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Chapter 0

Introduction

In this project, we will discuss the problem of finding all quadratic fields
whose ring of integers are Unique Factorization Domains. Like most of the
problems in Number Theory, this problem was also motivated by the problem
of solving Diophantine equations. Let us see a few examples to see how the
uniqueness of factorization in the ring of integers of quadratic fields can be
helpful in solving Diophantine equations.

Example 0.1. Solving the Diophantine equation y2 = x3 − 2 :

Suppose x3 = y2 + 2 for x, y ∈ Z. If y is even, then x is even i.e. 4 | x3

and 4 | y2, which implies 4 | 2 but this is absurd. Therefore y is odd. We will
later show that the ring of integers of Q(

√
−2) is Z[

√
−2] and this a UFD.

Now in Z[
√
−2] we have,

(y +
√
−2)(y −

√
−2) = x3.

Suppose c+ d
√
−2 is a common divisor of y +

√
−2 and y −

√
−2. Then,

c+ d
√
−2 | (y +

√
−2) + (y −

√
−2) = 2y

and
c+ d

√
−2 | (y +

√
−2)− (y −

√
−2) = 2

√
−2.

Then, taking norm, c2 + 2d2 | 4y2 and c2 + 2d2 | 8 in Z. If c2 + 2d2 - 4, then
c2 + 2d2 | y2 (since gcd(x, y) = 1), i.e. c2 + 2d2 is odd (since, y is odd) but
this implies c2 + 2d2 - 8. Therefore, c2 + 2d2 | 4, that is

c2 + 2d2 = 1, 2 or 4.

If c2 + 2d2 = 1 then d = 0, c = ±1, i.e. c + d
√
−2 is a unit. If c2 + 2d2 = 2

then d = ±1, d = 0, again c + d
√
−2 is a unit. If c2 + 2d2 = 4, then d = 0,
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c = ±2 or d = ±2, c = 0, but then ±2 | y +
√
−2 or ±2

√
−2 | y +

√
−2

but none is possible since y is odd. Therefore, y +
√
−2 and y −

√
−2 are

coprime. Then, since Z[
√
−2] is a UFD, we have

y +
√
−2 = um3 and y −

√
−2 = u−1n3

for some unit u and m,n ∈ Z[
√
−2]. But, u = ±1 which is a cube. This

implies there exist a, b ∈ Z, such that

y +
√
−2 = (a+ b

√
−2)3.

Now, equating coefficients of
√
−2 on both sides we get 1 = b(3a2 − 2b2).

Therefore b = ±1. If b = 1, then 3a2 − 2b2 = 1 implies a = ±1. If b = −1,
then 3a2 − 2b2 = −1 implies 3a2 = 1, but this can not happen. Therefore
we have a = ±1, b = 1. Now, we also have y = a3 − 6ab2, which implies
y = −5, 5 and then x3 = y2 + 2 = 27 implies x = 3. Hence, the solutions of
y2 = x3 − 2 are given by x = 3, y = ±5.

Example 0.2. Solving the Diophantine equation y2 = x3 − 1 :

Let x, y ∈ Z be such that x3 = y2 + 1 = (y + i)(y − i), where i :=
√
−1.

Suppose c+ id is a common divisor of y + i and y− i in the ring Z[i]. Then,

c+ id | (y + i) + (y − i) = 2y

and
c+ id | (y + i)− (y − i) = 2i.

Taking norms we have, c2 + d2 | 4y2 and c2 + d2 | 4. We have three cases:
Case 1: If c2 + d2 = 1, then c = 0, d = ±1 or c = ±1, d = 0. That is,

c+ id is a unit.
Case 2: If c2 + d2 = 2, then c = ±1, d = ±1. Now, if x is even then

y2 ≡ −1 ≡ 3 (mod 4), which is not possible. Therefore x is odd and hence
y is even. Suppose 1 + i | y + i, then y + i = (1 + i)(p + iq) for some
p, q ∈ Z. Then, p − q = y and p + q = 1, which implies y + 1 = 2p but this
is a contradiction, since y is even. Hence we conclude that (1 + i) - (y + i).
Similarly, we can also show that (±1± i) - (y + i).

Case 3: If c2 + d2 = 4, then c = 0, d = ±2 or c = ±2, d = 0. That
is, ±2 | y + i or ±2i | y + i. If y + i = ±2(p + iq) for some p, q ∈ Z, then
±2q = 1, which is impossible. Again, if y + 1 = ±2i(p + iq) then ±2p = 1,
which is also impossible.

Therefore c+ id is a unit. Hence, y+ i and y− i are coprime. Now, using
the fact that Z[i] is a UFD (which we will prove later), we have

y + i = um3 and y − i = u−1n3
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for some unit u and m,n ∈ Z[i]. Now u ∈ {±1,±i} implies that u is a cube
in Z[i]. Therefore, there exist a, b ∈ Z such that

y + i = (a+ ib)3. (∗)

Equating the coefficients of i we have, 1 = b(3a2− b2), which implies b = ±1.
If b = 1, then 3a2 − b2 = 1 implies 3a2 = 2, which is not possible. If b = −1,
then 3a2− b2 = −1 implies a = 0. From (∗) we also have, y = a3−3ab2. This
implies y = 0 and x3 = y2 + 1 = 1 implies x = 1. Hence x = 1, y = 0 is the
only solution of y2 = x3 − 1.

Note that, in the above examples we have used the crucial property
of unique factorization in the rings Z[

√
−2] and Z[

√
−1]. So it is a nat-

ural question to ask whether we can find all quadratic fields whose ring
of integers has the property of unique factorization, so that we can have
similar tools to solve a wide range of Diophantine equations. This prob-
lem is partially solved and partially unsolved. For imaginary quadratic
fields, i.e. quadratic fields Q(

√
d) with d < 0, Gauss showed that if d =

−1,−2,−3,−7,−11,−19,−43,−67,−167, then the ring of integers of Q(
√
d)

is a UFD. Gauss also conjectured that these are the only imaginary quadratic
UFDs, which was proved later by Heegner and Stark. For real quadratic
fields (i.e. for d > 0) this question is still open. It is not even known whether
there are infinitely many quadratic fields (or, even number fields!) whose
ring of integers have unique factorization. Gauss conjectured that there are
infinitely many real quadratic UFDs. Towards this direction of research in
Number Theory, Cohen and Lenstra have given a very promising set of con-
jectures, known as Cohen-Lenstra Heuristics. According these conjectures a
positive fraction of all real quadratic fields will have the property of unique
factorization. There is also a connection between Cohen-Lenstra Heuristics
and integer partition, due to J. Lengler and J. Fulman, which is also quite
interesting. Fulman has given several probability measures on the set of
all partitions which turn out to be equivalent to Cohen-Lenstra probability
measure for p-groups. So, if some natural connection between real quadratic
fields and partitions is found, then that might indicate some way to prove
Cohen-Lenstra Heuristics for real quadratic fields.

Let me give a brief overview of the contents of this project here. In
Chapter 1, we will develop some basic Algebraic Number Theory and prove
that there are at least nine imaginary quadratic fields whose ring of integers
is a UFD. In Chapter 2, we will discuss two main algorithms to compute
class numbers (a quantity that measures uniqueness of factorization) of real
quadratic fields. These are as follows: (i) Reduced Form Algorithm: Here one
reduces every ideal in class group to an equivalent “reduced ideal”. One then
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shows that the set of all reduced ideals is finite and this set can be decomposed
into finitely many cycles (the operator concerned is the ‘reduction operator’).
The number of such cycles gives the class number of the quadratic field.
This number is counted by establishing a connection between “ideals” and
“quadratic forms”. (ii) Using Analytic formula for Class Number : Using this
formula the problem boils down to computing the regulator of the quadratic
field and the value of L(1, χ), where L is the Dirichlet L-function and χ
is the quadratic character. We will study a method, due to Shanks, for
computing the regulator. One defines a new notion of “distance” between
ideals and with respect to this distance length of any cycle of reduced ideals
has length almost equal to the regulator. So the problem of computing the
regulator becomes almost like computing the order of a cyclic group. We
will discuss a method to compute L(1, χ) by approximating a certain infinite
product and we will also establish an identity which shows that L(1, χ) can
be expressed as a finite sum which makes the direct computation of L(1, χ)
possible (although this is not efficient). In Chapter 3, we will discuss Cohen-
Lenstra Heuristics.We show that over the class of all finite abelian p-groups
one can define a probability measure P such that P ({G}) ∝ 1/|Aut(G)|,
where G is a p-group. We also establish that the probability measure P is
a “natural” distribution by showing that this distribution can be obtained
as a limiting distribution of Haar measure which is a generalization of the
so called Lebesgue Measure to topological groups. We show that the above
probability measure P can be extended to a reasonably large σ-algebra over
the class of all finite abelian groups. Using this extension we will show that
the probability that a real quadratic field has class number 1 is approximately
0.75. This will give us a hint that Gauss’s conjecture (that there are infinitely
many real quadratic field of class number one) might be true. Finally we
will discuss the connection between Cohen-Lenstra heuristics and integer
partitions. We will discuss several probability measures on partitions, due to
J. Fulman, which are equivalent to the Cohen-Lenstra probability measure.
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Chapter 1

Imaginary Quadratic Fields

Together with developing basic notions of Algebraic Number Theory, in this
chapter our goal will be to prove that the ring of integers of a quadratic field
Q(
√
d) is a Unique Factorization Domain (UFD) for d = −1,−2,−3,−7,−11,

−19,−43,−67,−163. In fact, this is the complete list of UFD quadratic
fields with d < 0. We will prove this in two major steps. First we will show
that ring of integers of Q(

√
d) is a Euclidean Domain (and hence UFD) for

d = −1,−2,−3,−7,−11. Next we will develop the notion of inverse of an
ideal and class groups to prove the property of UFD for the rest of the values
of d. We will borrow some results from [ST01].

Definition 1.1. A field K is called a Quadratic Field if Q ⊆ K is
an algebraic field extension of degree 2. (In general, a field K is called a
Number Field if Q ⊆ K is a finite algebraic field extension.)

Proposition 1.2. If K is a quadratic field then K = Q(
√
d), for some d ∈ Z

such that d is square-free.

Proof. See [ST01] Proposition 3.1.

Next we define the norm of an element in a quadratic field.

Definition 1.3. Let K = Q(
√
d) be a quadratic field. Then, the norm of

any α := r + s
√
d ∈ K, where r, s ∈ Q, is defined as

N(α) := r2 − ds2.

(In general, for any number field K and any α ∈ K, we define

N(α) :=
n∏
i=1

σi(α),

where σi’s are the distinct embeddings of K in C and n = [K : Q].)
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Definition 1.4. A complex number α is said to be an algebraic integer if
it satisfies some monic polynomial in Z[x].

We will denote the set of all algebraic integers by B. Then B is a subring
of C, see [ST01] Theorem 2.9.

Definition 1.5. The ring of integers OK of any number field K is defined
as

OK := K ∩ B,

which is clearly a subring of K.

Lemma 1.6. Let K be a number field and α ∈ K. Then α ∈ OK if and only
if minimal polynomial of α over Q has integer coefficients.

Proof. If minimal polynomial of α is in Z[x] then clearly α ∈ OK . Conversely
if α ∈ OK then α satisfies some q ∈ Z[x]. Let p ∈ Q[x] be the minimal
polynomial of α, then p | q and by Gauss’ lemma it follows that p ∈ Z[x].

Theorem 1.7. Let K := Q(
√
d) be a quadratic field, where d ∈ Z is square-

free as usual. Then,

OK =

{
Z[
√
d] if d 6≡ 1 (mod 4)

Z
[

1+
√
d

2

]
if d ≡ 1 (mod 4)

.

Proof. The proof follows from the Lemma 1.6 and elementary number theory,
see [ST01] Theorem 3.2.

It is easy to see that for a quadratic field K, norm is multiplicative i.e.
N(αβ) = N(α)N(β) and α ∈ OK implies N(α) ∈ OK (follows by direct
computation of norm). This is also true for any number field; see [ST01],
section 2.5.

1.1 Imaginary Euclidean Quadratic Fields

Definition 1.8. A domain D is called a Euclidean Domain (ED) if there
exist a function φ : D \ {0} → N such that

• If a, b ∈ D \ {0} and a | b then φ(a) ≤ φ(b).

• If a, b ∈ D \ {0} then there exists q, r ∈ D such that a = bq + r, where
either r = 0 or φ(r) < φ(b).

and such a function φ is called Euclidean function.
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We will follow the following convention: we will say that a number field
K is ED to mean that it’s ring of integers OK is a Euclidean domain. In this
section we will prove that for d < 0 the quadratic field Q(

√
d) is ED if and

only if d = −1,−2,−3,−7,−11.

Definition 1.9. A number field K is called norm-ED if it’s ring of integers
OK is a ED with respect to the Euclidean function function |N |, where N(·)
is the norm function.

Lemma 1.10. A number field K is norm-ED if and only if for all x ∈ K
there exists m ∈ OK such that |N(x−m)| < 1.

Proof. Suppose K is a norm-ED. Let x ∈ K, then there exists f ∈ Q[x] such
that f(x) = 0. By clearing out the denominators of f we have a polynomial
g ∈ Z[x] such that g(x) = 0. Then cx satisfies a monic polynomial in Z[x],
where c is the leading coefficient of g. Hence, cx ∈ OK and c 6= 0. Now
by Euclideanity, there exist q, r ∈ OK such that cx = cq + r. If r = 0 then
cx = cq. Hence x = q ∈ OK and we are done by taking m = x. Otherwise,
cx = cq + r and |N(r)| < |N(c)|, i.e. equivalently we have

x = q +
r

c
with

∣∣∣N (r
c

)∣∣∣ < 1.

Then take m = q and we are done.

Conversely, suppose ∀x ∈ K, there exist m ∈ OK such that |N(x−m)| <
1. Then we need to show that N(·) is a Euclidean function. Suppose a | b,
where a, b ∈ OK\{0}. Then, b = aa′ for some a′ ∈ OK . This implies |N(b)| =
|N(a)| · |N(a′)| and hence |N(a)| ≤ |N(b)|. Now let a, b ∈ OK \ {0}. Then
there exists m ∈ OK such that

∣∣N (a
b
−m

)∣∣ < 1 i.e. |N(a − bm)| < |N(b)|.
Now, taking q = m and r = a− bm, we have a = bq+ r and |N(r)| < |N(b)|.
Hence we have proved that K is norm-ED.

Theorem 1.11. The quadratic field Q(
√
d) is norm-ED if

d = −1,−2,−3,−7,−11.

Proof. We will divide the proof into two cases:

Case 1 : Let d = −1,−2, then d 6≡ 1 (mod 4). By the Lemma 1.10, given
r + s

√
d ∈ Q(

√
d), we need to find x+ y

√
d ∈ Z[

√
d] such that

|(r − x)2 − d(s− y)2| < 1 i.e. (r − x)2 − d(s− y)2 < 1

since d < 0. Now given r, s ∈ Q, one can always choose x, y ∈ Z such that

|r − x| ≤ 1

2
and |s− y| ≤ 1

2
.
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Hence we get

(r − x)2 − d(s− y)2 ≤ 1

4
+ 2 · 1

4
=

3

4
< 1.

Therefore Q(
√
d) is norm-ED for d = −1,−2.

Case 2 : Let d = −3,−7,−11, then d ≡ 1 (mod 4). Again by lemma,
given r + s

√
d ∈ Q(

√
d), we need to find

x+ y

(
1 +
√
d

2

)
=
(
x+

y

2

)
+
y

2

√
d ∈ Z

[
1 +
√
d

2

]
such that (

r − x− y

2

)2

− d
(
s− y

2

)2

< 1.

Now, first choose y ∈ Z such that |2s− y| ≤ 1/2 and then choose x ∈ Z such
that |(r − y/2)− x| ≤ 1/2. Then we have,(

r − x− y

2

)2

− d
(
s− y

2

)2

=
(
r − y

2
− x
)2

− d

4
(2s− y)2

≤ 1

4
+

11

4
· 1

4

=
15

16
< 1.

Hence Q(
√
d) is norm-ED for d = −3,−7,−11.

Proposition 1.12. Let K be a number field. Let α ∈ OK, then α is a unit
if and only if N(α) = ±1.

Proof. Suppose α is a unit, i.e. αβ = 1 for some β ∈ OK . This implies
N(α)N(β) = N(1) = 1 and hence N(α) = ±1, since N(α), N(β) are integers.

Conversely, suppose N(α) = ±1, then from the definition of norm

n∏
i=1

σi(α) = α ·
n∏
i=2

σi(α) = ±1

where σi’s are the distinct embeddings of K in C, n = [K : Q] and σ1 = id.
Now since α ∈ B and σi’s are Q-linear, we have σi(α) ∈ B for each i. Hence
β :=

∏2
i=1 σi(α) ∈ B. Also β = α−1 ∈ K. Hence β ∈ OK and αβ = ±1.

Therefore α is a unit.

Proposition 1.13. Let K = Q(
√
d) be a quadratic field, where d < 0 and

square-free. Then the group of units (denoted by O×K) of OK is given by
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• For d = −1, O×K = {±1,±i}.

• For d = −3, O×K = {±1,±ω,±ω2} where ω = e2πi/3.

• For all other d < 0, O×K = {±1}.

Proof. Since d < 0, the proof easily follows from Proposition 1.12 by solving
easy diophantine equation. See [ST01] Proposition 4.2.

We will need the following theorem on free Z-module

Theorem 1.14. Let G be a free Z-module and let H be a submodule of G.
Suppose {x1, . . . xn} is a basis for G and {y1, . . . yn} is a basis for H. If for
each i, yi =

∑n
j=1 aijxj, where aij ∈ Z. Then we have

|G/H| = | det([aij])|.

Proof. See [ST01] Theorem 1.17.

Theorem 1.15. If d < −11 and square-free then Q(
√
d) is not a ED.

Proof. Let d < −11 and K = Q(
√
d). Suppose OK is a ED with some

Euclidean function φ. Consider the set

S := {φ(x) : x ∈ OK , x 6= 0 and x 6∈ O×K} ⊆ N.

Let φ(α) be the least element of S (note that S is non-empty). Now, take
any β ∈ OK . By Euclideanity there exist γ, δ ∈ OK such that β = αγ + δ.
If δ 6= 0 then φ(δ) < φ(α) and from the minimality of φ(α) we conclude that
δ ∈ O×K , i.e. δ = ±1 by Proposition 1.13. Hence δ can have at most three
values 0,1 or −1 and this implies |OK/〈α〉| ≤ 3.

Now, OK is a free Z-module of rank 2. Assume d 6≡ 1 (mod 4). Then
〈α〉 is a submodule of OK with Z-basis {α, α

√
d}. Let α = a + b

√
d where

a, b ∈ Z. Then 〈α〉 has the Z-basis {a+ b
√
d, bd+a

√
d}. Now using Theorem

1.14 we have

|OK/〈α〉| = |
∣∣∣∣ a b
db a

∣∣∣∣ | = |a2 − db2| = a2 − db2.

Therefore from |OK/〈α〉| ≤ 3 we get a2 − db2 ≤ 3. A similar calculation

for d ≡ 1 (mod 4) with α = a + b
√
d+1
2

yields a2 − db2 ≤ 12. Now one can
easily check that the only solution to these diophantine equations are given
by the trivial solution a = ±1, b = 0. Hence α is a unit and we have a
contradiction.
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Now, we are left with three more square-free negative values of d, namely
d = −5,−6,−10. We will show that for these values of d the quadratic field
Q(
√
d) is not a ED and this will imply that the values of d in Theorem 1.11

gives the complete list of Euclidean quadratic fields for d < 0.

Proposition 1.16. Let K be a number field and let x ∈ OK be such that
N(x) is prime. Then x is irreducible in OK.

Proof. Suppose x = yz with y, z ∈ OK , then we need to show that either y
or z is a unit. Now N(x) = N(y)N(z) is prime and hence either N(y) = ±1
or N(z) = ±1. Therefore y ∈ O×K or z ∈ O×K .

Theorem 1.17. For d = −5,−6,−10 the ring of integers of Q(
√
d) is not

UFD and hence not ED.

Proof. For each of these three values of d there exist an element in the ring
of integers which has two distinct factorizations, namely in Z[

√
−5] we have

2 · 3 = (1 +
√
−5) · (1−

√
−5),

in Z[
√
−6] we have

−2 · 3 = (
√
−6) · (

√
−6)

and in Z[
√
−10],

2 · 7 = (2 +
√
−10) · (2−

√
−10).

We need to show that factors occurring in the above factorizations are ir-
reducible in the respective ring of integers. This follows by considering the
norm and solving easy diophantine equations. See [ST01] Theorem 4.10.

Hence we have obtained our desired result of this section

Corollary 1.18. Suppose d is square-free and d < 0. Then the ring of
integers of Q(

√
d) is a ED if and only if

d = −1,−2,−3,−7,−11

and moreover the Euclidean function is given by the absolute value of the
norm function.

Proof. Follows from Theorem 1.11, Theorem 1.15 and Theorem 1.17.
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1.2 Imaginary Quadratic UFDs

As mentioned at the beginning of this chapter that there are exactly nine
imaginary quadratic fields whose ring of integers is a UFD. Since every ED
is also a UFD we have already established that ring of integers of Q(

√
d) is a

UFD for d = −1,−2,−3,−7,−11. In this section our goal is to establish the
existence of four more non-euclidean imaginary quadratic UFDs, namely for
d = −19,−43,−67 and −163. To prove this we will first develop the theory
of ideals and then the notion of class number of a number field.

1.2.1 Theory of Ideals

Definition 1.19. Let R be a ring and K be it’s field of fractions (for us K
is a number field and R = OK). Then an R-submodule M of K is called a
fractional ideal of R if there exists r ∈ R \ {0} such that rM ⊆ R.

Note that rM = 〈r〉M is an R-submodule of K contained in R. Hence
rM is an ideal of R, say I. That is M = r−1I. Hence, every fractional ideal
of R is of the form r−1I for some ideal I of R and r ∈ R.

Now our goal is to show that the set of fractional ideals of OK , for a
number field K, has a group structure. For this we need to define the inverse
of an ideal.

Definition 1.20. Let R be a ring with field of fractions K and let I ⊆ R be
an ideal. Then we define the inverse of I as

I−1 := {x ∈ K : xI ⊆ R}.

Proposition 1.21. Let I and J be ideals of a ring R with field of fractions
K, then the following holds:

• I ⊆ R ⊆ I−1 ⊆ K.

• If I ⊆ J then J−1 ⊆ I−1.

• I−1 is an R-submodule of K.

• If I 6= 0 then I−1 is a fractional ideal of R.

Proof. All these directly follows from the definition of I−1. For the last one,
note that cI−1 ⊆ R for any c ∈ I \ {0}.

We want to know about the R-submodule II−1. Note that, by the defi-
nition of I−1, II−1 ⊆ R and hence II−1 is an ideal of R. We will show that
II−1 = R for a special class of rings called Dedekind domains.

12



Definition 1.22. Let R be a domain and K be it’s field of fractions. Then
R is called a Dedekind domain if it satisfies the following conditions:

1. R is Noetherian.

2. Every non-zero prime ideal of R is maximal.

3. R is integrally closed in K.

Proposition 1.23. Let K be a number field, then it’s ring of integers OK is
a Dedekind domain.

Proof. Let I be an ideal of OK . Now since OK is a finitely generated Z-
module and I is a submodule of OK , we have that I is a finitely generated
Z-module. Hence, as an ideal of OK , I is finitely generated.

Let P be a prime ideal of OK and let a ∈ P be a non-zero element. Then

N := N(a) = a
n∏
i=2

σi(a) ∈ P.

where σi’s are the distinct embeddings of K in C and σ1=Id. Hence 〈N〉 ⊆ P
and therefore OK/P is contained in OK/〈N〉 which is finite. Hence OK/P
is a finite domain and hence a field. Therefore P is a maximal ideal.

The third condition is obvious. Hence OK is a Dedekind domain.

Theorem 1.24. Let R be a Dedekind domain and I be a non-zero ideal of
R. Then II−1 = R.

Proof. See [ST01] Theorem 5.6 (vi).

Now one can show that the set of all fractional ideals of a Dedekind
domain form a group. For any two fractional ideals r−1I and s−1J , where
r, s ∈ R and I, J are ideals of R, define the group operation · as follows

(r−1I) · (s−1J) := (rs)−1IJ.

One can easily verify that this operation · is commutative, associative, R
acts as identity and every r−1I has the inverse rI−1.

Theorem 1.25. Every non-zero proper ideal in a Dedekind domain can be
written as a product of prime ideals.

13



Proof. Let S be the set of all non-zero proper ideals of R which can not be
written as a product of prime ideals. Suppose S 6= ∅. Then S has a maximal
element (since R is Noetherian), say Im. Then Im is not prime. Now, since
Im is proper, it is contained in some maximal and hence prime ideal P of R.
Then we have R ⊆ P−1 ⊆ I−1

m and multiplying by Im we get

Im ⊆ ImP
−1 ⊆ ImI

−1
m ⊆ R.

Therefore ImP
−1 ⊆ R and hence ImP

−1 is an ideal of R. We claim that
ImP

−1 6= Im, otherwise

I−1
m (ImP

−1) = I−1
m (Im) ⇒ P−1 = R ⇒ R = PP−1 = PR = P

but this can not happen since P is proper. Note that ImP
−1 6= 0 (otherwise

Im = 0) and ImP
−1 6= R (otherwise Im is prime) and also Im ( ImP

−1.
Hence by maximality of Im we have ImP

−1 = P1 · · ·Pr for some prime ideals
P1, . . . , Pr. But this implies Im = P1 · · ·PrP which is a contradiction. Hence
we conclude that S = ∅.

In fact, this prime factorization is unique. To prove this we need the
following propositions.

Definition 1.26. Let R be a ring and I, J be ideals of R. Then we say I
divides J (denoted by I | J) if there exist an ideal I ′ of R such that J = II ′.

Proposition 1.27. Let I and J be ideals of a Dedekind domain R. Then
I | J if and only if I ⊇ J .

Proof. If I | J then clearly I ⊇ J . Now suppose I ⊇ J . Let I ′ := JI−1 which
is an R-submodule of k(R). Then J ⊆ I implies I ′ = JI−1 ⊆ II−1 = R and
hence I ′ is an ideal. But then I | J because II ′ = IJI−1 = J .

Proposition 1.28. Let I, J and P be ideals of a Dedekind domain R and P
is prime. Then, P | IJ implies P | I or P | J .

Proof. Note that by the previous proposition it is enough to show the fol-
lowing

P ⊇ IJ ⇒ P ⊇ I or P ⊇ J

Suppose there exist a ∈ I \ P and b ∈ J \ P . Then ab ∈ IJ \ P by the
definition of prime ideal and we are done.

Theorem 1.29. The prime factorization of a non-zero proper ideal in a
Dedekind domain is unique.

14



Proof. Suppose a non-zero proper ideal I of a Dedekind domain has two
prime factorizations namely

I = P1 · · ·Pr = Q1 · · ·Qs.

W.l.o.g. assume r ≤ s. Then P1 | Q1 · · ·Qs. Now, since P1 is prime, P1 | Qi

for some i; w.l.o.g. we can assume P1 | Q1. This implies P1 ⊇ Q1 and hence
P1 = Q1 since Q1 is maximal and P1 is proper. Then multiplying byP−1

1 on
the both sides we have

P2 · · ·Pr = Q2 · · ·Qs.

Similarly we will have P2 = Q2. Continuing like this we get Pi = Qi for
i = 1, . . . , r. Now if r = s then we are done. Otherwise if r < s we have

R = Qr+1 · · ·Qs ⊆ Qr+1

but this can not happen since Qr+1 is prime and hence proper.

1.2.2 Norm of an Ideal and Class Group

Definition 1.30. Let K be a number field and I be a non-zero ideal of OK.
Then we define norm of I as

N(I) := |OK/I|.

Proposition 1.31. Let K be a number field and I be a non-zero ideal of
OK. Then the following holds:

• N(I)=1 if and only if I = OK.

• N(I) is finite.

• I divides the ideal generated by N(I).

Proof. The first one is trivial.

To show that N(I) < ∞, consider a non-zero element α ∈ I. Then, if
σ1 = Id, σ2, . . . , σn are the distinct embeddings of K in C, we have

N(α) =
n∏
i=1

σi(α) = α ·
n∏
i=2

σi(α) ∈ I

and hence 〈N(α)〉 ⊆ I. Then we have OK/I ⊆ OK/〈N(α)〉. Now OK/〈N(α)〉
is finite because OK is a finitely generated Z-module and N(α) ∈ Z. Hence
we conclude that N(I) is finite.

15



For the third, note that for any x ∈ OK we have N(I) · x = 0 (mod I)
because the additive group of OK/I is of order N(I). Putting x = 1 we
get N(I) ∈ I. Hence I ⊇ 〈N(I)〉 and this implies I | 〈N(I)〉 since OK is a
Dedekind domain.

Our next aim is to define the so called “class number” of a number field
and relate it with the uniqueness of factorization in the ring of integers. One
can think of this class number as a quantity which measures how far a number
field is from being a UFD. We will show that the ring of integers of a number
field is a UFD if and only if it’s class number is 1.

Definition 1.32. Let R be a Dedekind domain with field of fractions K.
Then a fractional ideal r−1I, where r ∈ R and I ⊆ R is an ideal, is called
principal if I is a principal ideal.

Definition 1.33. Let K be a number with ring of integers OK. Suppose F
is the group of fractional ideals of OK and P be it’s subgroup consisting of all
principal fractional ideals. Then the quotient group F/P is called the class
group of K. The order of F/P is called the class number of K and is
denoted by h(K).

Let F and P are as in the above definition. Take a fractional ideal M ∈ F
and let [M ] ∈ F/P be it’s equivalence class. Then there exist an ideal of
OK which is in the equivalence class of M . This follows from the fact that
M = r−1I for some r ∈ OK and ideal I ⊆ OK and this implies I = 〈r〉M . In
fact, for every fractional ideal M we can choose an ideal in it’s equivalence
class whose norm is bounded by a constant and this constant does not depend
on M . We will use this fact to show that the class number of any number
field is finite.

Definition 1.34. Let K be a number field. Suppose {α1, . . . , αn} is a Z-basis
for OK. Then the discriminant ∆ of K is defined as

∆ := (det[σi(αj)])
2

where σ1, . . . , σn are the distinct embeddings of K in C and n = [K : Q].

Since we are particularly interested in quadratic fields we will compute
their discriminant:

Proposition 1.35. Let K := Q(
√
d) be a quadratic field. Then the discrim-

inant of K is given by

∆ =

{
4d if d 6≡ 1 (mod 4)
d if d ≡ 1 (mod 4)

.
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Proof. Note that the embeddings of K are given by the maps
√
d 7→

√
d

and
√
d 7→ −

√
d. Also, Theorem 1.7 gives us the Z-basis of OK . Hence one

can easily compute the discriminant directly from the definition to get the
desired result

Theorem 1.36. Let K be a number field of signature {s, t} (i.e. s is the
number of real embeddings and 2t is the number of non-real complex embed-
dings of K in C). Let M be a fractional ideal of OK. Then there exist an
ideal I in the equivalence class (corresponding to the class group) of M such
that

N(I) ≤
(

4

π

)t
n!

nn

√
∆

where ∆ is the discriminant of K and n = s+ 2t = [K : Q].

Proof. The proof uses geometric techniques and Minkowski’s convex body
theorem. See [ST01] Corollary 10.3.

From now on we will denote the constant
(

4
π

)t n!
nn

of the above theorem
by Mst (called the Minkowski’s constant).

Theorem 1.37. Let K be a number field. Then the class number h(K) of
K is finite.

Proof. First we show that the number of ideals of OK with a given norm is
finite. Suppose N ∈ N and I be an ideal such that N(I) = N . Now, by prime
factorization of ideals one can write 〈N〉 = P1 · · ·Pr, where Pi’s are prime
ideals. Then, since I | 〈N(I)〉, we have I | P1 · · ·Pr. Now by uniqueness of
prime factorization of I it follows that number of I can be finite.

Now, every equivalence class of fractional ideal contains an ideal of norm
less than or equal to Mst

√
∆, where {s, t} is the signature and ∆ is the

discriminant of K.Now since there are finitely many ideals with a given norm,
we conclude that the number of such equivalence classes is finite. Hence the
class number of K is finite.

Next, we will show that unique factorization in the ring of integers of a
number field is equivalent to it’s class group being trivial. This will directly
follow from the following theorem.

Theorem 1.38. Let K be a number field. Then the ring of integers OK is
a UFD if and only if it is a PID.
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Proof. If OK is a PID then clearly it is a UFD. For the converse suppose
OK is a UFD. Note that it is enough to show that every prime ideal of OK

is principal because every ideal can be written as a product of prime ideals
and product of principal ideals is again principal. Let P be a non-zero prime
ideal. Then P | 〈N(P )〉. Now we can write N(P ) = π1 · · · πs, where πi’s
are irreducibles in OK (this follows from the fact that during factorization
norm of the factors keep decreasing and N(a) = 1 implies that a is a unit
and hence the process of factorization into irreducibles ends in finitely many
steps). Then P | 〈π1〉 · · · 〈πs〉 and hence P | 〈πk〉 for some k. Now πk
is irreducible implies πk is prime (since OK is a UFD) and hence 〈πk〉 is a
prime ideal. But then by uniqueness of prime factorization we have P = 〈πk〉
and hence P is principal

Remark 1.39. The above theorem is also true for any Dedekind domain but
the same argument doesn’t work since we don’t have the notion of ‘norm’ in
a general Dedekind domain. See [Mol10] Theorem 1.18 for the proof.

Theorem 1.40. Let K be a number field. Then OK is a UFD if and only if
the class number h(K) = 1.

Proof.

h(K) = 1 iff every fractional ideal of OK is principal

iff every ideal of OK is principal

iff OK is a UFD (by previous theorem).

1.2.3 Imaginary Quadratic Fields of Class Number One

Now we proceed towards showing that for d = −19,−43,−67,−163 the
quadratic field Q(

√
d) has class number equal to one. This will give us

the desired result mentioned at the beginning of this section.

Theorem 1.41. Let K be a number field of signature {s, t} and discriminant
∆. Suppose for every prime p ∈ Z such that p ≤Mst

√
∆ we have that every

prime ideal of OK dividing 〈p〉 is principal. Then class number h(K) = 1.

Proof. Let M be a fractional ideal of OK , we want to show that M is prin-
cipal. Now, by Theorem 1.36, there exist an ideal I of OK equivalent to M
such that N(I) ≤Mst

√
∆. Note that, it is enough to show that I is principal,

because if I = 〈a〉 and M = r−1〈b〉I (since M is equivalent to I) for some
a, b, r ∈ OK then M = r−1〈ab〉 which is principal. Suppose N(I) = p1 · · · pk

18



where pi ∈ Z are primes. Then, for each i, pi ≤ N(I) ≤Mst

√
∆ and hence by

the hypothesis, for each i, every prime ideal dividing 〈pi〉 is principal. Now,
since I | 〈N(I)〉, we have I | 〈p1〉 · · · 〈pk〉. Also we can write I = P1 · · ·Ps
where Pj’s are prime ideals. Then for each j,

Pj | 〈p1〉 · · · 〈pk〉 ⇒ Pj | 〈pi〉 for some i

and so Pj is principal for all j. Hence I is principal.

We will need the following theorem:

Theorem 1.42. Let K be a number field of degree n. Suppose OK = Z[θ]
for some θ ∈ OK. Given a prime p ∈ Z, suppose the minimal polynomial
f ∈ Z[x] of θ over Q gives rise to the factorization into irreducibles over Zp:

f̄ = f̄1
e1 · · · f̄r

er

where bar denotes the natural map Z[x] → Zp[x]. Then if fi ∈ Z[x] is any
polynomial mapping onto f̄i, then the ideal

Pi := 〈p〉+ 〈fi(θ)〉

is prime and the prime factorization of 〈p〉 in OK is

〈p〉 = P e1
1 · · ·P er

r .

Proof. See [ST01] Theorem 10.1.

Theorem 1.43. Let K := Q(
√
d) be a quadratic field of signature {s, t} and

discriminant ∆. Let OK = Z[θ] and f(x) ∈ Z[x] is the minimal polynomial of
θ over Q. Suppose, for all prime p ∈ Z such that p ≤ Mst

√
∆, f̄(x) := f(x)

(mod p) ∈ Zp[x] has no roots in Zp. Then K has class number equal to 1.

Proof. Suppose for all prime p ∈ Z and p ≤Mst

√
∆, f̄(x) has no root in Zp

i.e. f̄(x) is irreducible in Zp (since deg(f̄) ≤ 2). Then by previous theorem
〈p〉 + 〈f(θ)〉 = 〈p〉 is a prime ideal. Hence every prime ideal dividing 〈p〉
(which is 〈p〉 itself) is principal for all p ≤ Mst

√
∆. Then by Theorem 1.41

we have h(K) = 1.

Corollary 1.44. The quadratic field Q(
√
d) has class number 1 for

d = −19,−43,−67,−163.

Proof. This follows by putting d = −19,−43,−67,−163 in Theorem 1.43
and verifying all the assumptions. Note that for quadratic fields all the
parameters in the previous theorem, namely s, t,∆, θ are known to us.
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Hence we have obtained our final result of this section;

Corollary 1.45. Let K := Q(
√
d). Then OK is a UFD for

d = −1,−2,−3,−7,−11,−19,−43,−67,−163.

Proof. Follows from Corollary 1.18, Theorem 1.40 and Corollary 1.44.

Remark 1.46. For d < 0 and square-free, the converse of the above corol-
lary is also true, that is this gives the complete list of imaginary quadratic
fields whose ring of integers is a UFD. A proof was given by Heegner and
Stark which uses modular functions, the proof has been discussed in [Kez12].
Another proof was given by Baker as an application of linear forms in loga-
rithms.
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Chapter 2

Computing Class Number of
Real Quadratic Fields

In this chapter we will address the problem of computing class number of
a real quadratic field. Let K = Q(

√
d), where d > 0, be a real quadratic

field. All known unconditional algorithms for computing h(OK) have time
complexity O(dα+ε), where α < 1/2 and under the assumption of Gener-
alized Riemann Hypothesis the best known algorithm has time complexity
O(d1/5+ε). In this chapter we will discuss two important methods for comput-
ing class number of a real quadratic fields: One is using the method of cycle
counting, called the Reduced Form Algorithm and the other one is using the
Analytic Formula of Class Number.

2.1 Reduced Form Algorithm

Let d > 0 be a square-free integer. Then, define r and ω as follows:

r :=

{
1 if d 6≡ 1 (mod 4)
2 if d ≡ 1 (mod 4)

& ω :=
r − 1 +

√
d

r
.

Now, if K = Q(
√
d), then the free Z-module OK has Z-basis {1, ω} and the

discriminant of K is given by ∆K = 4d/r2.
Let I be an ideal of OK , then I is a free Z-submodule of OK ; in fact, we

have the following

Theorem 2.1. If I is an ideal of OK and I 6⊆ Z then I has a Z-basis
{a, b+ cω} for some a, b, c ∈ Z such that a ≥ 0, c ≥ 0, c | a and c | b.

Proof. See [Jon61] Theorem 58, 59.
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Then, a is the least positive integer in I. We define L(I) := a.

Definition 2.2. Let K be a real quadratic field. An ideal I of OK is said to
be primitive if L(I) = N(I).

Proposition 2.3. Let K be a real quadratic field. If an ideal I ⊆ OK, with
Z-basis {a, b+ cω}, is primitive then c = 1.

Proof. Note that
N(I) = |OK/I| = ac.

Then, L(I) = N(I) implies a = ac and therefore c = 1.

Definition 2.4. An ideal I ⊆ OK is said to be reduced if I is primitive and
for all non-zero α ∈ I, either |α| < L(I) or |α| < L(I).

Then, we have the following theorem which says that every ideal of OK

is equivalent to a reduced ideal.

Theorem 2.5. Let I ⊆ OK be an ideal. Then there exists a reduced ideal J
and an element λ ∈ I such that 〈λ〉J = 〈L(J)〉I.

Proof. See [Wil85] Corollary 3.3.

We also have the following theorem

Theorem 2.6. If an ideal I ⊆ OK is reduced then L(I) <
√

∆K . On the
other hand, if I ⊆ OK is a primitive ideal and L(I) <

√
∆K/2 then I is

reduced.

Proof. See [Wil85] Theorem 5.2 and Theorem 5.3.

2.1.1 Algorithm for computing reduced ideals

Let I = aZ + (b + ω)Z be a primitive ideal of OK , where a, b ∈ Z. Let us
denote φ = (b+ ω)/a. Then φ can be written as

φ =
P +
√
d

Q
, where P,Q ∈ Z and rQ | d− P 2.

Also, φ has a continued fraction expansion, say φ = 〈q0, q1, q2, . . .〉. Then, for
each k ≥ 0, we define φk = 〈qk, qk+1, · · · 〉. Then we can write

φk =
Pk +

√
d

Qk
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where the integers Pk and Qk are given by the following recurrence relations:

P0 = P, Q0 = Q, q0 =

[
P +
√
d

Q

]
= [φ0]

and for i ≥ 0,

Pi+1 = qiQi − Pi

Qi+1 =
d− P 2

i+1

Qi

qi+1 = [φi+1] =
Pi+1 +

√
d

Qi+1

.

Now for each k ≥ 0, define the ideal Ik as follows

Ik :=
Qk

r
Z +

Pk +
√
d

r
Z.

Then we have the following

Theorem 2.7. With the above notations we have

• Ik is equivalent to I for all k ≥ 0.

• Ik is reduced if

k > max

{
2, 4 + log

(
Q0

2
√
d

)
1

2 log τ

}
where τ = (1 +

√
5)/2.

• If Im is reduced for some m then Ik is reduced for all k ≥ m.

• Suppose m is the least integer for which Im is reduced. Now, if an ideal
J is equivalent to I and J is reduced, then J = Ik for some k ≥ m.

Proof. See [MW92] Theorem 2.7, Theorem 2.8.

Note that, since the continued fraction expansion of φ is periodic, we
have that each ideal is equivalent to only finitely many reduced ideals. Also,
finiteness of class number implies that there are finitely many equivalence
classes. Hence we conclude that there are finitely many reduced ideals and
this finiteness will allow us to count the reduced ideals. Moreover, we have
the following theorem which allows us to find all the reduced ideals in a finite
process.
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Theorem 2.8. If I ⊆ OK is a reduced ideal and I = Q
r
Z + P+

√
d

r
Z then

0 < Q < 2
√
d and 0 < P <

√
d.

Proof. See [MW92] Section 2.

Now, Theorem 2.7 implies that, the finite set of all reduced ideals de-
composes into finitely many cycles (the operator concerned is the reduction
operator) and each such cycle corresponds to a representative element of the
class group. Hence, to compute the class number we need to count the num-
ber of such cycles. One way is to count the number of cycles by brute force;
although it is possible to set up this cycle counting technique for comput-
ing class number such that it has time complexity O(d0.5076+ε). Under the
assumption of GRH the time complexity can be reduced to O(d1/2+ε), this
observation is due to H. W. Lenstra, Jr.

2.1.2 Connection with Quadratic Forms

For actual computational purposes to compute the class number by cycle
counting one uses the the theory of quadratic forms which computationally
is easy to handle (although, theoretically it seems unmotivated). Here we
will establish a connection between ideals and quadratic forms which will
enable us to apply the algorithm in the setting of quadratic forms.

Definition 2.9. A bivariate function f(x, y) = ax2 + bxy + cy2 is called
a quadratic form and is denoted by f := (a, b, c). The quantity ∆(f) =
b2 − 4ac is called the discriminant of the quadratic form f .

Let K = Q(
√
d) be a real quadratic field and let D = ∆K = 4d/r2, the

discriminant of K. Now define the set F as

F := {f := (a, b, c) : ∆(f) = D}/PSL2(Z).

Then, the following theorem gives a correspondence between F , the class
group ClK and the narrow class group Cl+K which is defined as the set of
all fractional ideals modulo the set of all principal fractional ideals whose
generators have positive norm.

Theorem 2.10. There is a bijection between the sets F and Cl+K and there
is a bijection between F and ClK when the quadratic forms (a, b, c) and
(−a, b,−c) are identified.

Proof. See [Coh96] Proposition 5.6.1.
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Definition 2.11. A quadratic form f = (a, b, c) is called reduced if∣∣∣√D − 2|a|
∣∣∣ < b <

√
D,

where D = ∆(f) is the discriminant of f .

With the above definition we will show that there is a one-one correspon-
dence between the reduced quadratic forms and reduced ideals and this will
give a motivation for the above definition. Define the set

Γ∞ :=

{(
1 m
0 1

)
: m ∈ Z

}
⊆ SL2(Z).

Then Γ∞ ∼= (Z,+). Note that, Γ∞ acts on the set {f := (a, b, c) : ∆(f) = D}
by the following operation(

1 m
0 1

)
· (a, b, c) = (a, b+ 2am, c+ bm+ am2).

Let us define the set F as

F := {f := (a, b, c) : ∆(f) = D}/Γ∞

and let S be the set of all fractional ideals modulo the multiplicative group
of rationals Q∗ (which, in fact, is same as the class group). Then, there is
an isomorphism ψ : S × Z/2Z → F (for the proof refer to [Coh96] Theorem
5.2.4). Then we have the following

Theorem 2.12. An ideal I ⊆ OK is reduced if and only if the quadratic
form (a, b, c) is reduced, where ψ(I, s) = [(a, b, c)].

Proposition 2.13. If (a, b, c) is a reduced quadratic form then

|a| <
√
D, b <

√
D, |c| <

√
D and |a|+ |c| <

√
D.

Also, (a, b, c) is a reduced quadratic form if and only if∣∣∣√D − 2|c|
∣∣∣ < b <

√
D,

where D as usual is the discriminant of (a, b, c).

Proof. See [Coh96] Proposition 5.6.3.
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Next we define the reduction operator ρ analogous to the reduction oper-
ator for ideals. Given a, b ∈ Z define r(a, b) to be the unique integer r such
that

r ≡ b (mod 2a) &

{
−|a| < r ≤ |a| if |a| >

√
D√

D − 2|a| < r <
√
D if |a| <

√
D

.

Now define ρ as follows

ρ(a, b, c) :=

(
c, r(−b, c), r(−b, c)

2 −D
4c

)
.

Then, one can show that (a, b, c) ∼ ρ(a, b, c) modulo PSL2(Z) and that ρ is
a permutation.

Now, we will describe the cycle counting technique for computing the
class number using the language of quadratic forms. The proof of the fol-
lowing algorithm can be found in [Coh96] Proposition 5.6.6. We start with
a quadratic form and keep applying the reduction operator. Eventually we
will reach a reduced form after at most 2 + log(|c|/

√
D) steps and once we

reach a reduced form we will keep on getting reduced forms. Then the set of
all reduced forms will decompose into finitely many cycles under the reduc-
tion operator. So we need to count the number of such cycles. Note that,
Proposition 2.13 implies that the number of reduced forms is less than or
equal to D; in fact, this number is of the order O(

√
D lnD). So we list all

reduced forms and count the number of orbits under the permutation ρ and
this will give us the narrow class number h+(K) = |Cl+K |. While counting, if
we identify the quadratic forms (a, b, c) and (−a, b,−c), then we will get the
actual class number h(K). The time complexity of this algorithm is O(D).

2.2 Analytic formula of Class Number

In this section our goal is to compute the class number of a real quadratic field
using the analytic formula of class number. For that we need to introduce
the zeta function of a number field, known as the Dedekind zeta function.

Definition 2.14. Let K be a number field. We define the Dedekind zeta
function of K as

ζK(s) :=
∞∑
n=1

aK(n)

ns
,

where s ∈ C and aK(n) is the number of ideals of OK of norm n.
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Proposition 2.15. We have that

ζK(s) =
∑
I

1

N(I)s
,

where the sum ranges over all ideals of OK .

Proof. Immediate from the definition.

Theorem 2.16. ζK(s) converges absolutely for Re(s) > 1.

Proof. Let σ = Re(s) > 1. Then it is enough to show that the partial sums

Sx :=
∑

N(I)≤x

1

N(I)σ

are bounded. We can write

Sx ≤
∏

N(P )≤x

(
1 +

1

N(P )σ
+

1

N(P )2σ
+ · · ·

)

=
∏

N(P )≤x

(
1− 1

N(P )σ

)−1

where P ranges over all prime ideals.

Claim. If P is a prime ideal then N(P ) = pf for some f ∈ N and a unique
prime number p.

Suppose N(P ) has prime factorization N(P ) = p1 · · · pr. Then we have
P | 〈p1〉 · · · 〈pr〉. Now, if P | 〈pi〉 and P | 〈pj〉 for some distinct primes pi, pj,
then P | 〈1〉 (since gcd(pi, pj) = 1) and this implies P ⊇ OK which is clearly
a contradiction. Therefore P | 〈p〉 for some unique prime p. Then we have
N(P ) | N(〈p〉) = pn, where n = [K : Q]. Hence N(P ) = pm for some m ≤ n
and we have established our claim.

Claim. Fix a prime p. Then the number of prime ideals P such that N(P )
is a power of p is less than or equal to [K : Q].

Let P be such a prime ideal. Then P | N(P ) implies P | p. Suppose the
ideal 〈p〉 factorizes into prime ideals as

〈p〉 = P e1
1 · · ·P er

r . (∗)
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Then P has to be one of the Pis. Now, for each i, Pi | 〈p〉 which implies
N(Pi) | N(〈p〉). Therefore we have N(Pi) = pfi for some fi ∈ N. Now, taking
norm on the both side of the equation (∗) we get

p[K:Q] = pe1f1 · · · perfr

which implies
∑r

i=1 eifi = [K : Q]. Hence, we conclude that r ≤ [K : Q],
since ei, fi ≥ 1 for each i. So we have proved the claim.

Now coming back to Sx, using the above claims we can write

Sx ≤
∏

N(P )≤x

(
1− 1

pσ

)−1

≤
∏
p≤x

(
1− 1

pσ

)−[K:Q]

=

(∏
p≤x

(
1− 1

pσ

))−[K:Q]

and this implies Sx is bounded, since the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)
is absolutely convergent for all s ∈ C such that Re(s) > 1.

Analogous to the Euler’s product formula for Riemann zeta function, we
have the following for Dedekind zeta function

Proposition 2.17. If Re(s) > 1 then we have

ζK(s) =
∏
P

(
1− 1

N(P )s

)−1

where P ranges over all prime ideals.

Proof. This follows directly from Proposition 2.15 by writing every ideal as
a product of prime ideals.

Let K be a real quadratic field. Now our goal is to show that (s−1)ζK(s)
extends to an analytic function in the region Re(s) > 1/2. We will need the
following result
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Theorem 2.18. Let K be a real quadratic field. Then we have

• aK(n) =
∑

δ|n
(

∆K

δ

)
•
∣∣∑

n≤x
(

∆K

n

)∣∣ ≤ ∆K

where
( ·
·

)
is the Kronecker symbol.

Proof. See [ME04] Exercise 10.2.5, 10.2.7.

Lemma 2.19. Let g, h : N→ N and suppose f is defined as

f(n) :=
∑
δ|n

g(δ)h
(n
δ

)
.

Now define the functions G,H : R→ N as follows

G(x) :=
∑
n≤x

g(n) and H(x) :=
∑
n≤x

h(n).

Then for any real number y > 0,∑
n≤x

f(n) =
∑
δ≤y

g(δ)H
(x
δ

)
+
∑
δ<x

y

h(δ)G
(x
δ

)
−G(y)H

(
x

y

)
.

Proof. Note that∑
n≤x

f(n) =
∑
δe≤x

g(δ)h(e)

=
∑
δe≤x
δ≤y

g(δ)h(e) +
∑
δe≤x
δ>y

g(δ)h(e)

=
∑
δ≤y

g(δ)H
(x
δ

)
+
∑
e≤x

y

h(e)
{
G
(x
e

)
−G(y)

}
=
∑
δ≤y

g(δ)H
(x
δ

)
+
∑
e≤x

y

h(e)G
(x
e

)
−G(y)H

(
x

y

)
.

In the next theorem we will give a linear bound on the number of ideals
of OK , for a quadratic field K, whose norm is less than or equal to some
fixes number. This bound will be used later to get an analytic continuation
of (s− 1)ζK(s) for Re(s) > 1/2.
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Theorem 2.20. Let K be a real quadratic field and aK(n) denotes the number
of ideals in OK of norm n. Then,∑

n≤x

aK(n) = cx+O(
√
x),

where c =
∑∞

δ=1

(
∆K

δ

)
1
δ
.

Proof. In Lemma 2.19 we take

g(δ) =

(
∆K

δ

)
, h(δ) = 1, and y =

√
x.

Note that we have

|G(x)| =

∣∣∣∣∣∑
n≤x

(
∆K

n

)∣∣∣∣∣ ≤ ∆K (∗)

by Theorem 2.18 and H(x) = [x]. Then by Lemma 2.19 we have∑
n≤x

aK(n) =
∑
δ≤
√
x

(
∆K

δ

)[x
δ

]
+
∑
δ<
√
x

1 ·G
(x
δ

)
−G(

√
x)[
√
x]

=
∑
δ≤
√
x

(
∆K

δ

)[x
δ

]
+O(

√
x) ( by (∗))

=
∑
δ≤
√
x

(
∆K

δ

)
x

δ
+O(

√
x).

Now,

∑
δ≤
√
x

(
∆K

δ

)
1

δ
=
∞∑
δ=1

(
∆K

δ

)
1

δ
−
∑
δ>
√
x

(
∆K

δ

)
1

δ

= c+O

(
1√
x

)
and this implies

∑
n≤x aK(n) = cx+O(

√
x).

Note that in the above theorem we have assumed that c is a real constant
and for that we need to show that the series

∑∞
δ=1

(
∆K

δ

)
1
δ

converges. This is
an immediate corollary of the following theorem.
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Theorem 2.21. Let {an} be a sequence of complex numbers and

A(x) :=
∑
n≤x

an = O(xδ)

for some δ ≥ 0. Then
∑∞

n=1
an
ns

converges for Re(s) > δ and

∞∑
n=1

an
ns

= s

∫ ∞
1

A(x)

xs+1
dx

Proof. For any N > 1 we have

N∑
n=1

an
ns

=
N∑
n=1

A(n)− A(n− 1)

ns

=
A(N)

N s
+

N−1∑
n=1

A(n)

(
1

ns
− 1

(n+ 1)s

)

=
A(N)

N s
+

N−1∑
n=1

A(n)

(
s

∫ n+1

n

dx

xs+1

)

=
A(N)

N s
+ s

N−1∑
n=1

∫ n+1

n

A(n)

xs+1
dx

=
A(N)

N s
+ s

N−1∑
n=1

∫ n+1

n

A(x)

xs+1
dx

=
A(N)

N s
+ s

∫ N

1

A(x)

xs+1
dx.

Now taking limit N → ∞ we have, A(N)/N s → 0 since Re(s) > δ and
A(x) = O(xδ) and also

∫∞
1
A(x)/xs+1 dx converges for the same reason.

Therefore the series converges for Re(s) > δ and

∞∑
n=1

an
ns

= s

∫ ∞
1

A(x)

xs+1
dx.

Corollary 2.22. Let K be a quadratic field. Then the series
∑∞

δ=1

(
∆K

δ

)
1
δ

converges.
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Proof. In the previous theorem put an =
(

∆K

n

)
and s = 1. Now, we have

A(x) =
∑
n≤x

(
∆K

n

)
= O(1)

by Theorem 2.18. Hence, using previous theorem, we conclude that the series∑∞
n=1

(
∆K

n

)
1
n

converges.

Now we will prove the analytic continuation of (s− 1)ζK(s) which is one
of the important theorem of this section.

Theorem 2.23. Let K be a real quadratic field. Then (s− 1)ζK(s) extends
to an analytic function for Re(s) > 1/2.

Proof. We have ζK(s) =
∑∞

n=1
aK(n)
ns

and

AK(x) :=
∑
n≤x

aK(n) = cx+O(
√
x)

where c is a constant defined as in Theorem 2.20. Then by Theorem 2.21,

ζK(s) = s

∫ ∞
1

AK(x)

xs+1
dx

= s

∫ ∞
1

cx+O(
√
x)

xs+1
dx

= cs

∫ ∞
1

1

xs
dx+ s

∫ ∞
1

O(
√
x)

xs+1
dx

=
cs

s− 1
+ s

∫ ∞
1

O(
√
x)

xs+1
dx (∗)

which holds for Re(s) > 1. Now the integral
∫∞

1
O(
√
x)/xs+1 dx converges for

Re(s)+1−1/2 > 1, i.e. for Re(s) > 1/2. Hence the RHS of (∗) is analytic for
Re(s) > 1/2 and s 6= 1. Therefore the equation (∗) is valid for Re(s) > 1/2
and s 6= 1 and this implies (s− 1)ζK(s) is analytic for Re(s) > 1/2.

Remark 2.24. In fact, for any number field K, (s− 1)ζK(s) extends to an
entire function for all s ∈ C. This was conjectured by Dedekind in 1877 and
was proved by Hecke in 1917.

Note that the equation (∗) of the preceding theorem implies that ζK(s)
has a simple pole at s = 1. One can compute the residue of this pole by
computing the limit lims→1(s− 1)ζK(s), the value of this residue is given by
the following theorem. Note that taking limit s→ 1 is possible because the
function (s− 1)ζK(s) extends to an analytic function in some neighborhood
around s = 1 by the previous theorem.
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Theorem 2.25. Let K be a real quadratic field. Then

lim
s→1

(s− 1)ζK(s) =
2RK√

∆K

· hK

where RK := log ε0 is the regulator (where ε0 is the fundamental unit of
OK, i.e. the smallest unit greater than 1) and hK ,∆K are respectively class
number and discriminant of K.

Proof. see [Jan96] Chapter 4, Theorem 2.12.

Our next goal is to compute the limit lims→1(s − 1)ζK(s). For this, we
will introduce Dirichlet L-function.

Definition 2.26. Let K be a quadratic field. A map χ : N → {−1, 0, 1} is
called a quadratic character if χ(1) = 1, for all prime p

χ(p) =


+1 if 〈p〉 = P1P2 (p decomposes)
−1 if 〈p〉 = P (p remains prime)
0 if 〈p〉 = P 2 (p ramifies)

where P, Pis are prime ideals and for any n =
∏r

i=1 pi, where pis are prime,

χ(n) =
r∏
i=1

χ(pi).

Definition 2.27. The Dirichlet L-function L(s, χ), where χ is a quadratic
character and s ∈ C, is defined as

L(s, χ) :=
∞∑
n=1

χ(n)

ns
.

Then, we will show that ζK(s) = ζ(s)L(s, χ) where ζ is the Riemann zeta
function.

Lemma 2.28. Let K be a quadratic field. Then the function aK(n), which
is the number of of ideals of OK of norm n, is multiplicative. That is

gcd(m,n) = 1 ⇒ aK(mn) = aK(m)aK(n).

Proof. Let I ⊆ OK be an ideal such that N(I) = mn. Then I | 〈N(I)〉
implies I | 〈m〉〈n〉. Let us write 〈m〉 =

∏
Pi and 〈n〉 =

∏
P ′j as product

of prime ideals. Now Pi 6= P ′j for all i, j (otherwise, there exists a i such
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that Pi | 〈m〉 and Pi | 〈n〉 which implies Pi | 〈m〉 + 〈n〉 = OK but this is a
contradiction). Now, since I |

∏
Pi ·

∏
P ′j , we have

I =

(∏
k

Pik

)(∏
l

P ′jl

)
:= J1J2

where Jis are uniquely determined. Now from J1 | 〈m〉 and J2 | 〈n〉 we get
N(J1) | m2 and N(J2) | n2. Also, we have N(J1)N(J2) = N(J1J2) = mn and
gcd(m,n) = 1. Therefore we get N(J1) = m and N(J2) = n. Hence, for all
ideal I such that N(I) = mn, there exist unique J1, J2 such that N(J1) = m
and N(J2) = n. We conclude that aK(mn) = aK(m)aK(n).

Theorem 2.29. Let K be a quadratic field. Then,

aK(n) =
∑
δ|n

χ(δ).

Proof. We will first compute aK(p) and aK(pr) for prime p. Then we will use
the multiplicative property of aK(n) to compute it for general n.

Claim. For prime p, we have aK(p) = 1 + χ(p).

Suppose I is an ideal such that N(I) = p. Then I is a prime ideal. Now,
we know I | 〈N(I)〉 = 〈p〉. If 〈p〉 decomposes then there are two choices for
I i.e. aK(p) = 2. If 〈p〉 remains prime then I = 〈p〉, which is not possible
since N(〈p〉) = p2; therefore aK(p) = 0. Finally, if 〈p〉 ramifies then there is
exactly one choice for I; hence in this case aK(p) = 1. Hence we have shown
that aK(p) = 1 + χ(p).

Claim. For prime power pr, we have aK(pr) = 1 + χ(p) + · · ·+ χ(p)r.

Suppose I is an ideal such that N(I) = pr. We need to consider three
cases separately, namely when χ(p) = 1,−1 and 0.

Case 1 : Suppose p decomposes into prime ideals, say 〈p〉 = P1P2. Then we
have I | 〈N(I)〉 = P r

1P
r
2 . Now, N(P1)N(P2) = p2 and note that norm of any

prime ideal dividing 〈p〉 is either p or p2, hence we get N(P1) = N(P2) = p.
Note that, I must be of the form P i

1P
j
2 for some i, j ≥ 0. Then N(I) = pipj.

Therefore i+j = r and hence there are r+1 choices for I, i.e. aK(pr) = r+1.
On the other hand, χ(p) = 1 implies 1 + χ(p) + · · ·+ χ(p)r = r + 1.

Case 2 : Suppose p remains prime ideal, say 〈p〉 = P. Then from the fact
I | 〈N(I)〉 = P r, we get I = P i for some i ≥ 0. Also, note that N(P ) = p2.
Therefore N(I) = p2i and this implies r = 2i. Hence, aK(pr) = 1 if r is even
and 0 otherwise. On the other hand, note that, since χ(p) = −1, we have
1 + χ(p) + · · ·+ χ(p)r = 1 if r is even and 0 if r is odd.
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Case3 : Suppose p ramifies, say 〈p〉 = P 2. Then from I | 〈N(I)〉 = P 2r we
get I = P i for some i ≥ 0. Also, p2 = N(P )2 implies N(P ) = p. Therefore
N(I) = pi and this implies i = r. Hence there is exactly one choice for I, i.e.
aK(pr) = 1. On the other hand, χ(p) = 0 implies 1 + χ(p) + · · ·+ χ(p)r = 1.

Hence we have established the claim for all the three cases.

Now suppose n ∈ N and has prime factorization n = pr11 · · · p
rk
k . Then

using the above claims we have:

aK(n) =
k∏
i=1

aK(prii )

=
k∏
i=1

(1 + χ(pi) + · · ·+ χ(pi)
ri)

=
∑
δ|n

χ(δ).

The last equality follows by expanding the product and using multiplicative
property of χ.

Now we state the theorem which connects Dedekind zeta function, Rie-
mann zeta function and Dirichlet L-function.

Theorem 2.30. Let K be a quadratic field. Then, for Re(s) > 1,

ζK(s) = ζ(s) · L(s, χ).

Proof. The proof follows directly from definitions and the previous theorem.
We have

ζ(s) · L(s, χ) =

(
∞∑
l=1

1

ls

)(
∞∑
m=1

χ(m)

ms

)

=
∞∑
n=1

1

ns

∑
δ|n

χ(δ)


=
∞∑
n=1

aK(n)

ns

and the last quantity is equal to ζK(s).

Let K be a real quadratic field and χ be quadratic character of K. Then,
from previous theorem we have

(s− 1)ζK(s) = (s− 1)ζ(s) · L(s, χ).
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In the next theorem we will show that (s − 1)ζ(s) extends to an analytic
function for Re(s) > 0 and lims→1(s− 1)ζ(s) = 1. Then, taking limit s→ 1+

on the both side of the above equation, we have

2RKhK√
∆K

= L(1, χ), (recall Theorem 2.25)

which implies hK = L(1, χ) ·
√

∆K/2RK .

Theorem 2.31. (s − 1)ζ(s) extends to an analytic function for Re(s) > 0
and lims→1(s− 1)ζ(s) = 1.

Proof. Note that ζ(s) =
∑∞

n=1 an/n
s, where an := 1 for all n ≥ 1. Then

A(x) :=
∑

n≤x an = [x]. Then, by Theorem 2.21, for Re(s) > 1 we have

ζ(s) = s

∫ ∞
1

[x]

xs+1
dx

= s

∫ ∞
1

x− {x}
xs+1

dx

=
s

s− 1
− s

∫ ∞
1

{x}
xs+1

. (∗)

Note that the integral
∫∞

1
{x}/xs+1 dx converges for Re(s) > 0 (since {x} =

O(1)). Therefore RHS of (∗) is analytic for Re(s) > 0 and s 6= 1. Hence, the
equation (∗) is valid for Re(s) > 0 and s 6= 1 and this implies (s − 1)ζ(s)
is analytic for Re(s) > 0. Then, multiplying both side of (∗) by (s − 1) and
taking s→ 1 we have

lim
s→1

(s− 1)ζ(s) = lim
s→1

s− lim
s→1

s(s− 1)

∫ ∞
1

{x}
xs+1

dx

= 1− 0

= 1.

Corollary 2.32. Let K be a real quadratic field. Then the class number hK
of K is given by

hK =

√
∆K

2RK

· L(1, χ)

where RK denotes the regulator of K.

Proof. Follows from Theorem 2.25, Theorem 2.30 and Theorem 2.31.

Let K be a real quadratic field and χ is a character of K . Then, by
the above corollary, to compute class number hK we need to compute two
things, namely, L(1, χ) and the regulator RK . We will discuss methods for
computing these one by one.
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2.2.1 Computing L(1, χ)

First we will discuss a method which computes L(1, χ) by approximating a
certain infinite product. We need the following proposition.

Proposition 2.33. Let K be a real quadratic field and χ be a quadratic
character for K. Then, for all n ∈ N,

χ(n) =

(
∆K

n

)
.

Proof. From Theorem 2.18 and Theorem 2.29 we have∑
δ|n

χ(δ) =
∑
δ|n

(
∆K

δ

)
.

If n is a prime, say n = p, then the above equation implies

1 + χ(p) = 1 +

(
∆K

p

)
that is χ(p) =

(
∆K

p

)
. Hence the proposition is true for n = p. Now if n is a

product of primes, say n = p1 · · · pr, then using induction on r one can easily
show that χ(n) =

(
∆K

n

)
.

Hence by Proposition 2.33 and definition of L(s, χ) we have

L(1, χ) =
∞∑
n=1

1

n

(
∆K

n

)
.

Now, the RHS of the above equation converges by Corollary 2.22. Hence,
using Euler’s product formula we can write

L(1, χ) =
∏
p

1− 1(
∆K

p

)
−1

where p ranges over all primes. We compute L(1, χ) by approximating the
above infinite product.

Next we we will discuss another way to compute L(1, χ). We will show
that the infinite sum

∑∞
n=1 χ(n)/n can be written as a finite sum and hence

making the computation of L(1, χ) possible theoretically, although computa-
tionally evaluating this finite sum is not efficient. We will need the following:
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Proposition 2.34. Let ∆K be the discriminant of a real quadratic field K.
Then, for m,n ∈ N,

m ≡ n (mod ∆K) ⇒
(

∆K

m

)
=

(
∆K

n

)
.

Proof. See [ME04] Exercise 7.6.16.

For the rest of this section K will denote a real quadratic field and χ will
denote the quadratic character of K. By previous proposition we have

L(s, χ) =
∞∑
n=1

χ(n)

ns
=

∆K−1∑
m=0

χ(m)
∞∑
n=1

n≡m (mod ∆K)

1

ns

where χ(0) := 0. We write the above equation as

L(s, χ) =

∆K−1∑
m=0

χ(m)
∞∑
n=1

cm(n)

ns

where

cm(n) :=

{
0 if n 6≡ m (mod ∆K)
1 if n ≡ m (mod ∆K)

.

We can write cm(n) as follows

cm(n) =
1

∆K

∆K−1∑
j=0

γ(m−n)j

where γ is a primitive ∆Kth root of unity. Then this implies

L(s, χ) =

∆K−1∑
m=0

χ(m)
∞∑
n=1

1

∆K

∆K−1∑
j=0

γ(m−n)j

=
1

∆K

∆K−1∑
j=0

(
∆K−1∑
m=0

χ(m)γmj

)
∞∑
n=1

γ−nj

ns
.

The inner sum g(χ, γj) :=
∑∆K−1

m=0 χ(m)γmj is called the Gauss sum. Let us

denote the outer sum as `(s) :=
∑∞

n=1
γ−nj

ns
, then we want to evaluate `(1).

To evaluate `(1) we will use complex logarithm. For z ∈ C define

log z := ln |z|+ iArg z, −π < Arg z ≤ π.
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Also for |z| < 1 we have

log(1− z) = −
(
z +

z2

2
+ · · ·+ zn

n
+ · · ·

)
;

note that the RHS converges for |z| < 1.

Proposition 2.35. The series
∑∞

n=1
zn

n
converges when z is a root of unity

and z 6= 1.

Proof. We have the Dirichlet series
∑∞

n=1
zn

ns
=
∑∞

n=1
an
ns

, where an := zn for
each n. Now ∑

n≤x

an =
∑
n≤x

zn = O(1)

since z 6= 1 and z is a root of unity. Therefore by Theorem 2.21 the sum∑∞
n=1

zn

ns
converges for Re(s) > 0. Hence the series

∑∞
n=1

zn

n
converges.

Therefore if z is a root of unity and z 6= 1 then

−
∞∑
n=1

zn

n
= log(1− z) = ln |1− z|+ iArg(1− z).

Putting z = γ−j in the above equation we get `(1) = − log(1− γ−j) and this
implies

L(1, χ) = − 1

∆K

∆K−1∑
j=0

g(χ, γj) log(1− γ−j).

Proposition 2.36. Gauss sum has the following property

g(χ, γj) = χ(j)g(χ, γ)

Proof. First assume gcd(j,∆K) = 1. Then ∃j′ such that jj′ ≡ 1 (mod ∆K).
Then,

g(χ, γj) =

∆K−1∑
m=0

χ(m)γmj

=

∆K−1∑
m=0

χ(mj′)γ(mj′)j

=

∆K−1∑
m=0

χ(m)χ(j′)γm

= χ(j′)g(χ, γ).
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Now χ(j)χ(j′) = 1 implies χ(j) = χ(j′). Therefore g(χ, γj) = χ(j)g(χ, γ).
Now, if gcd(j,∆K) > 1 then g(χ, γj) = 0 (see [Jan96] Corollary C.6 for the
proof) and hence g(χ, γj) = χ(j)g(χ, γ).

Therefore using the above proposition, we can write L(1, χ) as

L(1, χ) = − 1

∆K

g(χ, γ)

∆K−1∑
j=0

χ(j) log(1− γ−j).

Our next task is to evaluate the sum S :=
∑∆K−1

j=0 χ(j) log(1− γ−j). Let

us fix the value of γ as γ = e2πi/∆K . For 0 < j < ∆K we write

1− γ−j = γ−j/2(γj/2 − γ−j/2)

= 2iγ−j/2 sin
πj

∆K

= 2 sin
πj

∆K

· ei(π/2−πj/∆K)

and hence log(1− γ−j) = 2 sin πj
∆K

+ i
(
π
2
− πj

∆K

)
. We have,

S =

∆K−1∑
j=0

χ(j) log(1− γ−j) (∗)

=

∆K−1∑
j=0

χ(∆K − j) log
(
1− γ(∆K−j)

)
.

Proposition 2.37. We have χ(∆K − j) = χ(j)

Proof. Note that χ(∆K − 1) = 1 (see [Jan96] Chapter 6, Theorem 4.2 for
proof). Then,

χ(∆K − j) = χ(j(∆K − 1)− (j − 1)∆K)

= χ(j(∆K − 1))

= χ(j)χ(∆K − 1)

= χ(j).

Using the above proposition we have

S =

∆K−1∑
j=0

χ(j) log(1− γj). (∗∗)
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Now, adding the equations (∗) and (∗∗) we get

2S =

∆K−1∑
j=0

χ(j)
(
log(1− γ−j) + log(1− γj)

)
.

Now, since 1− γj = 1− γ−j, we get

log(1− γ−j) + log(1− γj) = 2 ln |1− γ−j| = 2 ln

(
2 sin

πj

∆K

)
.

Hence we have obtained

S =

∆K−1∑
j=1

χ(j) ln

(
2 sin

πj

∆K

)

=

(
∆K−1∑
j=1

χ(j)

)
ln 2 +

∆K−1∑
j=1

χ(j) ln

(
sin

πj

∆K

)

=

∆K−1∑
j=1

χ(j) ln

(
sin

πj

∆K

)
.

Therefore we have

L(1, χ) = − 1

∆K

g(χ, γ)

∆K−1∑
j=1

χ(j) ln

(
sin

πj

∆K

)
.

Now since χ(j) = χ(∆K − j) and sin(π−α) = sinα, we obtain the following
expression

L(1, χ) = − 2

∆K

g(χ, γ)

[∆K/2]∑
j=1

gcd(j,∆K)=1

χ(j) ln

(
sin

πj

∆K

)
.

Note that, L(1, χ) ∈ R and L(1, χ) > 0 (since L(1, χ) = 2RKhK/
√

∆K > 0);
hence L(1, χ) = |L(1, χ)|. Now taking modulus on the both side of the
previous equation and using the fact that |g(χ, γ)| =

√
∆K (see [Jan96]

Theorem C.7 for proof) we obtain the following finite sum for L(1, χ):

L(1, χ) =
2√
∆K

∣∣∣∣∣∣∣∣
[∆K/2]∑
j=1

gcd(j,∆K)=1

χ(j) ln

(
sin

πj

∆K

)∣∣∣∣∣∣∣∣ .
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2.2.2 Computing the Regulator

Here we will describe a method for computing the regulator of quadratic
field; the idea of this algorithm is due to Shanks. For this we need to define
a new notion of “distance” between ideals.

Let K be a real quadratic field and α ∈ K∗. Then we define

Logα :=
1

2
log

∣∣∣∣σ(α)

α

∣∣∣∣ = log |σ(α)| − 1

2
log |N(α)|

where σ(α) is the conjugate of α. Then we have the following proposition:

Proposition 2.38. We have the following facts:

• The map Log : K∗ → (R,+) is a group homomorphism and the kernel
of this map is Q∗ ∪Q∗

√
∆K .

• If a ∈ O×K then Log a = − log |a|.

• Log ε0 = −RK, where ε0 is the fundamental unit and RK is the regula-
tor of K.

• If α ∈ K∗ then Log σ(α) = −Logα.

Proof. Directly follows from definition of Log.

Let P denote the set of all principal fractional ideals of OK , where K is
a real quadratic field. Then we define the map d : P → R/RKZ given by,

d(αOK) = Logα +RKZ, where α ∈ K∗.

This d is interpreted as the distance between OK and αOK .

Proposition 2.39. The map d is well defined.

Proof. Suppose αOK = βOK for some α, β ∈ K∗. Then we have α = βb and
β = αa for some a, b ∈ OK . Then this implies α/β ∈ O×K , that is α/β = ±εn0
for some n. Then we have

Logα− Log β = Log
α

β
= Log εn0 = −nRK

and hence we conclude that d(αOK) = d(βOK).
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Next we extend d to define “distance” between any two ideals in the same
equivalence class. Suppose I and J are ideals of OK such that J ∼ I, say
J = (αOK)I = αI for some α ∈ K∗. Then we define

d(I, J) := Logα +RKZ.

Suppose I and J are two ideals both equivalent to some ideal I0. Then
I = αI0 and J = βI0 for some α, β ∈ K∗. Then we have

d(I, J) = Log β − Logα +RKZ.

Note that every ideal class contains a reduced ideal (as defined in Section
2.1). Let I0 be a reduced ideal in some ideal class and suppose for i ≥ 0, Iis
are the reduced ideals equivalent to I0. Then I0, I1, . . . , Il−1, Il = I0 forms a
cycle for some l. Note that Ii+1 = ρ(Ii) for each i, where ρ is the reduction
operator. Then, for each i, Ii+1 ∼ Ii, that is we have Ii+1 = γiIi for some
γi ∈ K∗. Then,

Ii =

(
i−1∏
j=0

γj

)
I0 = αiI0,

where αi :=
∏i−1

j=0 γj. Therefore, for each i, we can write

d(Ii, Ii+1) = Log γi +RKZ

and
d(I0, Ii) = Logαi +RKZ.

Then with these notations we have the following theorem.

Theorem 2.40. For each i ≥ 0 we have:

• If (ai, bi, ci) is the quadratic form equivalent to the ideal Ii, then

Log γi =
1

2
log

√
∆K + bi√
∆K − bi

> 0.

• Logαi < Logαi+1.

• Logαl = RK.

Proof. See [BV07] Lemma 10.1.5.

Moreover, we have the following facts:

Theorem 2.41. For each i ≥ 0,
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• 1√
∆K

< Log γi <
1
2

log ∆K

• Log γi + Log γi+1 > log 2

• l ≤ 1 + 2RK/ log 2.

Proof. Note that the third one is an immediate corollary of the second. For
the proof of first two, see [BV07] Lemma 10.1.6.

We started with a reduced ideal I0 in some equivalence class and we got
the following cycle of reduced ideals

C = {I0, I1, . . . , Il−1, Il = I0}

such that d(I0, Ij) = Logαj + RKZ for each j. Note that the length of this
cycle C is equal to RK by Theorem 2.40. So, to compute the regulator, we
need to compute the length of the cycle C. We will start with I0 = OK . We
will give the set C a group like structure. For I, I ′ ∈ C define

I ? I ′ := ρk(II ′),

where k is the least i such that ρi(II ′) is reduced. Note that (C, ?) satisfies
commutativity, associativity and has identity I0. So, the problem of comput-
ing RK is almost like computing the order of the “group” (C, ?). Note that,
we also need to compute the distance from I0 at each stage to compute the
total length RK of the cycle C, i.e. one needs to keep track of the distance
from I0. This is done by the following formulas:

d(I0, II
′) = d(I0, I) + d(I0, I

′)

(note that I, I ′ ∼ I0 implies II ′ ∼ I0) and

d(I0, I ? I
′) = d(I0, II

′) + d(II ′, I ? I ′).

One can show that d(II ′, I ? I ′) < 2 ln
√

∆K , then this says that d(I0, I ? I
′)

is easy to compute since d(II ′, I ? I ′) is very small. The first statement of
Theorem 2.40 is used for computing d(·).

So, to compute the regulator, we need to compute the “order” of (C, ?)
together with computing the distance from I0 at each stage. One can compute
this by brute force. Although, there is probabilistic algorithm by Shanks,
called Baby step, Giant step Algorithm, which computes the regulator in time
O(∆

1/4+ε
K ); this algorithm assumes some bounds on |C| and the algorithm

depends on the correctness of those bounds, see [Coh96] Section 5.4.1 for
more details.
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There are also other algorithms to compute RK . For example, one can try
to compute the fundamental unit ε0 directly, which is equivalent to finding
the solutions of Pell’s Equation. There are algorithms to find this solutions
using the method of continued fractions, look at [Bur80] Section 13.5 for
more details.
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Chapter 3

Cohen-Lenstra Heuristics

In this chapter we will discuss Cohen-Lenstra Heuristics and it’s connection
with quadratic and number fields. There is a very promising set of conjectures
given by Henri Cohen and Hendrik Lenstra Jr., according to which, a positive
fraction of real quadratic fields has class number one. Note that, it is still
an open question whether there are infinitely many real quadratic fields of
class number one, which was conjectured by Gauss. So the conjectures of
Cohen and Lenstra is definitely a big step towards Gauss’ conjecture. We will
discuss the Cohen-Lenstra probability model for imaginary quadratic fields,
real quadratic fields and arbitrary number fields one by one.

3.1 Probabilistic model for Imaginary Quadratic

Fields

We will denote the set of all finite abelian groups of odd order (i.e. groups
with trivial 2-part) by G and for any fixed prime p 6= 2, Gp will denote the set
of all finite abelian p-groups. Now, suppose X is a random variable taking
values in Gp. We will show that there is a natural probability distribution P
which can be attached to X such that

P (X = Gp) ∝
1

|Aut(Gp)|
,

where Gp ∈ Gp. We will explain why the above distribution is a natural
distribution on Gp by showing that this distribution can be obtained from
another natural measure called Haar measure which is a generalization of
the Lebesgue measure to the topological groups. Once we have the above
probability measure on Gp, our next task will be to extend this probability
measure to the class G. Since any group can G ∈ G can be written as a
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product of p-groups and since Aut(G1 × G2) = Aut(G1) × Aut(G2) for any
two different p-groups G1 and G2, we might want to define P on G such that

P (X = G) ∝ 1

|Aut(G)|
,

for any G ∈ G. But, note that, the above definition does not give us a
probability measure because,∑

G∈G

1

|Aut(G)|
≥
∑
p

1

|Aut(Z/pZ)|
=
∑
p

1

p− 1
=∞

(where p ranges over all odd primes). Another way is to try to define P as
follows: For G ∈ G, such that G =

∏
pGp (where Gp ∈ Gp), define

P (X = G) :=
∏
p

P (X = Gp),

but one can check that this again does not satisfy the properties of a measure.
We will show how to extend this probability measure P from Gp to G.

3.1.1 Cohen-Lenstra measure for p-groups

First we need the following lemma.

Lemma 3.1. Fix a prime p. Suppose Gp is a finite abelian p-group and

Gp =
k∏
i=1

(Z/peiZ)ri

for some k ≥ 0, e1 > e2 > · · · > ek > 0 and ri ≥ 0. Then

|Aut(Gp)| =

(
k∏
i=1

(
ri∏
s=1

(1− p−s)

))( ∏
1≤i,j≤k

pmin(ei,ej)rirj

)
.

Proof. See [Len09] Theorem 1.2.10.

Next we will prove the following theorem. The ideas used in the proof of
this theorem will be will be necessary in many places of this chapter. So the
reader is advised to go through this proof throughly.

Theorem 3.2. For any fixed prime p,∑
Gp∈Gp

1

|Aut(Gp)|
=
∞∏
j=1

(
1− 1

pj

)−1

.
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Proof. The original proof, due to Cohen and Lenstra, of this theorem is
long and uses zeta functions. We will present a more elegant and shorter
combinatorial proof due to Hall.

Note that, the RHS can be written as a power series in q := p−1:
∞∏
j=1

(1− p−j)−1 =
∞∑
n=0

anq
n

where an is the number of partitions of size n. Now, note that there is an
associated partition corresponding to every p-group and corresponding to
every partition there is an associated p-group; this comes from writing p-
groups uniquely as a product of cyclic groups. For example, if we write a
p-group Gp as,

Gp =
k∏
i=1

Z/peiZ

where e1 ≥ e2 ≥ · · · ≥ ek > 0, then the associated partition λ is given by λ =
(e1, e2, . . . , ek). And, corresponding to every partition λ = (λ1, λ2, . . . , λk)
the associated p-group Gλ is given by Gλ =

∏k
i=1 Z/pλiZ. Note that, if |λ|

denotes the size of the partition λ, then the order of the p-group Gλ is given
by |Gλ| = p|λ|. Now, with the above notations, we need to show

∞∑
n=0

anq
n =

∑
Gp∈Gp

1

|Aut(Gp)|

=
∞∑
n=0

∑
Gλ∈Gp
|λ|=n

1

|Aut(Gλ)|
.

Let λ := (λ1, . . . , λl) be a partition of size n and suppose λ′ := (λ′1, . . . , λ
′
m)

is it’s conjugate partition. Then, note that, in Gλ (as a product of cyclic
groups), the factor Z/piZ occurs exactly λ′i − λ′i+1 times (where λ′m+1 := 0).
Then using Lemma 3.1 we can write

|Aut(Gλ)| =

 m∏
i=1

λ′i−λ′i+1∏
s=1

(1− p−s)

( ∏
1≤i,j≤m

pmin(i,j)(λ′i−λ′i+1)(λ′j−λ′j+1)

)

=

 m∏
i=1

λ′i−λ′i+1∏
s=1

(1− p−s)

 p
∑

1≤i,j≤m min(i,j)(λ′i−λ′i+1)(λ′j−λ′j+1)

=

 m∏
i=1

λ′i−λ′i+1∏
s=1

(1− p−s)

 p
∑m
i=1(λ′i)

2

.
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So, we need to show

∞∑
n=0

anq
n =

∞∑
n=0

∑
Gλ∈Gp
|λ|=n

1

|Aut(Gλ)|

=
∞∑
n=0

∑
Gλ∈Gp
|λ|=n

 m∏
i=1

λ′i−λ′i+1∏
s=1

(1− p−s)−1

( m∏
i=1

p−(λ′i)
2

)

=
∞∑
n=0

∑
Gλ∈Gp
|λ|=n

 m∏
i=1

λ′i−λ′i+1∏
s=1

(1− qs)−1

( m∏
i=1

q(λ′i)
2

)

=
∞∑
n=0

∑
Gµ∈Gp
|µ|=n

(
m∏
i=1

(
µi−µi+1∏
s=1

(1− qs)−1

))(
m∏
i=1

qµ
2
i

)
,

since µ := λ′ varies over all partitions as λ varies over all partitions. Now,
we have the following identity due to Euler,

∞∑
n=0

anq
n =

∞∑
n=0

qn
n∏
i=1

(1− qi)−1.

Hence, it is enough to show that

qn
n∏
i=1

(1− qi)−1 =
∑
Gµ∈Gp
|µ|=n

(
m∏
i=1

(
µi−µi+1∏
s=1

(1− qs)−1

))(
m∏
i=1

qµ
2
i

)

=
∑
Gµ∈Gp
|µ|=n

(
m∏
i=1

ψµi,µi−1−µi(q)

)(
m∏
i=1

qµ
2
i

)
,

where

ψa,b(q) :=

∏a+b
i=1 (1− qi)∏a

i=1(1− qi)
∏b

i=1(1− qi)
, ψa,∞(q) :=

1∏a
i=1(1− qi)

and µ0 := ∞; note that, the coefficient of qn in ψa,b(q) is the number of
partitions of n with hight at most a and width at most b. Now, to show the
above equality, for each N , we will equate the coefficients of qN on the both
sides.
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Note that, the coefficient of qN on LHS is equal to the number of partitions
of N −n with greatest part (width) at most n, which is equal to the number
of partitions of N with greatest part exactly equal to n. Let ν be a partition
of N with greatest part equal to n; then, to each such ν we will associate a
partition µ of size n on the RHS. Consider the conjugate ν ′ of ν and let D be
the standard Young diagram of ν ′. Note that ν ′ has hight equal to n. Now,
define µ := (µ1, . . . , µm) as follows:

• Define µ1 to be the largest integer such that (µ1, µ1) ∈ D.

• For i ≥ 2, define µi to be the largest integer such that

(µ1 + · · ·+ µi, µi) ∈ D.

(where (i, j) ∈ D is defined as the block of D situated at the ith row from
top and jth column from left). Then |µ| = n. If M is the number of blocks
outside the squares of size µi then M = N − µ2

1 − µ2
2 − · · · − µ2

m. Let Mi be
the number of blocks at the right of the block of size µi, i.e.

Mi := |{(x, y) ∈ D : µ1 + · · ·+ µi−1 < x < µ1 + · · ·+ µi, µi < y}| .

Then the blocks corresponding to Mi gives a partition of Mi of hight at most
µi and width at most µi−1 − µi and hence this contributes to the coefficient
of qMi in ψµi,µi−1−µi(q) on RHS. Note that M = M1 + · · ·+Mm which implies
M1 + · · ·+Mm+µ2

1 + · · ·+µ2
m = N and hence µ contributes to the coefficient

of qN on RHS.

Note that, the above construction can be reversed. Suppose µ is a parti-
tion which corresponds to the coefficient of qN on RHS such that µ is specified
by the numbers Mi, where M1 + · · ·+Mm+µ2

1 + · · ·+µ2
m = N , and partitions

of Mi of hight at most µi and width at most µi−1−µi. Then we can construct
the Young diagram D and construct the corresponding partition ν on LHS.
Hence, we conclude that the coefficients of qN on both sides are equal and
this proves the theorem.

Let p be a fixed prime . Then the above theorem will enable us to define
the following probability measure on Gp, the class of all p-groups.

Definition 3.3. The Cohen-Lenstra probability measure on p-groups
(or, the local Cohen-Lenstra probability measure), denoted by Pp, is
defined as

Pp(Gp) :=
1

|Aut(Gp)|

∞∏
j=1

(
1− 1

pj

)
for each Gp ∈ Gp.
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Note that by Theorem 3.2,∑
Gp∈Gp

Pp(Gp) = 1

and hence Pp indeed defines a probability measure on Gp. Next we will ex-
plain why this probability measure arises “naturally”, by showing that this
probability measure can be obtained from Haar measure.

First we need to ask what is the most natural way to generate random
finite abelian p-groups. The first thought that comes to mind is to use the
structure theorem for finite abelian p-groups. That is, choose randomly a
decreasing sequence of natural numbers, say e1 ≥ e2 ≥ · · · ≥ er and output
the group

∏r
i=1 Z/peiZ. But unfortunately, there is no way to choose even

one single element randomly from N. So this approach to generate random
finite abelian p-groups does not work.

Next we will describe another natural way to generate random finite p-
groups which at the end of the day will give us the local Cohen-Lenstra
probability measure. The idea is to view finite abelian groups as free groups
with finite number of generators and then impose relations on these gener-
ators. Let G be a finite abelian group; then we can write G = 〈g1, . . . , gr〉,
where r = rank(G), together with relations of the form e1g1 + · · ·+ ergr = 0,
where ei ∈ Z. Since |G| < ∞, we must have r relations. That is, we can
write G as G = Zr/ im(A), where A : Zr → Zr is an r× r matrix. Now, since
we want to generate p- groups, we replace Zr by Zr

p, where Zp is the ring of
p-adic integers, and take A to be an r × r matrix over Zp. Then, any finite
abelian p-group can be generated this way and this is given by the following
theorem.

Theorem 3.4. Any finite abelian p-group Gp can be written as Gp = Zr
p/ im(A),

where A : Zp → Zp is an r × r matrix.

Proof. Note that Gp is a Zp module with respect to the following multipli-
cation: For g ∈ Gp, where o(g) = pm, define

(a0 + a1p+ a2p
2 + · · · )g := a0g + a1(pg) + · · ·+ am−1(pm−1g).

Now, |Gp| < ∞ implies Gp is finitely generated as a Zp module; suppose
Gp is generated by g1, . . . , gr. Then, we have a surjection π : Zr

p → Gp of
Zp modules such that π(ei) = gi for i = 1, . . . , r, where e1, . . . , er is the
canonical basis for Zr

p. Then Zr
p/ ker(π) ∼= Gp. Now |Gp| < ∞ implies that

the Zp submodule ker(π) has rank r. Let x1, . . . , xr be a basis for ker(π) and
let A ∈ Zr×r

p be such that Aei = xi for i = 1, . . . , r. Then im(A) = ker(π)
and therefore we conclude that Zr

p/ im(A) ∼= Gp.
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Then by above theorem, any Gp ∈ Gp is completely specified by a matrix
in Zr×r

p . To generate Gp randomly, we need to choose A ∈ Zr
p randomly,

i.e. we need to choose each element of A randomly from Zp (note that, the
distribution of A is the product of the distributions of each element in the
matrix, since they are independent). Now, choosing an element randomly
from Zp is possible because, Zp with the p-adic topology is a locally compact
Hausdorff topological space and hence Zp is equipped with a natural prob-
ability distribution coming from the Haar measure. We state the following
theorem regarding Haar measure:

Theorem 3.5. Let G be a locally compact Hausdorff topological space. Then
there exists, up to a positive multiplicative constant, a unique countably ad-
ditive non-trivial measure µ on the Borel subsets of G satisfying:

1. µ is left translation invariant, i.e., µ(gE) = µ(E) for all g ∈ G and for
all Borel sets E.

2. 0 < µ(K) <∞ for any compact subspace K of G.

3. µ is outer regular on Borel sets E, i.e.

µ(E) = inf{µ(U) : E ⊆ U and U is open }.

4. µ is inner regular on open sets E, i.e.

µ(E) = sup{µ(K) : K ⊆ E and K is compact }.

Proof. Look at any standard text.

We will use the first and second property in the proof of the next theorem.
For us, we will specify µ(G) = 1, since we want µ to be a probability measure;
in this case µ is uniquely determined.

Coming back to p-groups, we have that, for any Gp ∈ Gp, Gp
∼= Zr

p/ im(A)
where A ∈ Zr×r

p . We choose A randomly. Note that, we need A to be of full
rank since |Gp| <∞. So we should have that

Pr(A does not have full rank) = 0

where Pr(·) denotes the probability measure coming from Haar measure.
This is ensured by the following theorem.

Theorem 3.6. Suppose A is a randomly chosen (w.r.t. Haar measure) ma-
trix from Zn×n

p . Then,

Pr(A has full rank) = 1

for all n > 0.
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Proof. We will prove the theorem through many claims.

Claim. A ∈ Zn×n
p has full rank if and only if there exists e ≥ 0 such that

(peZp)
n ⊆ im(A).

The ‘only if’ part is obvious. For the other direction, suppose for each i
there exists vi ∈ Zn

p such that Avi = peei, where ei is the canonical basis with
1 at the ith position. Then Av′i = ei, where v′i := p−evi ∈ Qn

p . This implies
that det(A) ∈ Qp \ {0}. Now, since A ∈ Zn×n

p , we have det(A) ∈ Zp \ {0}.
Therefore, A has full rank.

Claim. For any e′ > e, (peZp)
n ⊆ im(A) iff (peZ/pe′Z)n ⊆ im(A mod pe

′
).

The ‘only if’ part is obvious. For the other direction, we prove for n = 1
and this simply generalizes for any n. Take any

x := pe(a0 + a1p+ · · ·+ arp
r + · · · ) ∈ (peZp)

n.

Suppose e+ r = e′. Then

x = (pea0 + · · ·+ pear−1p
r−1) + pr(pear + pear+1p+ · · ·+ pea2r−1p

r−1) + · · ·
= Ax1 + pr(Ax2) + · · · (say)

= A(x1 + prx2 + p2rx3 + · · · ) ∈ im(A).

From the above claims we have

Pr(A has full rank) =
∑
e≥0

Pr((peZp)
n ⊆ im(A))

≥ Pr((peZp)
n ⊆ im(A)) ∀e ≥ 0

= Pr((peZ/pe′Z)n ⊆ im(A mod pe
′
)) ∀e ≥ 0, e′ > e.

Now, peZ/pe′Z is a discrete subgroup of Zp, since for any x, y ∈ peZ/pe′Z we
have |x− y|p ≥ p−e

′
.

Claim. Haar measure on any discrete topological group (locally compact,
Hausdorff) is equivalent to the counting measure.

Let G be a discrete group and take any g ∈ G. Then {g} is compact
in G. Therefore 0 < µ({g}) < ∞. Now for any other h ∈ G, we can write
g = (gh−1)h. Then g is a left translation of h and this therefore implies that
µ({g}) = µ({h}). Hence, for all g ∈ G, µ({g}) = c for some constant c > 0,
that is, µ is a counting measure.
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So we can compute Pr(A has full rank) by counting the matricesA mod pe
′

such that (peZ/pe′Z)n ⊆ im(A). Let N(e, e′) denote the number of such ma-
trices. Then one can directly computeN(e, e′) and verify thatN(e, e′)/pn

2e′ →
1 as e→∞. See the paper [FW89] for reference. Now, we have

Pr(A has full rank) ≥ Pr((peZ/pe′Z)n ⊆ im(A mod pe
′
))

≥ N(e, e′)/pn
2e′ ,

since the total number of matrices over Z/pe′Z is pn
2e′ . Then, taking limit

e→∞, we have that Pr(A has full rank) = 1.

In the next theorem we show that the local Cohen-Lenstra measure can
be obtained as a limiting distribution of the Haar measure and therefore it
explains the naturality of this measure.

Theorem 3.7. Suppose Gp ∈ Gp and rank(Gp) = r. Let A ∈ Zn×n
p be a

randomly chosen matrix w.r.t. Haar measure. Then

Pr(Zn
p/ im(A) ∼= Gp)→ Pp(Gp) as n→∞,

where Pp is the local Cohen-Lenstra probability measure.

Proof. We will explicitly compute the probability Pr(Zn
p/ im(A) ∼= Gp) and

then take limit as n → ∞. Let Γ ⊆ Zn
p be a Zp-submodule such that

Zn
p/Γ
∼= Gp; fix such a Γ. We will compute Pr(im(A) = Γ). Now, since Γ is

free and |Zn
p/Γ| <∞, we have rank(Γ) = n. Let γ1, . . . , γn be a Zp-basis for

Γ. Let A0 ∈ Zn×n
p be such that A0ei = γi for i = 1, . . . , n, where eis are the

canonical basis for Zn
p ; i.e. γis are the columns of A0. Then, im(A0) = Γ.

Claim. {A ∈ Zn×n
p : im(A) = Γ} = A0 ·GLn(Zp).

Note that, for all B ∈ GLn(Zp), im(A0B) = im(A0) = Γ and this implies
that A0 · GLn(Zp) ⊆ {A ∈ Zn×n

p : im(A) = Γ}. Conversely, let A ∈ Zn×n
p

be such that im(A) = Γ. Then there exists vi ∈ Zn
p such that Avi = γi for

each i = 1, . . . , n. This implies that {v1, . . . , vn} is a basis for Zn
p . Then,

there exists B ∈ GLn(Zp) such that Bvi = ei for i = 1, . . . , n. Then for each
i = 1, . . . , n,

A0Bvi = A0ei = γi = Avi

and hence A = A0B. Therefore, {A ∈ Zn×n
p : im(A) = Γ} ⊆ A0 ·GLn(Zp).

Now, by the properties of Haar measure, we have

Pr(im(A) = Γ) =
1

|det(A0)|n
· Pr(A ∈ GLn(Zp))

=
1

|Gp|n
· Pr(A is invertible).
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Claim. A ∈ GLn(Zp) if and only if A mod p ∈ GLn(Z/pZ).

If A ∈ GLn(Zp) then there exists B ∈ GLn(Zp) such that AB = I.
Then (A mod p)(B mod p) = I and hence A mod p ∈ GLn(Z/pZ). For
the converse, let A ∈ Mn(Zp) be such that A mod p ∈ GLn(Z/pZ). Then
det(A mod p) = det(A) mod p 6= 0 in Z/pZ. Therefore p - det(A), i.e.
det(A) is a unit in Zp; hence det(A)−1 ∈ Zp. Now, A · adjA = det(A) · I
implies A(det(A)−1 adjA) = I. Therefore A ∈ GLn(Zp).

Using the above claim we can write

Pr(A ∈ GLn(Zp)) = Pr(A mod p ∈ GLn(Z/pZ))

=
|GLn(Z/pZ)|
|(Z/pZ)n×n|

=
|GLn(Z/pZ)|

pn2 .

Claim. |GLn(Z/pZ)| = pn
2∏n

i=1(1− p−i).

We need to count the number of invertible matrices in Z/pZ. For any
invertible matrix, the first column can be any non-zero vector, i.e. there are
pn − 1 choices for the first column; the second column should not be in the
span of the first column, this gives pn − p choices for the second column; in
general, the ith column should not be in the span of 1st, 2nd,. . . ,(i−1)th
columns, which gives pn − pi−1 choices for the i th column. Hence we get

|GLn(Z/pZ)| =
n∏
i=1

(pn − pi−1)

= pn
2

n∏
i=1

(1− pi−1−n)

= pn
2

n∏
i=1

(1− p−i).

Then we get Pr(A ∈ GLn(Zp)) =
∏n

i=1(1− p−i)). This implies

Pr(im(A) = Γ) =
1

|Gp|n
n∏
i=1

(1− p−i);

note that this is independent of Γ. Now,

Pr(Zn
p/ im(A) ∼= Gp) = |{Γ ⊆ Zn

p : Zn
p/Γ
∼= Gp}| · Pr(im(A) = Γ)

=
1

|Gp|n
n∏
i=1

(1− p−i) · |{Γ ⊆ Zn
p : Zn

p/Γ
∼= Gp}|.
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Claim. We have the following:

|{Γ ⊆ Zn
p : Zn

p/Γ
∼= Gp}| =

|Gp|n

|Aut(Gp)|

n∏
i=n−r+1

(1− p−i).

We will count the number of surjective homomorphisms, say sn, of Zp-
modules from Zn

p to Gp. Note that,

|{Γ ⊆ Zn
p : Zn

p/Γ
∼= Gp}| =

sn
|Aut(Gp)|

,

because, each surjective homomorphism defines a submodule Γ = ker(φ) and
two such surjecive homomorphisms φ1 and φ2 defines the same Γ if and only
if there exists an automorphism σ of Gp such that φ1 = σ ◦ φ2. Let sn be
the number of surjective homomorphisms (of Z/pZ-modules) from (Z/pZ)n

to Gp/pGp. Now, by Nakayama’s lemma, φ ∈ HomZp(Z
n
p , Gp) is surjective if

and only if

φ := φ mod p ∈ HomZ/pZ((Z/pZ)n, Gp/pGp)

is surjective. Therefore,

sn = sn · |{φ ∈ HomZp(Z
n
p , Gp) : φ = 0}|.

Now, φ = 0 if and only if im(φ) ∈ pGp, i.e. if and only if φ(ei) ∈ pGp, where
eis are the canonical basis for Zn

p . Then

|{φ ∈ HomZp(Z
n
p , Gp) : φ = 0}| = |pGp|n .

Claim. |pGp| = 1
pr
|Gp|

We will show that |Gp| = pr|pGp|. Let Gp = 〈g1, . . . , gr〉, note that
rank(Gp) = r. Then,

Gp = Zg1 + · · ·+ Zgr
= (pZg1 + · · ·+ pZgr) + (Z/pZg1 + · · ·+ Z/pZgr)
= pGp + (Z/pZg1 + · · ·+ Z/pZgr)

and this implies that |Gp| = |pGp| · pr.
Hence, we get that

sn = sn ·
(
|Gp|
pr

)n
.
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Next our task is count sn. Note that, sn is equal to the number of n × r
matrices of rank r over Z/pZ. For any such matrix, there are pn choices for
it’s first column and in general pn − pi−1 choices for the ith column, where
i = 1, . . . , r. Hence sn =

∏r
i=1(pn − pi−1). Then we get,

sn =
|Gp|n

prn
·

r∏
i=1

(pn − pi−1)

= |Gp|n ·
n∏

i=n−r+1

(1− p−i).

Therefore we have,

Pr(Zr
p/ im(A) ∼= Gp) =

sn
|Aut(Gp)|

· Pr(im(A) = Γ))

= |Gp|n
n∏

i=n−r+1

(1− p−i) 1

|Aut(Gp)|
· 1

|Gp|n
n∏
i=1

(1− p−i)

=
1

|Aut(Gp)|
·
n∏
i=1

(1− p−i)
n∏

i=n−r+1

(1− p−i).

Now taking limit as n→∞, we get

Pr(Zr
p/ im(A) ∼= Gp) −→

1

|Aut(Gp)|

∞∏
i=1

(1− p−i) = Pp(Gp).

3.1.2 Global Cohen-Lenstra measure

Next, we will see how to extend the local Cohen-Lenstra probability measure
Pp to a bigger class of groups. We will define a σ-algebra Σ over the class
of all groups with trivial 2-part (denoted by G) and a probability measure P
on Σ, such that, P is compatible with the local Cohen-Lenstra measure Pp,
i.e. it satisfies

1. P (π−1
p (M)) = Pp(M) for all M ⊆ Gp, where πp : G → Gp is the natural

projection to pth part.

2. For finitely many distinct primes p1, . . . , pk,

P

(
k⋂
i=1

π−1
pi

(Mi)

)
=

k∏
i=1

P (π−1
pi

(Mi)) =
k∏
i=1

Ppi(Mi).
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Let P denote the set of all odd primes. Then condition 1 implies that
π−1
p (M) ∈ Σ for all M ⊆ Gp and p ∈ P. One can think of P as the joint distri-

bution and Pps as the marginal distributions. Although P looks like a product
measure, but since G =

⊕
p Gp, we can not define a product measure on G.

Condition 2 says that, the p-parts of a group G ∈ Gp should be independent
w.r.t. the probability measure P . The motivation for this condition comes
from the following fact: IfG = G1×G2, whereGis are different p-groups, then
Aut(G) = Aut(G1)×Aut(G2), i.e. 1/ |Aut(G)| = 1/ |Aut(G1)|·1/ |Aut(G2)| .

The first thing that comes to mind is to define Σ as the smallest σ-algebra
that contains the set {π−1

p (M) : p ∈ P, M ⊆ Gp} and define P on Σ by the
product formula. But unfortunately, this does not define a measure, as given
by the following proposition.

Proposition 3.8. Under the above definition, one can show that P (G) = 0
and hence this does not define a probability measure.

Proof. Let G ∈ G and suppose G = Gp1 × · · · ×Gpr , where Gpi is a pi-group
and pis are distinct. Then we can write

{G} =
r∏
i=1

π−1
pi

({Gpi)} ×
∏
p 6=pi

π−1
p ({0}),

which is countable intersection of measurable sets and hence {G} ∈ Σ. Now,
by condition 2, we have

P ({G}) =
r∏
i=1

Ppi({Gpi}) ·
∏
p 6=pi

Pp({0})

=
r∏
i=1

Ppi({Gpi}) ·
∏
p 6=pi

∞∏
i=1

(
1− 1

pi

)

≤
r∏
i=1

Ppi({Gpi}) ·
∏
p 6=pi

(
1− 1

p

)

≤
r∏
i=1

Ppi({Gpi}) ·
∏
p 6=pi

e−1/p

=
r∏
i=1

Ppi({Gpi}) · e
−

∑
p6=pi

1/p

= 0,
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since
∑

p 6=pi 1/p = ∞. Hence, P ({G}) = 0 for all G ∈ G. Now, since G is
countable, we get

P (G) = P

(⋃
G∈G

{G}

)
=
∑
G∈G

P ({G}) (by countable additivity)

= 0.

Therefore P does not define a probability measure, because for any proba-
bility measure P , we must have P (G) = 1.

Next we show that, the order of a group can not be measurable w.r.t. to
any probability measure which extends the local Cohen-Lenstra measure.

Proposition 3.9. For any n ∈ N, define Sn := {G ∈ G : |G| = n}. Then, for
any σ-algebra Σ over G and probability measure P on Σ which is compatible
with the local Cohen-Lenstra probability measure, we can not have that Sn is
measurable for all n ∈ N.

Proof. Suppose Sn is measurable for all n ∈ N. For each n ∈ N, define the
set In := {p ∈ P : p - n} and for each p ∈ In, let

Tp := {G ∈ G : πp(G) = 0}.

Then Tp = π−1
p ({0}), which is measurable. Note that,

P (Tp) = Pp({0}) =
∞∏
i=1

(
1− 1

pi

)
≤
(

1− 1

p

)
.

Now, Sn ⊆ Tp for all p ∈ In (for, if πp(G) 6= 0 for some G ∈ Sn, then |πp(G)| |
n, since πp(G) is a subgroup of G and this implies p | n). Therefore we have
Sn ⊆

⋂
p∈In Tp and also note that

⋂
p∈In Tp being countable of intersection of

measurable sets is measurable. Then,

P (Sn) ≤ P

(⋂
p∈In

Tp

)
=
∏
p∈In

P (Tp) ≤
∏
p∈In

(
1− 1

p

)
.

Now, since ex ≥ 1 + x for all x ∈ R, we get

P (Sn) ≤ e−
∑
p∈In 1/p = 0,
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since
∑

p∈In 1/p diverges. Therefore P (Sn) = 0 for all n ∈ N. Now, note that
G =

⋃
n∈N Sn, which implies

P (G) =
∑
n∈N

P (Sn) = 0

and we have a contradiction.

Remark 3.10. The above proposition also holds if Σ is an algebra and P is
a finitely additive measure compatible with the local Cohen-Lenstra measure.
We work with finite F ⊂ In and take infimum over all such sets and the same
proof works.

Next, we define certain properties of groups, called uniform properties,
which will become measurable w.r.t. our desired probability measure.

Definition 3.11. A property E : G → {0, 1} of G is said to be uniform if
for all G ∈ G, we have

E(G) = 1 iff E(Gp) = 1 ∀p ∈ P,

where Gp := πp(G) (πp : G → Gp is the natural projection).

The following are some examples of uniform properties:

1. Property of having order 1 (i.e. E(G) = 1 iff |G| = 1).

2. Property of having rank ≤ r (i.e. E(G) = 1 iff rank(G) ≤ r).

This follows from the fact that

rank(G) = max
p∈P

rank(Gp)

for all G ∈ G, where Gp = πp(G).

3. Property of having uniform order ≤ n, where uniform order |G|uni of
G ∈ G is defined as

|G|uni := max
p∈P

logp |Gp|.

(Similarly, one can also define uniform exponent and uniform rank.
Note that, uniform rank is same as the rank).

Then, we have the following theorem due to J. Lengler.
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Theorem 3.12. Let Σ be the smallest σ-algebra (over G) containing the set

{E−1({1}) : E : G → {0, 1} is a uniform property}.

Now, define a measure P on Σ, given by

P (E−1({1})) :=
∏
p∈P

Pp(E
−1
p ({1})),

where Ep := E|Gp and Pp is the local Cohen-Lenstra measure. Then, P de-
fines a probability measure measure on Σ which makes all uniform properties
measurable.

Proof. See [Len10b] Theorem 2.11.

The probability measure P defined in the above theorem is called the
global Cohen-Lenstra probability measure which is an extension of the local
Cohen-Lenstra probability measure Pp. Note that, for all r ∈ N, the set
{G ∈ G : rank(G) = r} is measurable (w.r.t P ), because

{G ∈ G : rank(G) = r} = {G ∈ G : rank(G) ≤ r}∩{G ∈ G : rank(G) ≤ r−1}{

and both these sets are measurable. Similarly, the set {G ∈ G : |G|uni = n}
is also measurable and so is {G ∈ G : |G| = 1}. For G ∈ G, we have

P (G = {0}) =
∏
p∈P

Pp(Gp = {0}) =
∏
p∈P

(
∞∏
j=1

(
1− 1

pj

))
.

Now, since
∏∞

j=1(1− p−j) ≤ (1− 1/p) ≤ e−1/p, we get

P (G = {0}) ≤
∏
p∈P

e−1/p = e−
∑
p∈P 1/p = 0.

Hence, the global Cohen-Lenstra probability of a group being trivial is 0.

Next we will state two interesting properties of the global Cohen-Lenstra
probability measure P .

Proposition 3.13. Let E be a uniform property . If P (E−1({1})) > 0 then
E(0) = 1 and E(Z/pZ) = 1 for some p ∈ P.
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Proof. Suppose E(0) = 0, then Ep(0) = 0 for each p (note that, Ep = E|Gp
and 0 ∈ Gp). This implies E−1

p ({1}) ⊆ Gp \ {0} for each p. Hence we have

Pp(E
−1
p ({1})) ≤ Pp(Gp \ {0})

= 1− Pp({0})

= 1−
∞∏
i=1

(
1− 1

pi

)
.

Now, if we wirte
∞∏
i=1

(1− xi) = 1 +
∞∑
n=1

anx
n

then, ans are given by

an =

{
0 if n 6= k(3k ± 1)/2, k ∈ N
(−1)k if n = k(3k ± 1)/2, k ∈ N

and therefore an ≥ 1 for each n ∈ N. Hence, we can write

Pp(E
−1
p ({1})) ≤ 1−

(
1−

∞∑
i=1

1

pi

)
=

1/p

1− 1/p
=

1

p− 1
.

Therefore

P (E−1({1})) =
∏
p∈P

Pp(E
−1
p ({1})) ≤

∏
p∈P

1

p− 1
=

1∏
p(p− 1)

= 0.

but this is a contradiction. Hence, we conclude that E(0) = 0.

For the other part, suppose E(Z/pZ) = 0 for all p ∈ P. This implies
Ep(Z/pZ) = 0 for all p ∈ P (note that, Ep = E|Gp and Z/pZ ∈ Gp). Therefore,
for all p, E−1

p ({1}) ⊆ Gp \ {Z/pZ}. Then,

Pp(E
−1
p ({1})) ≤ 1− Pp({Z/pZ})

= 1− 1

p− 1

∞∏
i=1

(
1− 1

pi

)
= 1− p−1

(
1 +

1

p
+

1

p2
+ · · ·

) ∞∏
i=1

(
1− 1

pi

)
.
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Now, writing
∏∞

i=1(1− 1/pi) = 1 +
∑∞

n=1 an/p
n, we get

Pp(E
−1
p ({1})) ≤ 1− p−1

(
1 +

1

p
+

1

p2
+ · · ·

)(
1 +

∞∑
n=1

an
pn

)

= 1− p−1

(
∞∑
N=0

(
N∑
n=0

an

)
1

pn

)
(where a0 := 1)

≤ 1− p−1

(
1− 2

∞∑
i=2

1

pi

)

since, a0 = 1, a0 + a1 = 0 and
∑n

i=0 ai ≥ −2 for all n ≥ 2. Therefore, from
above, we get

Pp(E
−1
p ({1})) ≤ 1− p−1 +

2p−2

p− 1
≤ 1− 1

2p

since p > 2. Therefore, writing P (E−1({1})) =
∏

p∈P Pp(E
−1
p ({1})) and using

the above inequality we get

P (E−1({1})) ≤
∏
p∈P

(
1− 1

2p

)
≤
∏
p∈P

e−1/2p = e−(1/2)
∑
p∈P 1/p = 0,

which is a contradiction. Therefore, E(Z/pZ) = 1 for some p ∈ P.

Proposition 3.14. If E(0) = 1 and E(Z/pZ) = 1 for all p ∈ P, then we
have that P (E−1({1})) > 0.75; where E is a uniform property.

Proof. Note that,

{0,Z/pZ} ⊆ E−1({1}) = E−1
p ({1})

for each p. Then,

Pp(E
−1
p ({1})) ≥ Pp({0}) + Pp({Z/pZ})

=
∞∏
i=1

(
1− 1

pi

)
+

1

p− 1

∞∏
i=1

(
1− 1

pi

)
=

p

p− 1

∞∏
i=1

(
1− 1

pi

)
=
∞∏
i=2

(
1− 1

pi

)
.
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Now, from P (E−1({1})) =
∏

p∈P Pp(E
−1
p ({1})) we get,

P (E−1({1})) ≥
∏
p∈P

∞∏
j=2

(
1− 1

pj

)
≈ 0.75 . . . > 0.75

and this proves the proposition.

3.1.3 Heuristic for Quadratic Fields

First, let us state what it means for a sequence of groups to be random with
respect to the Cohen-Lenstra heuristic:

Definition 3.15. Let {Gi}∞i=1 be a sequence of finite abelian groups. Let
Σ be the sigma algebra on G generated by uniform properties and let P be
the global Cohen-Lenstra probability measure defined on Σ. We say that Gi

behaves as a random sequence with respect to Cohen-Lenstra measure
P if, for all measurable functions f : G → C we have,

lim
n→∞

∑n
i=1 f(Gi)

n
=

∫
G
f dP.

Now, coming to imaginary quadratic fields, let S be the the following
sequence in G:

S := {Cl∗K : K ∈ K}
where, K := {Q(

√
d) : d is square-free and d < 0} is the sequence of imagi-

nary quadratic fields and Cl∗K denotes the odd part of ClK (i.e. subgroup of
elements of odd order). Then, the famous conjecture of Cohen and Lenstra
states the following:

Conjecture 3.16. The sequence S behaves as a random sequence with respect
to the global Cohen-Lenstra probability measure P , that is, for any measurable
function f : G → C,

lim
x→∞

∑
K∈K, |∆K |≤x f(Cl∗K)∑

K∈K, |∆K |≤x 1
= EP (f)

where, EP denotes the expectation w.r.t. the probability measure P .

Recall that the Cohen-Lenstra probability of a group being trivial is 0.
Hence, the above conjecture implies that,

P (Cl∗K = {0}) = 0,

which supports the fact that there are only finitely many imaginary quadratic
fields of class number one.
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3.2 Probabilistic model for Real Quadratic

Fields

In this section we will modify our definition for local Cohen-Lenstra proba-
bility measure Pp. This modified definition will give us a probabilistic model
for real quadratic fields. We will redefine Pp such that

Pp(Gp) ∝
1

|Gp| · |Aut(Gp)|
.

Note that, we have∑
Gp∈Gp

1

|Gp| · |Aut(Gp)|
≤
∑
Gp∈Gp

1

|Aut(Gp)|
<∞

and this implies that Pp is indeed a probability measure. In fact, we have
the following theorem:

Theorem 3.17. Let p be a prime. Then,∑
Gp∈Gp

1

|Gp| · |Aut(Gp)|
=
∞∏
j=2

(
1− 1

pj

)−1

.

Proof. The original proof of this theorem is due to Cohen and Lenstra, which
uses zeta functions. I will give a shorter and more elegant combinatorial
proof. I will use similar ideas used in the proof of Theorem 3.2.

For m ≥ 0, let am be the number of partitions of m with each part at
least 2 and for i, j ≥ 0, let bi,j be the number of partitions of i with greatest
part exactly equal to j. Then the following claims are true.

Claim. For all m ≥ 0, the following holds

am =
∑
i+j=m

bi,j.

We will give a bijection argument. Note that, the number of partitions of
i with greatest part j, where i+ j = m, is equal to the number of partitions
of i+ j = m with greatest part j occurring at least twice. Hence

∑
i+j=m bi,j

is equal to the number of partitions of m with greatest part occurring at least
twice. Now, a partition of m has greatest part occurring at least twice if and
only if it’s conjugate partition has each part at least 2. This gives a bijection
between the partitions of m with greatest part occurring at least twice and
the partitions of m with each part at least 2. Therefore,

∑
i+j=m bi,j = am.
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Claim. For each n ≥ 0, let us define

fn(q) :=
∞∑
N=0

bN,nq
N ,

which is a formal power series in q. Then,

∞∏
j=2

(1− qj)−1 =
∞∑
n=0

fn(q)qn.

Note that,
∞∏
j=2

(1− qj)−1 =
∞∑
m=0

amq
m

since, for each m, the coefficient of qm on LHS is equal to the number of
partitions of m with each part at least 2. Then,

∞∑
n=0

fn(q)qn =
∞∑
n=0

(
∞∑
N=0

bN,nq
N

)
qn

=
∞∑
n=0

∞∑
N=0

bN,nq
N+n

=
∞∑
m=0

( ∑
i+j=m

bi,j

)
qm

=
∞∑
m=0

amq
m

=
∞∏
j=2

(1− qj)−1.

Now let us return to the proof of the theorem. Following a similar argument
as given in the proof of Theorem 3.2, we can write∑

Gp∈Gp

1

|Gp| · |Aut(Gp)|
=
∞∑
n=0

∑
Gµ∈Gp
|µ|=n

qn

(
m∏
i=1

ψµi, µi−1−µi(q)

)(
m∏
i=1

qµ
2
i

)
,

where the notations are same as in Theorem 3.2 and q = p−1. Then, by
second claim it is enough to show that, for each n ≥ 0,

fn(q) =
∑
Gµ∈Gp
|µ|=n

(
m∏
i=1

ψµi, µi−1−µi(q)

)(
m∏
i=1

qµ
2
i

)
.
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That is, we need to equate coefficients of qN on both sides, for each N ≥ 0.
Note that, coefficient of qN on LHS is equal to bN,n which is the number of
partitions of N with greatest part n and this is equal to the coefficient of qN

on the RHS (the proof of this is same as given the proof of Theorem 3.2).
Therefore we have proved the theorem.

Let p be a prime. Then the above theorem will enable us to define Pp as

Pp(Gp) :=
1

|Gp| · |Aut(Gp)|

∞∏
j=2

(
1− 1

pj

)
.

Note that, by Theorem 3.17,
∑

Gp∈Gp Pp(Gp) = 1 and hence Pp is indeed a
probability measure on Gp. Note that the following random process gives us
the above probability measure

1. Choose H ∈ Gp w.r.t. the local Cohen-Lenstra probability measure as
in Definition 3.3.

2. Choose an element g ∈ H uniformly at random.

3. Output the group H/〈g〉.

Next, we will extend Pp to G so that it is compatible (as defined in imaginary
case) with local Pp as follows: Define a probability measure P on G as,

P (G) =
∏
p∈P

Pp(Gp),

where, G ∈ G and Gp = πp(G) (where, πp : G → Gp is the natural projection).

Theorem 3.18. P indeed defines a probability measure on the whole power
set of G.

Proof. Let G ∈ G, then

P (G) =
∏
p∈P

Pp(Gp)

=
∏
p∈P

1

|Gp| · |Aut(Gp)|

∞∏
j=2

(
1− 1

pj

)

=
1

|G| · |Aut(G)|
∏
p∈P

∞∏
j=2

(
1− 1

pj

)
=

0.75 · · ·
|G| · |Aut(G)|

> 0.
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The second last equality follows from the fact that |G| =
∏

p∈P |Gp| and
|Aut(G)| =

∏
p∈P |Aut(Gp)|. Clearly, for any S ⊆ G,

P (S) =
∑
G∈S

P (G)

and this implies countable additivity. Also, we have∑
G∈G

P (G) =
∑
G∈G

G=
∏
pGp

∏
p∈P

Pp(Gp) =
∏
p∈P

∑
Gp∈Gp

Pp(Gp) =
∏
p∈P

1 = 1.

Note that, the interchange of limits is possible because P (G) > 0 for all
G ∈ G. Hence, P is a probability measure.

We also note the following observation

P (0) =
∏
p∈P

∞∏
j=2

(
1− 1

pj

)
≈ 0.75.

Now, let us come to the case of quadratic fields. Let S be the following
sequence in G:

S := {Cl∗K : K ∈ K}

where, K := {Q(
√
d) : d is square free and d > 0} is the sequence of real

quadratic fields. Then, Cohen-Lenstra heuristic states the following conjec-
ture.

Conjecture 3.19. The above sequence S behaves like a random sequence
w.r.t. the probability measure P , that is, for any measurable function f : G →
C we have,

lim
x→∞

∑
K∈K, |∆K |≤x f(Cl∗K)∑

K∈K, |∆K |≤x 1
= EP (f),

where EP (f) is the expectation of f w.r.t. the probability measure P .

Next, we will explain the motivation behind applying this probabilistic
model to real quadratic fields. Recall from Chapter 2 that the class of all
reduced ideals of a real quadratic field decomposes into finitely many cycles
under the reduction operator ρ and the number of such cycles gives the class
number of the real quadratic field. Also, the set of reduced ideals behaves
as a ‘group like’ structure and the cycles behaves like cyclic groups with
respect to some ‘group like’ operation defined before. Now, the group H
of the random process is to be interpreted as the ‘group’ of reduced ideals,
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which is chosen w.r.t. Cohen-Lenstra probability. Let H decomposes into
cycles (or, cyclic groups) as {〈u1〉, 〈u2〉, . . . , 〈uh〉}, where ui ∈ H and h is the
number of reduced ideals i.e. the class number. Then ClK can be viewed as
H/〈ui〉, for all i. Note that, the random process also chooses a ui uniformly
at random and outputs the group H/〈ui〉. So, this gives some justification
why this probabilistic model should work for the sequence of real quadratic
fields.

Note that, the Cohen-Lenstra conjecture implies that

P (Cl∗K = {0}) ≈ 0.75.

We know that, if ∆K is prime then ClK ∼= Cl∗K . Now, if d is prime and d ≡ 1
(mod 4) then ∆K is prime, and there are infinitely many primes of the form
4n+ 1. Therefore in such cases P (ClK = {0}) ≈ 0.75. This gives a hint that
there might be infinitely many real quadratic fields with class number 1, i.e.
Gauss’ conjecture is true.

3.3 Probabilistic model for Number Fields

Let us fix a set of primes B, which we will call the set of bad primes. For each
p 6∈ B, we will denote the set of all p-groups by Gp and G will denote the set of
all finite abelian groups with p-part trivial for all p ∈ B, i.e., G =

⊕
p 6∈B Gp.

In this section we will again modify the definition of local Cohen-Lenstra
probability Pp to give us a probabilistic model for general number fields. We
will redefine Pp such that, for all Gp ∈ Gp (where p 6∈ B), we have

Pp(Gp) ∝
1

|Gp|u · |Aut(Gp)|
,

where u := rank(O×K) = r+s−1 (where {r, s} is the signature of the number
field K) by Dirichlet’s Unit Theorem . Again, note that∑

Gp∈Gp

1

|Gp|u · |Aut(Gp)|
≤
∑
Gp∈Gp

1

|Aut(Gp)|
<∞

and therefore Pp is indeed a probability measure. In fact, we have the fol-
lowing theorem:

Theorem 3.20. Let p be a prime. Then,∑
Gp∈Gp

1

|Gp|u · |Aut(Gp)|
=

∞∏
j=u+1

(
1− 1

pj

)−1

.
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Proof. The original proof of this is due to Cohen and Lenstra using zeta func-
tions. I will give a shorter combinatorial proof. This proof is a generalization
of the proof of the theorem 3.17.

For m ≥ 0, let am be the number of partitions of m with each part at
least u + 1 and for i, j ≥ 0, let bi,j be the number of partitions of i with
greatest part exactly equal to j. Then the following claims are true.

Claim. For all m ≥ 0, the following holds

am =
∑

i+uj=m

bi,j.

We will give a bijection argument. Note that, the number of partitions
of i with greatest part j, where i + uj = m, is equal to the number of
partitions of i+ uj = m with greatest part j occurring at least u+ 1 times.
Hence

∑
i+uj=m bi,j is equal to the number of partitions of m with greatest

part occurring at least u+ 1 times. Now, a partition of m has greatest part
occurring at least u+ 1 times if and only if it’s conjugate partition has each
part at least u + 1. This gives a bijection between the partitions of m with
greatest part occurring at least u+1 times and the partitions of m with each
part at least u+ 1. Therefore,

∑
i+uj=m bi,j = am.

Claim. For each n ≥ 0, let us define

fn(q) :=
∞∑
N=0

bN,nq
N ,

which is a formal power series in q. Then,

∞∏
j=u+1

(1− qj)−1 =
∞∑
n=0

fn(q)qnu.

Note that,
∞∏

j=u+1

(1− qj)−1 =
∞∑
m=0

amq
m

since, for each m, the coefficient of qm on LHS is equal to the number of
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partitions of m with each part at least u+ 1. Then,

∞∑
n=0

fn(q)qnu =
∞∑
n=0

(
∞∑
N=0

bN,nq
N

)
qnu

=
∞∑
n=0

∞∑
N=0

bN,nq
N+nu

=
∞∑
m=0

( ∑
i+uj=m

bi,j

)
qm

=
∞∑
m=0

amq
m

=
∞∏

j=u+1

(1− qj)−1.

Now let us return to the proof of the theorem. Following a similar argument
as given in the proof of Theorem 3.2, we can write∑

Gp∈Gp

1

|Gp|u · |Aut(Gp)|
=
∞∑
n=0

∑
Gµ∈Gp
|µ|=n

qnu

(
m∏
i=1

ψµi, µi−1−µi(q)

)(
m∏
i=1

qµ
2
i

)
,

where the notations are same as in Theorem 3.2 and q = p−1. Then, by
second claim it is enough to show that, for each n ≥ 0,

fn(q) =
∑
Gµ∈Gp
|µ|=n

(
m∏
i=1

ψµi, µi−1−µi(q)

)(
m∏
i=1

qµ
2
i

)
.

That is, we need to equate coefficients of qN on both sides, for each N ≥ 0.
Note that, coefficient of qN on LHS is equal to bN,n which is the number of
partitions of N with greatest part n and this is equal to the coefficient of qN

on the RHS (the proof of this is same as given the proof of Theorem 3.2).
Therefore we have proved the theorem.

Let p be a prime. Then the above theorem will enable us to define Pp as

Pp(Gp) :=
1

|Gp|u · |Aut(Gp)|

∞∏
j=u+1

(
1− 1

pj

)
.

Note that, by Theorem 3.20,
∑

Gp∈Gp Pp(Gp) = 1 and hence Pp is indeed a
probability measure on Gp. Note that the following random process gives us
the above probability measure:
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1. Choose H ∈ Gp w.r.t. the local Cohen-Lenstra probability measure as
in Definition 3.3.

2. Choose u elements g1, . . . , gu ∈ H uniformly at random.

3. Output the group H/〈g1, . . . , gu〉.
Next, we will extend Pp to G so that it is compatible (as defined in imaginary
case) with local Pp as follows: Define a probability measure P on G as,

P (G) =
∏
p 6∈B

Pp(Gp),

where, G ∈ G and Gp = πp(G) (where, πp : G → Gp is the natural projection).

Theorem 3.21. P indeed defines a probability measure on the whole power
set of G.

Proof. Let G ∈ G, then

P (G) =
∏
p 6∈B

Pp(Gp)

=
∏
p 6∈B

1

|Gp|u · |Aut(Gp)|

∞∏
j=u+1

(
1− 1

pj

)

=
1

|G|u · |Aut(G)|
∏
p 6∈B

∞∏
j=u+1

(
1− 1

pj

)
,

since, |G| =
∏

p6∈B |Gp| and |Aut(G)| =
∏

p 6∈B |Aut(Gp)|. This implies that
P (G) > 0, because the product∏

p 6∈B

∞∏
j=u+1

(
1− 1

pj

)
> 0

for u ≥ 1 and for any set B. Clearly, for any S ⊆ G,

P (S) =
∑
G∈S

P (G)

and this implies countable additivity. Also, we have∑
G∈G

P (G) =
∑
G∈G

G=
∏
Gp

∏
p6∈B

Pp(Gp) =
∏
p 6∈B

∑
Gp∈Gp

Pp(Gp) =
∏
p 6∈B

1 = 1.

Note that, the interchange of limits is possible because P (G) > 0 for all
G ∈ G. Hence, P is a probability measure.
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Let us also note that, the probability that a group is trivial is given by

P (0) =
∏
p 6∈B

∞∏
j=u+1

(
1− 1

pj

)
.

Now let us consider the case of number fields. Let K be a number field and
ClK be the class group of K. Suppose ClK decomposes as ClK =

∏
p prime Gp

into p-groups. Let us define

Cl6∈BK := ClK /
∏
p∈B

Gp,

then Cl 6∈BK ∈ G. Now, fix a signature {r, s} and consider the following se-
quence S in G

S := {Cl6∈BK : K ∈ K},

where K := {K : K is a number field of signature {r, s}}. Then, we have
the following conjecture, due to Cohen and Lenstra:

Conjecture 3.22. For a suitably chosen set of ‘bad primes’ B, the above
sequence S behaves like a random sequence of groups w.r.t. the above proba-
bility measure P , that is, for any measurable function f : G → C we have,

lim
x→∞

∑
K∈K, |∆K |≤x f(Cl6∈BK )∑

K∈K, |∆K |≤x 1
= EP (f),

where EP (f) is the expectation of f w.r.t. the probability measure P .

Let us make a few remarks about ‘bad primes’. Note that, for quadratic
case, B = {2} gives the probabilistic model for the class groups of real
quadratic fields. One can show that, if p | deg(K) then p ∈ B. But this does
not give the complete list of ‘bad primes’. There are some conjectures on
the set of bad primes given by Gunter Malle, we refer the reader to [Len09]
Chapter 6 for details. The debate about the set B is still vivid and not
finished.

3.4 Cohen-Lenstra measure on Partitions

Fix a prime p. Then there exist a bijection between the set of all p-groups
and the set of all partitions. Therefore, the Cohen-Lenstra probability mea-
sure for p-groups will induce a similar probability measure on the set of all
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partitions. Recall that the local Cohen-Lenstra probability measure Pp on
Gp is given by

Pp(Gp) =
1

|Gp|u · |Aut(Gp)|

∞∏
r=u+1

(
1− 1

pr

)
for Gp ∈ Gp. Note that, u = 0 corresponds to the case of imaginary quadratic
fields, u = 1 corresponds to the case of real quadratic fields and u = u
corresponds to the case of any other number fields. Suppose the p-group Gp

corresponds to the partition λ = (λ1, . . . , λl). Let λ′ = (λ′1, . . . , λ
′
t) be the

conjugate of λ. Then, we know

|Aut(Gp)| =
t∏
i=1

λ′i−λ′i+1∏
s=1

(1− p−s)

 p
∑t
i=1(λ′i)

2

=
t∏
i=1

mi(λ)∏
s=1

(1− p−s)

 p
∑t
i=1(λ′i)

2

,

where mi(λ) denotes the number of parts of λ of size i. Note that λ′i =
mi(λ) +mi+1(λ) + · · · and this implies mi(λ) = λ′i − λ′i+1. Therefore we can
write the Cohen-Lenstra probability as

Pp(Gp) =
1

p|λ|u
∏t

i=1

(∏mi(λ)
s=1 (1− p−s)

)
p
∑t
i=1(λ′i)

2

∞∏
r=u+1

(
1− 1

pr

)

=

[
∞∏
r=1

(
1− v

pr

)]
v|λ|

p
∑t
i=1(λ′i)

2∏t
i=1

(∏mi(λ)
s=1 (1− p−s)

)
where v := p−u. Then we have the following Cohen-Lenstra probability
measure on partitions: For a partition λ = (λ1, . . . , λl) with conjugate
λ′ = (λ′1, . . . , λ

′
t) we define

Pp(λ) :=

[
∞∏
r=1

(
1− v

pr

)]
v|λ|

p
∑t
i=1(λ′i)

2∏t
i=1

(∏mi(λ)
s=1 (1− p−s)

)
where v = p−u and u is fixed. Next, we will give some equivalent versions of
this probability measure on partitions.
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3.4.1 The Column Algorithm

We have the following theorem, due to J. Fulman:

Theorem 3.23. Let λ′0 =∞ and define in succession λ′1, λ
′
2, . . . according to

the rule that, if λ′i = a then λ′i+1 = b ≤ a with probability

K(a, b) =
vb
∏a

i=1(1− p−i)
∏a

i=1(1− vp−i)
pb2
∏a−b

i=1 (1− p−i)
∏b

i=1(1− p−i)
∏b

i=1(1− vp−i)
and λ′i+1 = b > a with probability 0. Then, the algorithm outputs a partition
with probability 1 and the probability that the conjugate of the partition λ′ is
λ = (λ1, . . . , λl) is equal to the Cohen-Lenstra probability measure Pp(λ).

Proof. The first part is easy to see. If a, b 6= 0, then the probability that
a = b is given by

K(a, a) =
vb

pb2
=

1

pub+b2
−→ 0 as b→∞,

which implies b < a with probability 1. Therefore, with probability 1, the
sequence λ′1, λ

′
2, . . . is strictly decreasing. Hence, with probability 1, the

algorithm outputs a partition. For the second part, we can write

Pp(λ
′
1 = r1, λ

′
2 = r2, . . .)

= Pp(λ
′
0 =∞)

Pp(λ
′
0 =∞, λ′1 = r1)

Pp(λ′0 =∞)

∞∏
i=1

Pp(λ
′
0 =∞, λ′1 = r1, . . . , λ

′
i+1 = ri+1)

Pp(λ′0 =∞, λ′1 = r1, . . . , λ′i = ri)
.

So, it is enough to show that

Pp(λ
′
0 =∞, λ′1 = r1, . . . , λ

′
i−1 = ri−1, λ

′
i = a, λ′i+1 = b)

Pp(λ′0 =∞, λ′1 = r1, . . . , λ′i−1 = ri−1, λ′i = a)

=
vb
∏a

i=1(1− p−i)
∏a

i=1(1− vp−i)
pb2
∏a−b

i=1 (1− p−i)
∏b

i=1(1− p−i)
∏b

i=1(1− vp−i)
(1)

for all i, a, b, r1, . . . , ri−1 ≥ 0. Let i ≥ 1, then

Pp(λ
′
0 =∞, λ′1 = r1, . . . , λ

′
i−1 = ri−1, λ

′
i = a)

=
∑

λ : λ′1=r1,...,λ′i−1=ri−1

λ′i=a

Pp(λ)

=
∑
Gµ∈Gp
µ′1=a

[
∞∏
r=1

(
1− v

pr

)]
vr1+···+ri−1+|µ|

pr
2
1+···+r2i−1+

∑
j(µ
′
j)

2∏i−1
j=1

(∏rj−rj+1

s=1 (1− p−s)
)∏∞

j=1

(∏µ′j−µ′j+1

s=1 (1− p−s)
)

=
vr1+···+ri−1

pr
2
1+···+r2i−1

∏r1−r2
s=1 (1− p−s) · · ·

∏ri−2−ri−1

s=1 (1− p−s)
∏ri−1−a

s=1 (1− p−s)
· Pp(µ′1 = a)
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(where ri = µ1 = a). Similarly, we have

Pp(λ
′
0 =∞, λ′1 = r1, . . . , λ

′
i−1 = ri−1, λ

′
i = a, λ′i+1 = b)

=
vr1+···+ri−1+a

pr
2
1+···+r2i−1+a2

∏r1−r2
s=1 (1− p−s) · · ·

∏ri−1−a
s=1 (1− p−s)

∏a−b
s=1(1− p−s)

· Pp(µ′1 = b).

Therefore,

Pp(λ
′
0 =∞, λ′1 = r1, . . . , λ

′
i−1 = ri−1, λ

′
i = a, λ′i+1 = b)

Pp(λ′0 =∞, λ′1 = r1, . . . , λ′i−1 = ri−1, λ′i = a)

=
va

pa2
∏a−b

s=1(1− p−s)
· Pp(µ

′
1 = b)

Pp(µ′1 = a)
(∗)

where µ is any arbitrary partition.

Claim. We have that

Pp(µ
′
1 = a) =

va
∏∞

s=1(1− vp−s)
pa2
∏a

s=1(1− p−s)
∏a

s=1(1− vp−s)
.

Note that a is fixed. Now, taking sum over all b such that b ≤ a on the
both sides of (∗), we have∑

b≤a

va

pa2
∏a−b

s=1(1− p−s)
Pp(µ

′
1 = b)

Pp(µ′1 = a)
= 1. (∗∗)

We will prove the claim by induction on a, using the above equation for
induction step. If a = 0, then

Pp(µ
′
1 = 0) = Pp(λ = 0) =

∞∏
r=1

(
1− v

pr

)
and hence the claim is true for a = 0. Assume the claim for µ′1 = a. From
(∗∗) we have,

va+1

p(a+1)2
· 1

Pp(µ′1 = a+ 1)

(
Pp(µ

′
1 = 0)∏a+1

s=1(1− p−s)
+

Pp(µ
′
1 = 1)∏a

s=1(1− p−s)
+ · · ·+ P (µ′1 = a+ 1)∏1

s=1(1− p−s)

)
= 1.

Then putting the values of µ′1 = k for k ≤ a one can verify that the claim is
true for µ′1 = a+ 1. We will give another proof of this claim later.
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Note that, this claim also proves the equation (1) for i = 0. Now, putting
the values of Pp(µ

′
1 = a) and Pp(µ

′
1 = b) from the claim into the equation (∗)

we have, for i ≥ 1,

Pp(λ
′
0 =∞, λ′1 = r1, . . . , λ

′
i−1 = ri−1, λ

′
i = a, λ′i+1 = b)

Pp(λ′0 =∞, λ′1 = r1, . . . , λ′i−1 = ri−1, λ′i = a)

=
va

pa2
∏a−b

s=1(1− p−s)
· vb

∏∞
s=1(1− vp−s)

pb2
∏b

s=1(1− p−s)
∏b

s=1(1− vp−s)
· p

a2
∏a

s=1(1− p−s)
∏a

s=1(1− vp−s)
va
∏∞

s=1(1− vp−s)

=
vb

pb2
·

∏a
s=1(1− p−s)

∏a
s=1(1− vp−s)∏a−b

s=1(1− p−s)
∏b

s=1(1− p−s)
∏b

s=1(1− vp−s)
.

Therefore, (1) is true for i ≥ 0 and for all a, b, r1, . . . , ri−1 ≥ 0. Hence, we
have proved the theorem

3.4.2 Young Tableau Algorithm

First let us state the algorithm. The Young Tableau Algorithm is given by
the following steps:

• Step 0: Start with λ the empty partition and N = 1. Also start with
a collection of coins indexed by natural numbers such that coin i has
probability v/pi of heads and has probability 1− v/pi of tails.

• Step 1: Flip coin N .

• Step 2a: If coin N comes up tails, leave λ unchanged, set N = N + 1
and go to step 1.

• Step 2b: If coin N comes up heads, choose an integer S > 0 according
to the following rule. Set S = 1 with probability (pN−λ

′
1 − 1)/(pN − 1)

and set S = s > 1 with probability (pN−λ
′
s − pN−λ′s−1)/(pN − 1). Then

increase the size of column s of λ by one and go to step 1.

Note that, we use the convention that all undefined entries of λ are 0 and
λ′ as usual denotes the conjugate of λ. We have the following theorem.

Theorem 3.24. With probability 1, the algorithm outputs a finite partition.
For any given partition λ, the probability that the algorithm outputs λ is equal
to the Cohen-Lenstra probability Pp(λ).

Proof. The proof is due to Fulman given in [Ful99]. Note that, if λ′s = λ′s−1

for some s, then the probability that we increase the column s by size one is
0. Hence, with probability 1, we get λ′is for i = 1, 2, . . . to be in decreasing
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order. To show that the output λ of the algorithm is a partition (finite), we
need to prove that, with probability 1, only finitely many λi’s are non-zero.
Let AN be the event that the coin N comes up heads at least once. Then,
Prob(AN) = v/pN and this implies

∑
N

Prob(AN) =
∞∑
N=1

v

pN
=

v(1/p)

1− 1/p
<∞.

By Borel-Cantelli lemma, with probability 1, only finitely many ANs occur.
For each N , let BN,m be the event that coin N comes up heads at least m
times (where m ≥ 1). Then, Prob(BN,m) = (v/pN)m and this implies

∑
m

Prob(BN,m) =
∞∑
m=1

v

pNm
=

v/pN

1− 1/pN
<∞.

Hence, by Borel-Cantelli lemma, if a coin N comes up heads at least once,
then with probability 1, it does so only finitely many times. Note that,
the size of a column increases only when a coin comes up with heads. We
conclude that, with probability 1, the algorithm outputs a finite partition.
Now, let ProbN(λ) denote the probability that the algorithm outputs λ when
the coin N comes up tails. We will show by induction that,

ProbN(λ) =
v|λ|
∏N

s=1(1− vp−s)
∏N

s=1(1− p−s)∏N−λ′1
s=1 (1− p−s)

∏
i≥1

1

p(λ′i)
2∏mi(λ)

s=1 (1− p−s)

if λ′1 ≤ N and 0 otherwise. Then note that, as N →∞,

ProbN(λ) −→ Pp(λ).

This will imply that the algorithm generates partitions according to Cohen-
Lenstra probability measure Pp.Now let us prove the above assertion. Clearly,
ProbN(λ) = 0 if N < λ′1, since the size of any column increases only when
a coin comes up with heads; which implies N ≥ λ′1 with probability 1. For
N ≥ λ′1, we prove the assertion by induction on |λ|. Suppose |λ| = 0, i.e. λ
is empty partition. Then all the coins 1, 2, . . . , N comes up with tails. This
implies

ProbN(λ) =
N∏
i=1

(
1− v

pi

)
and hence the assertion is true for |λ| = 0. Now, for induction step, let
s1 ≤ s2 ≤ · · · ≤ sk be the columns of λ such that changing λ by decreasing
the column si by 1 gives the partition λsi . Then λ is obtained from one
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of these partitions λsi by increasing the column si by 1. We will use the
induction hypothesis for these λsi to prove the assertion for λ. Note that, we
have three possible cases:

Case 1 : The partition λ was already obtained when coin N − 1 came up
with tails. The probability of this event is ProbN−1(λ) · (1− v/pN).

Case 2 : The partition λ was obtained by increasing the first column of λ1

by 1. Note that, in this case the coin N came up with heads. The probability
of this event is

v

pN
· p

N−λ′1 − 1

pN − 1
· ProbN(λ1).

Case 3 : The partition λ was obtained by increasing the column si of λsi

by 1, where si 6= 1. Then the probability of this event is

v

pN
· p

N−λ′si+1 − pN−λ
′
si−1

pN − 1
· ProbN(λsi).

Hence we get

ProbN(λ) =

(
1− v

pN

)
ProbN−1(λ) +

v

pN
pN−λ

′
1 − 1

pN − 1
ProbN(λ1)

+
∑
si>1

v

pN
pN−λ

′
si

+1 − pN−λ
′
si−1

pN − 1
ProbN(λsi).

Now, using the induction hypothesis one can put the values of ProbN−1(λ),
ProbN(λ1) and ProbN(λsi) in the above expression to compute ProbN(λ).
One can check that the assertion holds. This computation can be found in
[Ful99].

3.4.3 Interpretation in Young Lattice

First we will define Young Lattice. Young Lattice is defined as a directed
graph whose nodes are the partitions of all natural numbers and there is a
directed edge from a partition λ to a partition µ if the Young diagram of λ
is contained in the Young diagram of µ and |µ| = |λ| + 1, i.e. µ is obtained
from λ by adding one block. Then we have the following theorem.

Theorem 3.25. Put weights mλ, µ on the edges of the Young Lattice accord-
ing to the rules:

1. mλ, µ = v/pλ
′
1(pλ

′
1+1 − 1) if the Young diagram of µ is obtained from

that of λ by adding one block to column 1.
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2. mλ, µ = v(p−λ
′
s−p−λ′s−1)/(pλ

′
1−1) if the Young diagram of µ is obtained

from that of λ by adding one block to column s > 1.

Then, the following holds:

Pp(λ) =

[
∞∏
r=1

(
1− v

pr

)]∑
λ

|λ|−1∏
i=0

mγi, γi+1

where, the sum is over all directed paths γ from the empty partition to λ and
γi are the partitions along the path γ.

Proof. For the proof we need to define Young Tableau. Let λ be a parti-
tion. Then the Young Tableau of λ is obtained by assigning the numbers
1, 2, . . . , |λ| to each block of the Young diagram of λ, such that, each block
is assigned a distinct number and the numbers increases as one moves from
up to down in each row and from left to right in each column. Note that
Young Tableau for a partition λ is not unique. Note that, the Young Tableau
Algorithm constructs a Young Tableau (whenever we add ith block to some
column of the Young diagram, we assign the number i to that block). Let
T be a Young tableau and λ(T ) be the partition corresponding to T . Let
Prob(T ) be the probability that the Young tableau algorithm outputs T and
let ProbN(T ) be the probability that the Young tableau algorithm outputs
T when coin N comes up tails. Let Ti,j denote the entry at the (i, j)th po-
sition in T . For j ≥ 2, let Ai,j be the number of entries in column j − 1
which are less than Ti,j, i.e. Ai,j = |{(i′, j − 1) : Ti′,j−1 < Ti,j}| and let Bi,j

be the number of entries in the first column which are less than Ti,j, i.e.
Bi,j = |{(i′, 1) : Ti′,1 < Ti,j}|. Then we have the following

Claim. For a Young tableau T ,

ProbN(T ) =
v|λ(T )|

pλ
′
1(T )2

∏λ′1(T )
s=1 (1− p−s)

∏N
r=1(1− vp−r)

∏N
r=1(1− p−r)∏N−λ′1(T )

r=1 (1− p−r)

∏
(i,j)∈λ(T )

j≥2

p1−i − p−Ai,j
bBi,j − 1

if λ′1(T ) ≤ N , and 0 otherwise.

First let us show that the above claim proves the theorem. Note that, for
a partition λ,

Pp(λ) =
∑

T : λ(T )=λ

(
lim
N→∞

ProbN(T )
)
.
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As N →∞ we have,

Prob(T ) =
v|λ(T )|

pλ
′
1(T )2

∏λ′1(T )
s=1 (1− p−s)

∞∏
r=1

(
1− v

pr

) ∏
(i,j)∈λ(T )

j≥2

p1−i − p−Ai,j
pBi,j − 1

=
∞∏
r=1

(
1− v

pr

)λ′1(T )−1∏
i=1

v

pλ
′
1(T )(pλ

′
1(T )+1 − 1)

∏
(i,j)∈λ(T )

j≥2

v(p1−i − p−Ai,j)
pBi,j − 1


=
∞∏
r=1

(
1− v

pr

)
·
|λ(T )|−1∏
i=0

mγ(T )i, γ(T )i+1

where, γ(T ) is the unique path from empty partition to λ(T ), which is
uniquely determined by T . Then,

Pp(λ) =
∞∏
r=1

(
1− v

pr

)
·
∑

T : λ(T )=λ

|λ(T )|−1∏
i=0

mγ(T )i, γ(T )i+1

=
∞∏
r=1

(
1− v

pr

)
·
∑
γ

|λ|−1∏
i=0

mγi, γi+1

where γ ranges over all partitions from the empty partition to λ.

Now let us prove the claim. Note that, ProbN(T ) = 0 if N < λ′1(T ),
since the size of any column increases only when a coin comes up with heads,
which implies N ≥ λ′1(T ) with probability 1. For n ≥ λ′1(T ) we prove by
induction on |λ(T )|. The proof is almost same as in the Theorem 3.24.
Suppose |λ(T )| = 0, i.e. λ(T ) is the empty partition. Then all the coins
1, 2, . . . , N comes up tails, i.e.,

ProbN(T ) =
N∏
i=1

(
1− v

pi

)
and hence the claim is true for |λ(T )| = 0. For the induction step, we have
two cases:

Case 1 : The largest entry in T occurs in column s > 1. Let T s be the
tableau obtained after removing the largest entry from T . Then,

ProbN(T ) =

(
1− v

pN

)
ProbN−1(T ) +

v

pN
pN−λ

′
s+1 − pN−λ′s−1

pN − 1
ProbN(T s).
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Now using induction hypothesis, putting the values for ProbN−1(T ) and
ProbN(T s), one can check that the claim holds for ProbN(T ). See [Ful99] for
this calculation.

Case 2 : Suppose the largest entry of T occurs in column 1. Then,

ProbN(T ) =

(
1− v

pN

)
ProbN−1(T ) +

v

pN
pN−λ

′
1 − 1

pN − 1
ProbN(T 1)

and one can verify this also by putting the values of ProbN−1(T ) and ProbN(T 1).
This completes the proof of the theorem.

Next, we will give a second proof of the Claim in the Theorem 3.23 using
the theorem we just proved.

Proposition 3.26. The following holds:∑
λ : λ′1=a

Pp(λ) =
va
∏∞

s=1(1− vp−s)
pa2
∏a

s=1(1− p−s)
∏a

s=1(1− vp−s)
.

Proof. We sum over all Young tableau with a parts. Let T be a Young
tableau with a parts. Let hm, for 1 ≤ m ≤ a − 1, be the number of blocks
added to T after it becomes a tableau with m parts and before it becomes a
tableau with m+1 parts and let ha be the number of blocks added to T after
it becomes a tableau with a parts. Suppose one takes a step along the Young
lattice from a partition with m parts. Then Theorem 3.25 implies that the
weight for adding a block to column 1 is v/pm(pm+1 − 1) and the sum of
weights for adding to any other column is v/pm. Then, the probability that
the Young Tableau Algorithm yields the tableau T is equal to

∞∏
s=1

(
1− v

ps

)
·

a∏
m=1

v

pm(pm+1 − 1)

a∏
m=1

(
v

pm

)hm
=
va
∏∞

s=1(1− vp−s)
pa2
∏a

s=1(1− p−s)

a∏
m=1

(
v

pm

)hm
.

Then, summing over all possible values of hm ≥ 0,∑
λ : λ′1=a

Pp(λ) =
va
∏∞

s=1(1− vp−s)
pa2
∏a

s=1(1− p−s)

a∏
m=1

∞∑
hm=0

(
v

pm

)hm
=
va
∏∞

s=1(1− vp−s)
pa2
∏a

s=1(1− p−s)

a∏
m=1

1

1− v/pm

=
va
∏∞

s=1(1− vp−s)
pa2
∏a

s=1(1− p−s)
1∏a

s=1(1− vp−s)
.
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Next, we will state a connection between Cohen-Lenstra probability mea-
sure Pp and conjugacy classes in GLn(Fp). One can show that, each conjugacy
class of GLn(Fp) is uniquely specified by the following data: For each monic
irreducible polynomial φ over Fp, associate a partition λφ such that

1. |λX | = 0

2.
∑

φ |λφ| deg(φ) = n.

This follows by considering the rational canonical forms of conjugacy classes
of GLn(Fp). See [Len10a] and [Ful97] for details. We have the following
theorem.

Theorem 3.27. Let φ be a monic polynomial over Fp of degree 1 and let λ be
a partition. Now pick a random matrix in GLn(Fp) uniformly at random and
consider it’s conjugacy class and the associated set of partitions for that class,
say, this is {λφ : φ is monic irreducible polynomial }. Then, the probability
that λφ = λ tends to the Cohen-Lenstra probability measure Pp(λ) as n→∞.

Proof. See [Ful97] for the proof.
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