F2(f, g)/F2(x
2, y2) is a separable one.

Theorem 7.13. Let f, g ∈ F2[x, y] such that the extension F2(f, g)/F2(x, y) has insepa-

rable index 1. Further let U be the subspace generated by {H2(f),H2(g), H1(f)2, H1(g)2}

over F2(x, y). Then f and g are algebraically dependent if and only if rank{U} <

min(r, 3) where r := # non-zero elements in {H2(f),H2(g), H1(f)2, H1(g)2}.
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Proof. ⇒ f and g are algebraically dependent:

If f and g are algebraically dependent, then there exists a minimal A such that A(f, g) =

0. We first apply H1 on the equation as in the previous theorem to get the same equation

as (7.9) i.e.

H1(A(f, g)) = (
∑

j,k

αj,kg
k · jf j−1) ·H1(f) + (

∑

j,k

αj,kf
j · kgk−1) ·H1(g) = 0. (7.16)

We now apply the H2 operator on the above equation to get

∑

j,k

αj,kH2(f
jgk) = 0. (7.17)

Applying the product rule, we get

∑

j,k

αj,k(f jH2(g
k) + gkH2(f

j) + H1(f
j) ·H1(g

k)) = 0. (7.18)

which because of (7.7), becomes

∑

j,k

αj,kg
k(jf j−1H2(f) +

j(j − 1)

2
f j−2(H1(f))2)+

∑

j,k

αj,kf
j(kgk−1H2(g) +

k(k − 1)

2
gk−2(H1(g))2)+

∑

j,k

αj,kjf
j−1kgk−1H1(f)H1(g) = 0 or,

(7.19)

(
∑

j,k

αj,kjg
kf j−1) · H2(f) + (

∑

j,k

αj,k
j(j − 1)

2
f j−2gk) · (H1(f))2)+

(
∑

j,k

αj,kkf
jgk−1) · H2(g) + (

∑

j,k

αj,k
k(k − 1)

2
gk−2f j) · (H1(g))2)+

(
∑

j,k

αj,kjkf
j−1gk−1) ·H1(f)H1(g) = 0.

(7.20)

CASE 1: r = 4.

We observe that (7.12) implies linear dependence of H1(f)2, H1(g)2 and H1(f)H1(g).

This reduces the basis of U to {H2(f),H2(g), H1(f)2} and hence its rank 3. Further,

note that coefficients of H2(g) and H2(f) in (7.20) cannot be both simultaneously zero as

it contradicts the minimality of A. Thus (7.20) necessarily offers a non-trivial dependence
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among the remaining basis elements of U and we eventually get rank{U} ≤ 2.

CASE 2: r = 3.

Since by definition, zeroness of H2(f) also implies zeroness of H1(f), r = 3 corresponds

to the case when exactly one of H1(f), H1(g) is zero. Let us say H1(g) = 0. Again

we are remained with three basis elements in U i.e. {H2(f),H2(g), H1(f)2}. Now as

argued in the previous case, (7.20) offers a non-trivial dependence among these, and we

get rank{U} ≤ 2.

CASE 3: r = 2.

Here we have two cases:

Case 3a: H1(f) = H1(g) = 0.

The basis elements of U get reduced to {H2(f),H2(g)}. Now (7.18) implies rank{U} = 1.

Case 3b: H2(g) = H1(g) = 0 or the same case with f having the vanishing derivatives:

H2(g) = 0 implies that g is a fourth power. Thus Proposition 7.14 implies that we are

no more in the case of inseparable index 1.

⇐ f and g are algebraically independent:

inseparable index 1 implies that there exist minimal, separable A1, A2 ∈ F2[y1, y2, y3]

such that A1(x
2, f, g) = A2(y

2, f, g) = 0. We apply the operator H2 on A1 to get

H2(A(x2, f, g)) =
∑

i,j,k

H2(αi,j,kx
2if jgk) = 0. (7.21)

The product rule of H2 gives

∑

i,j,k

αi,j,k(f jgk · H2(x
2i) + x2iH2(f

jgk) + H1(x
2i)H1(f

jgk)) = 0. (7.22)

Now H1(x
2i) = 0 and H2(x

2i) = i(2i − 1)x2i−1(dx)2. Using these, the above equation

becomes
∑

i,j,k

i(2i− 1)x2i−2f jgk(dx)2 +
∑

i,j,k

αi,j,kx
2iH2(f

jgk) = 0. (7.23)

Now we use the similar argument as in the case of previous theorem i.e. inseparable

index 1 implies the presence of atleast one odd i in A1. So, we have atleast one non-zero

term
∑

i,j,k i(2i − 1)x2i−2f jgk. Now the overall sum too cannot be zero because of the

minimality of A1. Using this observation and the product rule on H2(f
jgk) as given by
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(7.18) and (7.19), we deduce that

(dx)2 ∈ U . (7.24)

Similar operation on A2 gives

(dy)2 ∈ U . (7.25)

So we have rank{U} ≥ 2.

So for r = 2, independence implies rank{U} = 2.

Note that from the definition, it follows that H2(f),H2(g), H1(f)2, H1(g)2 can all be

written as linear combinations of dx, dy, (dx)2, (dy)2, (dx · dy) over F2(x, y). Now given

that (dx)2, (dy)2 are already in {U}, a non-zero coefficient corresponding to dx, dy or

(dx · dy) in the expansion of any of H2(f),H2(g), H1(f)2, H1(g)2 gives rank{U} = 3.

Thus independence implies rank{U} = 3 for r = 3 and r = 4 case. Observe that zero

coefficients corresponding to each of dx, dy or (dx · dy) imply H1(f) = H1(g) = 0, i.e.

r = 2 case.

Proposition 7.14. If one or both of H2(f),H2(g) is zero, then the inseparable index of

the extension F2(x, y)/F2(f, g) > 1.

Proof. For the sake of contradiction, let us assume that the inseparable index of the

extension F2(x, y)/F2(f, g) ≤ 1. Thus, the minimal polynomials of x2 and y2 over

F2(f, g) must be separable. So, we also have separable polynomials A1, A2 ∈ F2[y1, y2, y3]

such that A1(x
2, f, g) = A2(y

2, f, g) = 0. Also, let us assume that H2(f) = 0.

Now, we first apply H2(f) on the evaluated A1 to get (using 7.23 and 7.20) that

(dx)2 lives in the span of {H2(f),H2(g), (H1(f))2, (H1(g))2}. But since H2(f) = 0, we

get that (dx)2 lives in the span of {H2(g), (H1(g))2}. Recalling that H2(g) = H1(g) +

H2(g), and that (H1(g))2 does not have any first order (dx, dy) term, we get that H1(g) =

0. So, we get that (dx)2 lives in the span of H2(g).

Similar operations on A2 gives that (dy)2 also lives in the span of H2(g). But

both (dx)2 and (dy)2 cannot be spanned by a single element H2(g). Thus, we arrive at

a contradiction.
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Conclusions and Future

Directions

8.1 Summary/Conclusion

We pursue four major approaches to find an algorithm to test algebraic independence

of polynomials over finite fields.

• First is correcting the Jacobian by applying faithful transformations on the poly-

nomials. This approach could provide efficient algorithms in some special cases.

However stronger techniques are required to generalize it to solve more cases.

• Second approach is lifting the polynomials to increase the p-adic valuation of the

Jacobian. This offers a new criterion for testing independence. It is not very clear

if whether it also gives an efficient algorithm since their is limited work done on

finding rational function solutions to differential equations.

• The third approach uses Lüroth’s theorem to relate the problem of algebraic inde-

pendence to the problem of polynomial decomposition. We have shown using the

results on sparse polynomial decomposition that this connection helps in resolv-

ing algebraic independence for supersparse case. The result obtained is for fields

65
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of zero characteristic which we believe can also be extended to fields of positive

characteristic.

• The fourth approach is to come up with a higher-derivatives based Jacobian like

criterion. We give a randomised polynomial time algorithm problem of testing

algebraic independence of two circuits over Fp with inseparable degree 2.

8.2 Future Directions

Based on our work, we propose the following directions of work to pursue in order to

get efficient algorithms for testing algebraic independence over fields of positive charac-

teristic:

• Generalizing the algorithm for two binomials to two trinomials and beyond.

• Generalizing the algorithm for two sum of univariates to constantly many sum of

univariates.

• Exploring algorithms to test the existence of rational function solution to differ-

ential equations modulo a prime or over rationals. Solving special cases would

resolve special cases of algebraic independence as well.

• Extending Zannier’s degree bound result on sparse decomposition over fields of

zero characteristic to fields of positive characteristic as well.

• Extending the Higher Derivatives based algorithm to get a randomized polynomial

time algorithm for n arithmetic circuits.



Bibliography

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Sax-

ena. Jacobian hits circuits: Hitting-sets, lower bounds for depth-D occur-k

formulas & depth-3 transcendence degree-k circuits. In Proceedings of the

forty-fourth annual ACM symposium on Theory of computing, pages 599–

614. ACM, 2012.

[Ax71] James Ax. On Schanuel’s conjectures. Annals of Mathematics, 93(2):pp.

252–268, 1971.

[BCW05] Moulay A. Barkatou, Thomas Cluzeau, and Jacques-Arthur Weil. Factoring

partial differential systems in positive characteristic, pages 213–238. Trends

in Mathematics. Birkhäuser Basel, 2005.
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Complexity, 26(4):344–363, 2010.

67



Bibliography 68

[DF93] E Delaleau and M Fliess. An algebraic interpretation of the structure al-

gorithm with an application to feedback decoupling. In IFAC SYMPOSIA

SERIES, pages 179–179. PERGAMON PRESS, 1993.

[DGW09] Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extrac-

tors for polynomial sources. Computational Complexity, 18(1):1–58, 2009.

[Duv10] D. Duverney. Number theory: An elementary introduction through Diophan-

tine problems. Monographs in number theory. World Scientific, 2010.

[Dvi12] Zeev Dvir. Extractors for varieties. computational complexity, 21(4):515–

572, 2012.

[For92] Krister Forsman. Two themes in commutative algebra: Algebraic depen-

dence and Kähler differentials. 1992.

[Gel34] A. Gelfond. Sur le septième problème de Hilbert. Bull. Acad. Sci. URSS,

1934(4):623–630, 1934.

[Her74] Charles Hermite. Sur la fonction exponentielle. 1874.

[Kal85] KA Kalorkoti. A lower bound for the formula size of rational functions.

SIAM Journal on Computing, 14(3):678–687, 1985.

[Kal88] Erich Kaltofen. Greatest common divisors of polynomials given by straight-

line programs. J. ACM, 35:231–264, 1988.

[Kay09] Neeraj Kayal. The complexity of the annihilating polynomial. In Computa-

tional Complexity, 2009. CCC’09. 24th Annual IEEE Conference on, pages

184–193. IEEE, 2009.

[KK05] Erich Kaltofen and Pascal Koiran. On the complexity of factoring bivariate

supersparse (lacunary) polynomials. In Proceedings of the 2005 International

Symposium on Symbolic and Algebraic Computation, ISSAC ’05, pages 208–

215, New York, NY, USA, 2005. ACM.

[KR08] Martin Kreuzer and Lorenzo Robbiano. Computational commutative algebra

1. Springer Publishing Company, Incorporated, 2008.



Bibliography 69
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Reine und angewandte Mathematik. de Gruyter, 1927.

[Per32] Oskar Perron. Algebra: Die grundlagen, volume 8. 1932.



Bibliography 70

[P lo05] Arkadiusz P loski. Algebraic dependence of polynomials after O. Perron

and some applications. Computational Commutative and Non-Commutative

Algebraic Geometry, pages 167–173, 2005.

[Rot55] K. F. Roth. Rational approximations to algebraic numbers. Mathematika,

2:1–20, 6 1955.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. 2009.

[Sch34] Theodor Schneider. Transzendenzuntersuchungen periodischer Funktionen.
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