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Chapter 1

Introduction

1.1 The Problem

The concept of algebraic independence is a natural generalization of the familiar notion of linear

dependence. More formally,

Definition 1.1.

A subset S of a field L is algebraically dependent over a subfield K if the elements of S satisfy a

non-trivial polynomial equation with coefficients in K. ♦

A few concrete examples are :

• Algebraic/Transcendental Numbers : L = C ,K = Q, S = {α}

• Polynomials : L = F(x1, · · · , xn), K = F, S = {f1, · · · , fn}

The problem of testing algebraic independence is then,

Given a set of polynomials {f1, · · · , fn} determine if they are algebraically dependent i.e does there

∃ A ∈ F[y1, · · · , yn] such that A(f1, · · · , fn) = 0. ( A is called its annihilating polynomial ).

Examples

1. The set f = {x1, x2, · · · , xk} is always algebraically independent.

2. Algebraic dependence depends on the underlying field, {x1 +x2, x
p
1 +xp2} is independent over

Q but is dependent over Fp with y2 − yp1 as the annihilating polynomial.

1.2 Motivation

It’s a natural algebraic question connections to many fields of mathematics like Algebraic Geometry,

dimension theory, field theory etc. It has also many applications in theoretical computer science
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especially in arithmetic circuit complexity. A few classical ones are

• Schönhage’s simplified proof of Strassen’s lower bounds [Sch76]

• Kalorkoti’s lower bounds on determinant computation [Kal82].

• More recently, Dvir, Gabizon and Wigderson’s construction of explicit rank extractors used

the idea of algebraic independence [DGW09]

• Beecken, Mittmann, Saxena defined a notion of rank for arithmetic circuits and gave its

applications to the long-standing problem of Polynomial Identity Testing [BMS11].

1.3 Preliminary Definitions

Before we begin our exploration let us first define a few important terms.

Definition 1.2 (Minimal Polynomial). If L/K, then α ∈ L is said to be algebraic over K if

∃ f ∈ K[x] such that f(α) = 0. Of all such fs, the one with the lowest degree is called the minimal

polynomial of α. ♦

Definition 1.3 (Transcendence degree). The transcendence degree of a set of polynomials f =

{f1, · · · , fn} fi ∈ F[x] is the size of its maximal subset that is algebraically independent. ♦

Definition 1.4 (Separable Polynomial). A polynomial f ∈ F[x] is separable if f has no repeated

roots in its splitting field (i.e the smallest field extension over F containing all its roots) . ♦

Definition 1.5 (Inseparable degree). The inseparable degree of a set of polynomials f = {f1, · · · , fn}
fi ∈ F[x] (i.e of the field extension F(x)/F(f) ) is the least integer d such that the minimal polyno-

mial of xdi is separable ∀i ∈ [n]. ♦

Definition 1.6 (Separating Transcendence Basis). A subset g ⊂ f = {f1, · · · , fn} fi ∈ F[x] is a

separating transcendence basis if there exists a exists a separable annihilating polynomial of ð ∪
{fi} ∀i ∈ [n]. ♦
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Chapter 2

Previous Work

2.1 Computability

It is not evident from the problem statement that the problem is even computable. Oskar Perron

in 1927 gave a degree bound for the annihilating polynomial which enables computability via a

natural algorithm.

Theorem 2.1 (Perron ’27). Let fi ∈ K[x1, · · · , xn] be a set of n+ 1 non-constant polynomials and

let δi := deg(fi). Then ∃A ∈ K[y1, · · · , yn+1] such that A(f1, · · · , fn+1) = 0 and

deg(A) ≤ δ1 · · · δn+1

min{δ1, · · · , δn+1}
≤ (max{δ1, · · · , δn+1})n

A detailed proof can be found in [Plo05] . Kayal [Kay09] generalized it to sets with arbitrary

number of polynomials over fields of zero characteristic. His result depends on the transcendence

degree and is independent of the number of variables. Mittman [Mit12] generalised Kayals result

to fields of arbitrary characteristic.

2.1.1 The “Brute force” Algorithm

Since, the annihilating polynomial’s degree is bounded we can consider a general equation of the

polynomial

F =
∑

∑
i wi<dn

aw
∏
i

yi
wi , aw ∈ K

Substituting the fis in yis and setting coefficient of each monomial to 0 leads to a system of

linear equations. If no solution exists then the polynomials are independent. But since the degree

(dr) is high, the system is exponential sized and its complexity is in PSPACE. Moreover, Kayal

has showed that this bound is tight and that computing even the constant of the annihilating

polynomial is #P hard [Kay09].
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2.2 Characteristic 0 (or large) fields

The earliest criterion was due to Carl Gustav Jacob Jacobi in 1841 which naturally leads to a

randomized poly-time algorithm.

Theorem 2.2 (Jacobian Criterion). Let fi ∈ K[x] be a set of non-constant polynomials with

deg(fi) < d and let char(K) = 0 or > dr

rkK[x](Jx(f)) = trdeg(f) where Jx(f) = (∂jfi)i,j

in particular, f is algebraically dependent iff its Jacobian is 0.

The reader may refer to [BMS11] for a proof. Using the DeMillo-Lipton-Schwartz-Zippel lemma

[Zip79], we can check whether the det(Jx) = 0 by evaluating it at a random set of points in

polynomial time.

2.3 Witt-Jacobian Criterion

Mittmann, Saxena, Scheilblechner [MSS12] gave the first non-trivial algorithm to test independence.

The idea is to lift the problem to a char 0 field namely, the p-adic field (Ẑp). The algorithm reduced

the complexity from PSPACE to NP#P which is where the problem is currently placed.

2.4 Generalizing the Jacobian

• Pandey, Saxena, Sinhababu (2016) [PSS16] gave a new criterion that relates algebraic depen-

dence to approximate functional dependence

• It identifies the inseparable degree as a crucial parameter and shows that if a set of polynomials

are independent then they can’t be approximately functionally dependent up to any precision

greater than this inseparable degree.

Theorem 2.3. Denote f = {f1, · · · , fn}. If trdeg f = k , then there exist algebraically independent

{g1, · · · , gk} ⊂ f such that for random a ∈ F̄n , there are polynomials hi ∈ F̄[Y1, · · · , Yk] satisfying,

∀ i ∈ [m], f≤ti (x+ a) = h≤ti (g1(x+ a), ..., gk(x+ a))

Theorem 2.4. If f are algebraically independent with inseparable degree pi. Then,

• ∀ 1 ≤ t ≤ pi for random a ∈ F̄n ∃hj ∈ F̄[Y1, · · · , Yn−1], ∀ j ∈ [n], f≤tj (x + a) = h≤tj (f1(x +

a), · · · , fj−1(x+ a), fj+1(x+ a), · · · , fn(x+ a))

• ∀ t > pi for random a ∈ F̄n 6 ∃h, f≤tn (x+ a) = h≤t(f1(x+ a), · · · , fn−1(x+ a))

This gives an algorithm to check if f is algebraically independent by checking approximate

functional dependence upto the inseparable degree

5



Chapter 3

Dimension Reduction

The idea is to map each variable xi to a random polynomial in just one variable t. Clearly this will

lead to an algebraically dependent set of polynomials but we investigate whether the functional

(in)dependence of these one-dimensional polynomials is related to the algebraic (in)dependency of

the original polynomials.

3.1 Notation

The map φi : xi → Fp[t] and denote by φ(f) := f(φ1(x1), · · · , φn(xn)). Also, x̄ is used to succinctly

represent x1, x2, · · · , xn.

3.2 The first approach

The first “natural” idea we had was to map each variable to a random univariate of appropriately

enough high degree. The following observation, however, shows that such a naive dimension re-

duction can’t work. φi(xi) = ai0 + ai1t + ai2t
2 + · · · aiN tN , where aij are random elements ∈ Fp

Theorem 3.1. Given f, g ∈ Fp[t] such that φ(g) has non-zero t coefficient (a1) , then, ∀d, ∃hd
such that f = hd(g) mod < td+1 >

Proof. We will prove it using induction. For d=0, it is trivial as we set h0 = f(0) Assume it

is true ∀d < D, =⇒ f = hD(g) + bDt
D < tD+1 > If bD = 0, we are done. Else, choose

hD+1 = hD − bD
aD1

(g − g(0))D
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3.3 The k-gap

Since it is the coefficient of t that is the cause, we make it 0. We, thus, modify the earlier map

by multiplying it by a tki factor. φi(xi) = tki(aik1 + aik1+1t+ · · · aiki+N tN ), where aij are random

elements ∈ Fp. But before we begin let us prove a simple but necessary lemma that let’s us translate

equations between polynomial rings.

Lemma 3.2. Let g(x̄) = 0 mod < x̄d > , then φ(g(x̄)) = 0 mod < tKd > where K = min ki

where the minimum is over those i such that g 6∈ Fp[x̄ \ xi].

Proof. Given a d degree monomial
∏
xαi
i , φ(

∏
xαi
i ) has the least degree =

∑
αiki where

∑
i αi = d.

Therefore,
∑
αiki ≥ dK . We can easily construct cases where equality occurs and thus this choice

of K is the least that can be chosen in general.

3.3.1 Bivariate Case

We now show that if the original set of polynomials were algebraically dependent, then the reduced

polynomials are functionally dependent.

Theorem 3.3. Given f(x̄) ∃ φi such that φ(f) are algebraically dependent if f are functionally

dependent.

Proof. Using the result from [PSS16], we have that ∃g ⊂ f such that ∀ i, ∃hi the equation

f≤di (x + a) = hi(g1(x + a), · · · , gk(x + a)) holds. From the above lemma, we get, φ(fi) = a +

hi(φ(g1)) mod < tdK > a ∈ Fp, K = mini∈[n]ki

We prove the converse only for the bivariate case.

Theorem 3.4. Given f(x̄) ∃ φi such that φ(f) are algebraically independent if f are functionally

independent.

Proof. Let pi be the inseparable degree.

An equivalent criteria for f being algebraically independent is that each xp
i

j depends on it separably.

Thus we have that,

xp
e

i = Fi(f) mod < xp
e+1 > ∀i ∈ [2]

Applying the φ map,

(aikit
ki + aiki+1t

ki+1 + · · · )pe = Fi(f(φ)) mod < tK(pe+1) >

Assume that φ(f) are functionally dependent thus we can discard one, say f2 from the set and

still have these 2 equations. Thus,
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a1k1t
k1pe + a1k1+1t

(k1+1)pe + · · · =
∑
j

cjφ(f1)j mod < tK(pe+1) >

Least degree (non-zero) of LHS is tp
ek1 and thus least degree of φ(f1) say tl|tpek1 i.e. l|pek1 and

similarly, l|pek2 .

And this clearly gives us the required contradiction as k1, k2 can be chosen to be coprime.

This proof doesn’t generalize because the divisibility criteria holds only for n = 2. It is thus,

not clear whether an efficient reduction in a general case is possible. Such a reduction will however,

lead to a significant improvement in the time complexity of the problem. Thus, we ask the following

question,

Open Problem 3.1

Does there exist a polynomial map φi : xi → F[x1, · · · , xc] ∀i ∈ [n] where c = O(1), such that

for any f ∈ F[x1, · · · , xn] f is algebraically dependent ⇐⇒ φ(f) is ?
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Chapter 4

New Criterion

We now introduce a new criterion that is equivalent to algebraic independence but is in the form

of linear dependence of shifted polynomials modulo the square of the ideal generated by these

polynomials.

4.1 Ideal Shrink

Lemma 4.1. Let fi ∈ < x̄ > ⊂ F[x]. If fn =
∑n−1

i cifi mod < f1, · · · , fn >2, ci ∈ F, then

< f1, · · · , fn >2 = < f1, · · · fn−1 >
2

Proof. Let I =< f1, · · · fn−1 >
2. We will show that each of the generators of < f1, · · · , fn >2 lie in

I. The only non-overlapping generators are {fnfi|i ∈ [n]}. By the hypothesis we have,

fn =
n−1∑
i

cifi + fn(
n−1∑
i

gifi) + f2
nG mod I

fjfn =

n−1∑
i

ci(fifj) + fn

(
n−1∑
i

gi(fifj)

)
+ (fjfn)fnG mod I ∀j ∈ [n− 1]

fjfn = fjf
2
nG mod I

fjfn = fjfn(fnG)k mod I ∀k > 0

⇒ fjfn ∈ I+ < fkn > ∀k > 0

fn =
n−1∑
i

ci(fi) +

(
n−1∑
i

gi(fifn)

)
+ f2

nG mod I

=

n−1∑
i

ci(fi) + f2
nG
′ mod I

⇒ f2
n = f2

n

n−1∑
i

ci(fi) + +f4
nG mod I
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= fknH + +f4
nG mod I

⇒ f2
n ∈ I+ < f4

n >

Continuing this we get that,

⇒ f2
n ∈ I+ < f ln > ∀l > 1

Let l be larger than maxi{deg(f2
i )}. Now since, f2

n =
∑n−1

i=1 f
2
i gi + f lngn we can remove the

dependence by looking at gi mod xdeg(f
2
n) and thus f2

n ∈ I.

4.2 Criterion

We pick a point randomly from Fn say, ᾱ ∈r Fn, and define the constant free shifted polynomial

Hfi = fi(x̄+ ᾱ)− fi(ᾱ).

Theorem 4.2. f1, · · · , fn are algebraically dependent iff ∃ c ∈ Fn \ 0n such that
∑n

i=1 ciHfi ∈
< Hf1, · · · , Hfn >2

F[x] .

Proof. Case 1 f are algebraically dependent.

This part of the proof is very similar to that of theorem 10 in [PSS16].

Let g = {g1, g2, · · · , gk} ⊂ f be its separating transcendence basis. For any i, let g0 := fi, then,

{g0} ∪ g has a minimal separable annihilating polynomial say Ai(y) =
∑

el
aely

el . Now, Ai(g) =∑
el

gel = 0 and replacing x̄ by x̄ + ᾱ where ᾱ is a randomly chosen element of Fn. Writing

gi(x̄+ ᾱ) = Hgi + g(ᾱ) and expanding the entire sum using Taylor’s series, we get,

Ai(g) =
∑
el

ael

k∏
j=0

(Hgj + gj(ᾱ))elj

0 = A(g(ᾱ)) +
k∑
j=0

∂Ai
∂yj

∣∣∣
g(ᾱ)

Hgj mod < Hg0, Hg1, · · · , Hgk >2

0 =
k∑
j=0

cjHgj mod < Hg0, Hg1, · · · , Hgk >2

Now we need to check that c0 6= 0. Since, A is separable A′(ȳ) is not identically 0 defines a

polynomial which has to be non-zero due to the minimality of A and thus ∃ᾱ such c0 = A′(ᾱ) 6= 0.

Case 2 - f are algebraically independent.

Let pe be the inseparable degree. An equivalent criteria for f being algebraically independent is

that each xp
e

j depends on it separably. Thus we have from the above proved statement that,

xp
e

i =
∑n

j=1 cijHfj mod I ∀i ∈ [n] Assume also that the Hfi are F linearly dependent
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mod < Hf1, · · · , Hfn−1 >
2. Thus, via the ideal shrink lemma, we can eliminate one say Hfn from

the equations. We will now reach a contradiction.

xp
e

i =
n−1∑
j=1

cijHfj mod < Hf1, · · · , Hfn >2 ∀i ∈ [n]

We rewrite Hfj = Dj +Hf≥p
e

j where Dj is the part of Hfj with total degree < pe. This gives us

that,

0 =
n−1∑
j=1

cijDj mod < Hf1, · · · , Hfn−1 >
2

=⇒ 0 =

n−1∑
j=1

cijDj mod < D1, · · · , Dn−1 >
2

Let k be the number of linearly independent Dj . Using the ideal shrink lemma, we can shrink

the ideal to < D1, · · · , Dk >. Thus, we have at most n−1−k linearly independent linear relations.

Now without loss of generality, assume that the last n − 1 − k equations are independent. For

i ∈ [1, k + 1], ∃Li(xp
e

i , x
pe

k+2, x
pe

k+3, · · · , x
pe
n ) such that Li = 0 mod < D1, · · ·Dk >

2. Now, let’s

look at the zero set of the ideal generated by the Li, L =< L1, L2, · · ·Ln >.

L ⊂< D1 · · · , Dk >
2

Z(L) ⊃ Z(< D1 · · · , Dk >
2)

Z(L) ⊃ Z(< D1 · · · , Dk >)

dim(Z(L)) ≥ dim(Z(< D1 · · · , Dk >))

Clearly, Z(L) = {(f1(a1, · · · , an−k−1), · · · , fk+1(a1, · · · , an−k−1), a1, · · · an−k−1) |a ∈ Fn−k−1}
and thus, dim (Z(L)) = n − k − 1. That this gives us a contradiction follows from the following

result from dimension theory,

Theorem 4.3 (Krull’s dimension Theorem). Let R be a Noetherian ring and a ⊂ R an ideal

generated by elements a1, · · · , ar. Then ht(p) ≤ r for every minimal prime divisor p of a.

Corollary 4.4 (Exercise 1.9 from [Har77]). Let a = k[x1, · · · , xn] be an ideal which can be generated

by r elements. Then every irreducible component of Z(a) has dimension ≥ n− r.
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Chapter 5

Conclusion and Future Directions

We have thus explored a couple of possible approaches to attacking the problem of algebraic de-

pendence over finite characteristic fields. While the computational utility of such a criteria is not

currently clear it will hopefully provide some geometric insight into the problem. Due to to the

great disparity between the problem’s current known complexity NP#P and the conjectured one

(RP ), there could be numerous successful lines of attack. A few of them could be

• Studying the algorithmic consequences of the criterion and see if it can be harnessed to create

an efficient algorithm.

• Trying to deduce a dimension reduction for the general n-variate case.

• Looking at special cases like supersparse polynomials or n bivariates

• Gaining a better understanding of the relations between the different but associated notions

of algebraic, analytic and functional dependence
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