
On Algebraic Dependence

Abhibhav Garg
Advisor: Prof. Nitin Saxena

Contents

1 Notation 2

2 Introduction 3

3 Previous Work 3
3.1 Computability in PSPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Jacobian Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Witt-Jacobian Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Algebraic Independence in AM ∩ CoAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.5 Functional Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Bounded Degree Polynomials 6
4.1 Reduction to Trinomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Towers of Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Conclusion and Future Work 8

1



1 Notation

We use capital letters F, F,K,L,E to represent fields.
In particular, F will always refer to the base field of constants, and K \F to denote that K is an extension

with base field F .
Given a field F and a set S, we use F (S) to represent the smallest field containing F and the elements

of S.
We work primarily with function fields, and the indeterminants will be denoted by x1, . . . , xn with n

denoting the number of indeterminants. In general, we use bold letters, such as x to denote the set of all
indeterminants. We will also use bold letters to indicate vectors of natural numbers, and xa will denote the
monomial πxaii .

Polynomials are denoted by f1, . . . , fm, with m denoting the number of polynomials. To denote the set
of all the polynomials, we use f .

The degree(total) of fi is denoted by di, and D :=
∏
fi.

The annihilator, will always be denoted by A(y1, . . . , ym) or A(y).
Transcendence degree is shortened to trdeg.
All theorem statements implicitely assume the above notation.
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2 Introduction

Given a base field F , and an extension K over F , element x ∈ K is called transcendental over F , if x is not
the root of any polynomial with coefficients in F . An element that is not transcendental over F is called
algebraic over F . A set of elements S ⊂ K are called algebraically independent if every element s ∈ S is
transcendental over F (S \ {s}).

Any field extension K \ F can be decomposed (not necessarily uniquely) into a three length tower of
extensions, K \ F (S) \ F with the following properties:

• The set S is transcendental over F .

• The extension K is algebraic over F (S).

While the set S in a decomposition of the above nature is not necessarily unique, |S| is. This size |S| is called
the transcendence degree of the extension K \F . Lang (2005) is a good source for learning more about field
extensions.

Given the above basic definitons, the algebraic dependence problem is the following:

Problem 1 (Algebraic Independence). Given a base field F, and a set ofm polynomials f1, . . . , fm ∈ F [x1, . . . , xn]
in n variables, is the following field extension algebraic:

F {x1, . . . , xn} \ F {f1, . . . , fm} .

Alternatively, the problem can be framed as follows:

Problem 2 (Algebraic Independence). Given a base field F, and a set ofm polynomials f1, . . . , fm ∈ F [x1, . . . , xn]
in n variables, does there exist a non-zero polynomial A(y1, . . . , ym) ∈ F [y1, . . . , ym] such that

A(f1, . . . , fm) ≡ 0.

A polynomial A that satisfies the above, if it exists, is called the Annihilator of the polynomials f .
A simple example is as follows: Let f1 := x21 +x22 and f2 := x1 +x2. If F := F2, then the two polynomials

are dependent, with annihilator f21 +f2. If on the other hand, F := Q, then the polynomials are independent,
with 2y2 − 2yf1 + f21 − f2 the minimal polynomial for both x1, x2.

Algebraic depenence can be seen as the natural generalisation of linear dependence. While linear depen-
dence can be checked easily in polynomial time, the same cannot be said of algebraic dependence(yet). The
primary reason for this difference is the fact that the algebraic relationship between a set of polynomials can
be highly complicated. More formally, the annihilator A can have exponentially high degree.

It is thus not even clear if we can certify algebraic dependence efficiently, let alone solve the problem
efficiently. However, recent work (Guo et al. (2018)) puts this problem in AM ∩ CoAM, making it unlikely
to be NP-hard, under standard assumptions, namely P = BPP and P 6= NP. This is strong evidence that the
problem can be solved by a randomised algorithm, or atleast that the problem can be efficiently certified,
making the problem ”easy”.

This report summarises some results that are known about this problem, with a focus on two of them: the
above result showing that the problem is easy, and a result that relates algebraic dependence to functional
dependence. The reason the second result is important is that currently it is the only known way of getting
any semblence of an algorithm for the problem. Finally, it discussed some of the approaches we tried for the
case of bounded degree polynomials.

3 Previous Work

3.1 Computability in PSPACE

It it not clear a priori if this problem is even computable - the annihilator of the polynomials f might
have arbitrary degree. Oscar Perron Perron (1927) gave a bound on the degree of the annihilator of n + 1
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polynomials in n variables in fields of characteristic 0. This was subsequently generalied to arbitrary number
of polynomials in Kayal (2009), and to arbitrary characteristic in Mittmann and Bläser (2013). They prove
the following:

Theorem 1. Let δ := max(di), and let r be the trdeg of f , with r < m Then there exists an annihilator A
of total degree atmost δr.

This gives us a brute force PSPACE algorithm for the problem: Given the polynomials, construct an
exponentially big linear system, where the unknowns are the coefficients of A, and check for solutions.

Kayal (2009) also proved that the above degree bound is tight, by constructing a set of dependent
polynomials, whose annihilator of smallest degree hits the above exponential bound.

3.2 Jacobian Criterion

The oldest criterion for algebraic dependence was proved by Jacobi in 1851, and subsequently strenghtened
by Dvir et al. (2007). Define the Jacobian of the polynomials f to be the matrix of partial derivatives,

Jx(f) =

(
∂fi
∂xj

)
i,j

They proved the following:

Theorem 2. Let F have characteristic either 0, or greater than D. Then the trdeg of the polynomials f is
equal to the rank of the Jacobian matrix, over the field F(x)

The above theorem gives us a straightforward randomised polynomial time algorithm for checking alge-
braic dependence for fields of big enough characteristic: compute the Jacobian, and compute its determinant
after randomly fixing the variables xi. By the DeMillo-Lipton-Schwartz-Zippel lemma (Demillo and Lipton
(1978)), if this determinant is zero, so is the determinant of the Jacobian, with high probability. It was also
proved that one of the directions in the above, namely that if the Jacobian is full rank then the polynomials
are algebraically independent, does not require the condition on the characteristic.

This solves the problem in the large characteristic case. The above fails when the characteristic is small.

3.3 Witt-Jacobian Criterion

The first non-trivial algorithm that was independent of the characteristic of the field was given in Mittmann
et al. (2012). Their criterion is based on lifting the Jacobian polynomial to the p-adics, which have charac-
teristic 0. This puts the problem of independence testing in NP#P .

3.4 Algebraic Independence in AM ∩ CoAM

Guo et al. (2018) proved that algebraic independence testing is both in AM and in CoAM, putting it very
low on the polynomial heirarchy, in Σ2 ∩Π2. This is strong evidence that the problem is not NP-hard. The
proof technique employed is algebro-geometric. The idea is to look at the polynomial map induced by the
input polynomials, and the size of its image. A gap in the size of this image allows an application of the
Goldwasser-Sipser Set Lowerbound protocol Goldwasser and Sipser (1986).

We sketch the proof here. Assume that the problem instance is in field Fq. We will work in an extension
Fq′ . Assume without loss of generality that m = n. Let f denote the map Fq′ 7→ Fq′ where f(a1, . . . , an) =
(fi(a1, . . . , an)). Let Nb denote the size of the set f−1(b). Let N̄b denote the cardinality of the set f−1(b) in
the algebraic closure of Fq′ .

It is clear that if the polynomials f are algebraically dependent, then every element in the image of the
map f must be a root of the annihilator. Since the annihilator has bounded degree, the image cannot be
too big. The converse also holds - if the polynomials are independent, then the image of the map is big.
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Theorem 3. Testing algebraic dependence of f is in AM.

Proof sketch. For a random a ∈ Fnq′ , look at the size of Nf(a), in case of dependence and independence.
First, consider the case when the polynomials f are dependent. The claim is that for any k > 0, Nf(a) > 0

for atmost kD/q′ fraction of the a ∈ Fnq′ . By DeMillo-Lipton-Schwartz-Zippel, and the degree bound on the

annihilator, we have |Im(f)| ≤ Dq′n−1. From this, the claim follows by a counting argument.
The case of the independent polynomials is slightly more involved. The claim is that N̄f(a) ≤ D for

all but atmost nDD′/q′ fraction of the a ∈ Fnq′ . Consider the annihilators Ai of {xi, f1, . . . , fn}. Let
A′i(z) := Ai(z, f1(a), . . . , fn(a)), and assume that none of them are identically zero. It is easy to see that for
any b that satisfies f(a) = f(b), the coordinates of b are roots of A′i, which gives us that the number of such
b is finite. Now, an application of Bezout’s theorem gives the size bound of D that was claimed. To complete
the claim, the number of a such that atleast one of the A′i are identically zero needs to be bounded. This
can be done by another application of DeMillo-Lipton-Schwartz-Zippel lemma, by noting that the leading
coefficients of all the A′i are nonzero, since the polynomials are assumed to be independent.

By appropriately picking the parameter q′, there is a gap in the size of the set
∣∣f−1(f(a))

∣∣ for a random
a, and by the affore mentioned protocol, this proves the theorem.

Theorem 4. Testing algebraic dependence of f is in CoAM.

Proof Sketch. Here, the set in whose size the gap exists is the image of the polynomial map itself.
First consider the dependent case. The claim is that Nb = 0 for all but atmost D/q′ fraction of b ∈ Fnq′ .

This follows directly from the previous discussion on the size of the image of f .
Consider then the independent case. The claim is that Nb > 0 for atleast D−1 − nD′q′−1 fraction of

the b. Since for atleast 1 − nDD′q′−1 fraction of the a,Nf(a) ≤ D, the claim follows by a simple counting
argument.

For appropriate values of the parameter q′, the above two claims give a gap in the size of the set Im(f),
and the proof of the theorem follows from the protocol.

We reiterate that while the above result is strong evidence that the problem is low in the polynomial
heirarchy, the proofs themselves do not hint at any algorithm, or even a certificate for the problem.

3.5 Functional Dependence

Pandey et al. (2018) prove that algebraic dependence is related to functional dependence. In particular, they
prove the following theorem:

Theorem 5. Let t ∈ N. If the trdeg of f is k, then there exist algebraically independent {g1, . . . , gk} ⊂ f
such that for a random a ∈ F̄ and for all i, there are polynomials hi ∈ F̄ [Y1, . . . , Yk] satisfying

f≤ti (x + a) = h≤ti (g1(x + a), . . . , gk(x + a)).

Note that for any fi 6∈ g, the set fi ∪ g is algebraically dependent, and thus fi has a complicated
dependence on g. The above result says that upto arbitrary approximation, after applying a shift, fi is
actually a polynomial in g, greatly simplifying what the relationship looks like.

For example, consider the algebraically dependent set
{
x1, x2, x1x

2
2

}
with field F̄2. After a random shift,

the polynomials look like x1 + a1, x2 + a2, (x1 + a1)(x22 + a22). If we set t = 1, then we have

x1 + a1 ≡ a−22 (x1 + a1)(x22 + a22) (mod 〈x〉2).

While dependent polynomials are also functionally dependent, independent polynomials might also seem
functionally dependent if checked for low values of t. This is evident in the previous example: for a very low
value of t, x1 and x1x

2
2, two clearly independent polynomials, seem functionally dependent. The authors

proved a upper bound on the t for which independent polynomials can look functionally dependent. Formally,
they prove the following:
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Theorem 6. Let the base field have characteristic p. Let f be independent, with inseperable degree pi. Then,

1. for all t ≥ pi, for a random ā, f≤tn (x+a) cannot be written as h≤t(f1(x+a), . . . , fn−1(x+a)), for any
h ∈ F̄ [Y].

2. for all 1 ≤ t < pi, there is some j such that for random a, f≤tj (x + a) can be written as h≤tjt (f1(x +
a), . . . , fj−1(x + a), fj+1(x + a), . . . , fn(x + a)), for some hjt [Y].

The above theorem gives a randomised polynomial time algorithm for testing independence, when the
inseperable degree is promised to be constant.

4 Bounded Degree Polynomials

In this project, we attempted to study the special case of bounded degree polynomials. In particular, we
assume that there is a constant δ, such that for all i, di ≤ δ. In this setting, all polynomials are vacuously
sparse, and we can thus assume that the input consists of the monomials explicitely, as opposed to circuits.
In particular, the total number of possible monomials is O

(
nδ
)
. This allows us to operate on the polynomials

arbitrarily, as opposed to allowing only those operations that circuits allow, such as taking standanrd partial
derivatives and finding homogeneous parts. While problems such as PIT become trivial in this explicit
setting, the problem of algebraic independence testing continues to remain open.

An example that demonstrates the hardness of this setting is the following:

Example 1. Let F = Fp for some p. Let f1 := xp1 − x2, f2 := xp2 − x3 and in general, for 1 ≤ i < n,
fi = xpi − xi+1. Finally, let fn := xn. It is easy to see that the polynomials f are independent. The minimal
polynomial for xn is just y = fn. The minimal polynomial for xi, for i 6= n is given by

yp
n−i

= fn +

n−i∑
j=1

fp
j

n−j .

The inseperable degree of f is pn, which is far from constant.

It is clear that even for bounded degree polynomials, the annihilator can have exponential degree. This
example shows that the inseperable degree can also be exponentially high.

4.1 Reduction to Trinomials

The first thing we tried was checking if the general case of the problem admits reductions to cases with
smaller parameters. To this end, a simple reduction is from the general case, to the case of trinomials.

The actual reduction to the trinomials is the obvious one. Here we present the reduction of a single
polynomial f . In the general case, all the polynomials fi are reduced in the same way. The reduction
introduces new variables. In the general case, these new variables are also indexed by the index of the poly-
nomial. Essentially, this just ensures that the new variables introduced while reducing distinct polynomials
are distinct. Assume that the polynomial f has the form

f(x) =
∑
a

cax
a

Assume that f(x) has l many monomials, and that l > 3. Fix any ordering for the monomials, say lexico-

graphic, and let f(x) =
∑l
i=1mi, where mi is the product of the ith monomial in f , with its corresponding

coefficient. Introduct l − 3 new variables, z1, . . . , zl−3. Define g1 := m1 + m2 − z1. For all 2 ≤ i ≤ l − 3,
define gi := mi+1 + zi−1 − zi. Finally, define gl−2 := ml−1 + ml + zl−3. By definition, each of the gi are
trinomials.
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In the general case, we have polynomials f1, . . . , fm, with number of monomials l1, . . . , lm. We introduce
polynomials gi,1, . . . , gi,li−3 corresponding to fi. Each of these gi,j are trinomials, and the total number of
new polynomials is O

(
nδ+1

)
, a polynomial. In order to show that this is a valid reduction, we need to show

that dependence is preserved.

Lemma 7. If the polynomials f are algebraically dependent, then so are the polynomials g.

Proof. Since f are dependent, they have an annihilator A(y). Define an annihilator B(w) for g as

B(w1,1, w1,2, . . . , w1,l1−3, w2,1, . . . , wm,lm−3 := A(

l1−3∑
i=1

w1,i, . . . ,

lm−3∑
i=1

wm,i).

That B annihilates g simply follows from the fact that fj =
lj−3∑
i=1

wj,i.

Lemma 8. If the polynomials f are algebraically independent, then so are the polynomials g.

Proof. Look at the extension F(x, z) \ F(g). Since F(f) ⊂ F(g), and since each of the xi are algebraic over
F(f), they are algebraic over F(g). Thus the extension F(g,x) \ F(g) is algebraic. Let us denote F(g,x) by
F1.

Since gi,1 are in F1, and all monomials in x are also in F1, so are the elements zi,1. Again, since gi,2 are
in F1, and all monomials in x are also in F1, so are the elements zi,1 − zi,2. Since zi,1 are in F1, so are zi,2.
Continuing, we get that all zi,j are in F1, and hence F1 = F(x, z). But by definition, F1 was an algebraic
extension of F(g), and thus F(x, z) is algebraic over F(g), completing the proof of the lemma.

This reduction begs the following question, which is still open:

Open Question 1. Is there an integer e, such that given an instance of the algebraic independence question for
bounded degree polynomials, we can reduce it to an instance of the same problem where all the polynomials
have degree atmost e, in a manner that preserves dependence.

The reduction of the degree seems like a harder problem. If we were to achieve this by a reduction similar
to above, we would have to come up with some polynomials gi that are all of bounded degree, but that
somehow multiply to give f . Such gi might not even exist. An action such as substituting x2 with x′ and
adding x2− x′ as a polynomial will also not work, since we cannot recover the original polynomial f via the
allowed field actions.

4.2 Towers of Certificates

This is a very high level picture of a potential way this problem can be tackled, and most of the facts in this
section are extremely obvious.

Assume that f are algbraically independent. Consider the field extension F(x) \ F(f). This can be
decomposed into the following tower of extensions:

F(x1, . . . , xn, f) \ F(x2, . . . , xn, f) \ F(x3, . . . xn, f) \ · · · \ F(f).

Each of these extensions are algebraic. Because of the multiplicative property of the degree of algebraic
extensions, a simple averaging argument gives us that not all of these extensions can have very high degree.
In particular, atleast one of them will have degree atmost δ. What this tells us is that there is some i such
that it is easy to certify the fact that xi is algebraic over F(xi+1, . . . , xn, f).

This leads to the following question: Is there an i such that xi is easy to certify over F(f). In other words,
is there a permutation of x, where the small degree step in the tower is the first one? If this were true, then
it would give us a way of certifying independence. While this is true of the previous ”hard” example, this
does not hold in general. The following example, which is a simple modification of example 1 shows this.
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Example 2. Let F = Fp for some p. Let f1 := xp1 − x2, f2 := xp2 − x3 and in general, for 1 ≤ i < n,
fi = xpi − xi+1. Finally, let fn := xpn − x1.

A simple calculation shows that that the minimal polynomial of any of the xi has exponential degree
over. Every other xj has very low degree annihilators over F(xi, f), but the first one has exponential degree.

In the above example, the inseperable degree becomes 1. However, it is possible to construct examples
where the inseperable degree also remains high. The following example works for the case of n = m = 2.

Example 3. Let F = F2. Let f1 := x21 + x22. Let f2 := x22 + x1 + x2. The minimal polynomial for x1 is
y4 = f21 + f22 + f1, and that for x2 is y4 = f1 + f22 .

To get the above example, we took polynomials where it was easy to certify the fact that x1 is algebraic,
and then replaced x1 by x1 + x2 everywhere. This leads one to believe that maybe it is not one of the xi
that is easy to certify, but some other polynomial a.

The general scheme that we want to try is the following: Find a polynomial a that depends algebraically
on f , with the following two additional properties. One, there is a short certificate for a. This can either be
done directly via the annihilator of a, f , or via functional dependence. While in general both of the above are
exponentially big, since we are picking the polynomial a, we might hope to pick a ”good” polynomial where
the certificate is not too bad. Also, this certificate should somehow show that a depends non-trivially on
one of the polynomials, say fn. Secondly, a should be simpler than fn in some appropriate sense. We want
a potential function on the set of polynomials, and a should be such that replacing fn with a reduces this
potential function. Examples of possible potential functions include the sum of degrees of all the polynomials.
By repeating this replacement technique multiple times, we can potentially convert the problem into an easy
instance.

The above ideas are clearly at a very high level, but they currently seem like a good way of tackling
the problem. One of the obvious problems in this approach is that certifying the polynomial a itself is an
instance of the algebraic dependence problem, with basically the same instance size. This is circular in
nature. This is why we must make sure that a is nice enough. The immediate plan is to study the space
Hfi (the non-constant part of fi(x + z) with respect to x) more closely. Looking at this space modulo high
enough degrees of x gives the complete functional dependence result, but the space is still not well enough
studied to rule out the possibility of it being useful modulo lower powers of x.

Finally, we would like to point out some intuition for the above method from linear algebra. Both linear
and algebraic independence satisy matroid properties. In particular, given a set of vectors (polynomials) S,
and a vector (polynomial) c, the following holds: if b ∈ cl(S ∪ {c}) and b 6∈ cl({c}), then c ∈ cl(S ∪ {b}). In
the case of linear independence, the cl operator is just the span, while in the algebraic dependence case, it is
the algebraic closure operator. This basically amounts to saying that if we have a basis, and some vector is
in its span, we can replace one of the basis vectors with that vector. This is essentially what we want to do
in the algebraic case: start with a basis f and repeatedly replace polynomials with other polynomials that
are simpler.

5 Conclusion and Future Work

We studied the problem of algebraic dependence in the special case of bounded degree polynomials, and
outlined a potential method of solving the problem. We now plan to try and implement this, by studying
the space Hfi modulo low degree powers of x and checking what kind of information this yields about the
polynomials.
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