
Polynomials over Composites
Compact Root Representation via Ideals and

Algorithmic Consequences

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Ashish Dwivedi

17111261

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

January, 2023

CERTIFICATE

It is certified that the work contained in the thesis entitled “Polynomials over Composites:

Compact Root Representation via Ideals and Algorithmic Consequences”, by “Ashish Dwivedi”, has

been carried out under our supervision and that this work has not been submitted elsewhere for a

degree.

Nitin Saxena

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Rajat Mittal

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

January, 2023

DECLARATION

This is to certify that the thesis titled “Polynomials over Composites: Compact Root Rep-

resentation via Ideals and Algorithmic Consequences” has been authored by me. It presents

the research conducted by me under the supervision of “Prof. Nitin Saxena” and “Prof. Rajat

Mittal” at the Department of Computer Science and Engineering, IIT Kanpur. To the best

of my knowledge, it is an original work, both in terms of research content and narrative, and

has not been submitted elsewhere, in part or in full, for a degree. Further, due credit has

been attributed to the relevant state-of-the-art and collaborations (if any) with appropriate

citations and acknowledgements, in line with established norms and practices.

——————————————

Ashish Dwivedi

Programme: Doctor of Philosophy

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Kanpur 208016

January, 2023

Synopsis

Polynomials with integer coefficients modulo a composite number N are natural generalization

of polynomials modulo a prime p (i.e. Galois field). While the latter have been prominently

studied in computer science and mathematics, former is less understood. We attempt to

understand them by studying some fundamental problems centered around their factors and

roots. These problems reduce to the ring of integers modulo prime power (i.e. Galois ring).

In such a ring the polynomial may have ‘exponentially’ many roots which becomes difficult to

handle by currently known methods. We employ ‘polynomial ideals’ as a tool to ‘compactly’

represent all the roots and make progress on the following problems.

First, we study the problem of counting roots of a univariate polynomial in a Galois ring.

We solve this problem in deterministic polynomial time by constructing special ideals: ‘split

ideals’. Our algorithm also extends to count special factors, called basic-irreducible factors,

in deterministic polynomial time.

We give an application to arithmetic-algebraic geometry. In deterministic polynomial

time, we compute rational function form of Igusa’s local zeta function (IZF) associated to

a given univariate polynomial and a prime p. It is #P-hard to compute IZF for general

multivariate polynomials. IZF is a very important generating function which encodes the

number of roots of the associated polynomial modulo prime powers. In another application,

we give the first deterministic polynomial time algorithm to count roots of a univariate (with

multiplicity) over p-adic integers.

Factoring a univariate polynomial modulo a prime power (pk) is a challenging open prob-

lem when k is ‘constant’. We give a factoring algorithm for ‘constant degree’ polynomials in

randomized polynomial time. Some of our methods also solve the problem completely (arbi-

vii

viii

trary degree) when k is at most 4; improving the state of the art beyond k = 2. Essentially,

‘constant degree’ factoring was achieved by efficiently reducing it to the next fundamental

problem: Solving a system of n-variate polynomial equations modulo a prime-power pk. Over

Galois (finite) fields (k = 1) the problem is very well studied and even its decision version,

i.e., to test for existence of a solution, is NP-hard for unbounded n. Assuming n constant,

efficient randomized algorithm is known over finite fields. However no efficient algorithm is

known over Galois rings even if k = 2. We generalise the result to Galois rings by solving the

problem in randomized polynomial time when k is constant.

Acknowledgements

I have been very fortunate to be advised by Professor Nitin Saxena and Professor Rajat

Mittal. I put my first steps in research as a master’s student of Prof Nitin in January 2016,

knowing nothing about theoretical computer science, and hopefully ended up becoming a

decent researcher now. I am grateful to him for being my advisor and imparting all the

knowledge through his courses and countless hours of discussions. The time of May 2018

is unforgettable to me when we used to have discussions from around 3 PM to 7 PM every

single day. I am grateful for this generosity with time and teaching me a lot of algebra which

boosted my confidence in research in the starting years of my PhD. I also thank him for being

patient with me and letting me work with my own pace.

I thank Prof Rajat for his simple and intuitive explanations which was very helpful in

start of my PhD where we have collaborated in my initial two publications. I have learned

quite a bit from him about presentation of ideas in talks or in general. I owe anything good

in my presentations to him and the bad aspects are totally mine. His enthusiasm for teaching

and lucid explanations reflect in the teaching awards he has received from the institute. I also

thank him for guidance, encouragements and showing confidence in me at several occasions.

I also thank both Prof Nitin and Rajat for their immense support during May 2021 when

I was hospitalised due to COVID-19. I thank them for contributing and collecting funds,

despite my reluctance and ignorance, and continuously monitoring my health progress. I am

extremely grateful to all the individuals (known and unknown) who have helped me financially

and morally during that hard time. I apologise for not being able to put the long list here.

I would like to thank my teachers at IITK namely, Professors– Nitin Saxena, Surender

Baswana, Rajat Mittal, Manindra Agrawal, Raghunath Tewari, Sunil Simon, Subhajit Roy

ix

x

and Harish Karnik. I am specially thankful to Prof Surender Baswana for personal encour-

agements and providing an amazing course experience. I thank the staff members at CSE

department for their help during my stay at IITK, in particular– Sahu ji, Rajesh ji, Akash ji

and Aradhana ji. The results in this thesis are based on joint work with Sayak Chakrabarti

and my advisors. I thank them for all the discussions and learning.

I thank Prahladh, Ramprasad, Srikanth and ICTS Bangalore for organising the wonderful

workshop WACT19 and letting me present my work before the wide audience there. It

was a great learning experience. I had discussions with Ramprasad at various occasions;

his enthusiasm is inspiring. I thank Research-I foundation of Infosys to fund my travel to

WACT19 and CCC 2019. I am thankful to my friend Chi-Ning Chou for inviting me to

present my work at Harvard TGINF, for his hospitality and all the interesting discussions. I

also thank Prof Madhu Sudan for giving me his time during my visit to Harvard.

I thank Pranav for remaining a true friend in all the happy and sorrow moments of master’s

and PhD journey and showing his trust and support in tough times. His clarity of thoughts

and managing things even in adverse situations is inspiring. I thank Samik for his friendship

and all his help while staying and while leaving IITK. I have shared a lot of memorable

moments with both, often hanging out at food outlets. Initial years of my PhD has been

my best time sheerly due to my two senior colleagues and friends– Amit and Sumanta. I am

grateful to have had them as my mentors and friends. I thank Amit for always imparting

positivity and for being available as a go to person for anything. I thank Abhishek Rose

for being a great friend since the master’s and being part of some thrilling experiences :) I

thank my other friends and colleagues at IITK for having wonderful time together: Anindya,

Bhargava, Diptajit, Mahesh, Pranjal, Prateek, Priyanka, Rajendra, Utsav and Zeyu.

Many thanks to my childhood and best friend Nitesh. I thank my other friends Vijay,

Sudhanshu, Bhavneet and Divyanshu. I thank my little brother Shrestha, little sister Sind-

huja, my inspirations Nanaji-Dadaji and my late father for providing me everything I needed

and the reason for where I am. I am grateful to all my gurus for always showing me the right

path. Finally, the one whom I can’t even thank but just acknowledge for my existence and

for everything I am and to whom I dedicate this thesis: My mother Gayatri.

Contents

Acknowledgements ix

List of Publications xv

List of Figures xvii

1 Introduction 1

1.1 Polynomials over Composites . 2

1.2 Univariate Factoring and Root Counting . 3

1.3 Multivariate System of Equations . 6

1.4 Computing p-adic Zeta Function . 7

1.5 Our Contribution . 10

1.5.1 Derandomization via Ideals and Applications 11

1.5.2 Random Sampling via Ideals . 13

1.6 Thesis Organization . 16

2 Preliminaries 17

2.1 Basic Notations and Definitions . 17

2.2 Some Useful Results . 19

2.2.1 Factoring and Lifting . 19

2.2.2 Properties of Galois rings: Ring analogues of Finite Fields 21

2.3 Randomized Root Finding modulo Prime Powers 22

2.3.1 Representatives and Representative Roots 22

xi

xii

2.3.2 Root Finding modulo Prime Powers 24

I Derandomization via Ideals and Applications 27

3 Introducing Split Ideals 29

3.1 Notations and Definitions . 29

3.2 Split Ideals: Structure and Properties . 30

3.3 Reduction and Division modulo a Triangular Ideal 35

3.4 Testing for Zerodivisors and GCD Computation 38

4 Derandomizing Univariate Root Counting modulo Prime Powers 43

4.1 Counting All the Roots of f(x) modulo Prime Power pk 43

4.1.1 Algorithm to Implicitly Partition the Root-Set 44

4.1.2 Correctness of the Algorithm . 51

4.1.3 Time Complexity Analysis: Introducing the Roots-Tree RT 56

4.2 Summary . 63

5 Counting Unramified Factors modulo Prime Powers 65

5.1 Counting Factors with Strong Irreducibility 65

5.1.1 Reduction to Root Counting in G(pk, b) 66

5.1.2 Counting Roots in G(pk, b) . 67

5.2 Discussions . 71

6 Computing Igusa’s Local Zeta Function and p-adic Applications 73

6.1 Preliminaries . 74

6.1.1 Some Definitions and Notations related to f 75

6.2 Interplay of Zp-Roots and
(
Z/〈pk〉

)
-Roots . 76

6.3 Representative Roots versus Neighborhoods 79

6.4 Formula for Nk(f) . 81

6.5 Computing Poincaré Series . 82

6.6 Summary . 85

xiii

II Random Sampling via Ideals 87

7 Reduction of Factoring to Root Finding and Factoring modulo p4 89

7.1 Preliminaries . 91

7.2 Factoring to Root Finding . 92

7.3 Factoring and Lifting modulo Prime Power p4 94

7.3.1 Finding All the Factors modulo pk for k < 4 95

7.3.2 Reduction to Root Finding modulo a Principal Ideal of Fp[x] 98

7.3.3 Finding Roots of a Special Bivariate E′(y0, y1) modulo 〈p, ϕ4a〉 100

7.3.4 Algorithm to Find Roots of E(y) . 102

7.3.5 Proof of Main Results . 105

7.4 Barriers to extension modulo higher powers pk 106

7.5 Conclusion . 108

8 Low Degree Factoring via Solving System of Polynomials 109

8.1 Our Results . 109

8.2 Finding Low Degree Factors modulo Small Prime Powers 110

8.2.1 Factoring over the Galois Ring . 111

8.2.2 Reduction to Root Finding in Galois Rings 112

8.2.3 Algorithm and Proofs . 113

8.3 Solving System of Polynomial Equations over Galois Rings 115

8.3.1 Notations and Preliminaries . 116

8.3.2 The Outline . 118

8.3.3 Decomposition into Ideals with ‘Local Properties’ 119

8.3.4 Algorithm for getting Roots into ‘Absolute’ Ideals 123

8.3.5 Correctness and Root Finding . 130

8.4 Summary . 132

9 Conclusion and Open Problems 133

Bibliography 137

List of Publications

[DMS19] Counting basic-irreducible factors mod pk in deterministic poly-

time and p-adic applications

with Rajat Mittal and Nitin Saxena.

34th Computational Complexity Conference (CCC), 15:1–15:29, 2019.

[DS20] Computing Igusa’s local zeta function of univariates in determin-

istic polynomial-time

with Nitin Saxena.

14th Algorithmic Number Theory Symposium, ANTS-XIV, Open Book Se-

ries, vol.4, 197–214, 2020.

[DMS21] Efficiently Factoring Polynomials Modulo p4

with Rajat Mittal and Nitin Saxena.

44th International Symposium on Symbolic and Algebraic Computation

(ISSAC), 139–146, 2019.

Full version in Journal of Symbolic Computation, 104:805–823, 2021.

[CDS22] Solving polynomial systems over non-fields and applications to

modular polynomial factoring

with Sayak Chakrabarti and Nitin Saxena.

Submitted to a Journal, 2022.

In Part I, Chapters 3, 4, 5 are based on [DMS19] while Chapter 6 is based on [DS20]. In

Part II, Chapter 7 is based on [DMS21] and Chapter 8 is based on a part of [CDS22] while

the remaining part appears in the thesis [Cha22].

xv

List of Figures

4.1 Initialization . 58

4.2 Construction of roots-tree RT for Example 9 58

8.1 Commutative Diagram . 127

xvii

Chapter 1

Introduction

Polynomials are one of the most fundamental mathematical objects known, perhaps after

numbers such as integers and rationals. In fact, polynomials give definition to new numbers,

e.g., complex numbers, and help solve problems about numbers, e.g., primality testing. Be-

haviour of a polynomial crucially depends on the domain in which they are defined. One such

important domain in computer science is integers modulo a prime, or more generally a finite

field. In finite fields, the fundamental problems of finding roots and factors of polynomials

have been instrumental in some of the major achievements in computer science.

This thesis studies the polynomials in a more general regime– Polynomials over ring of

integers modulo a composite N . Though a natural generalization of polynomials modulo a

prime, polynomials over composites are less understood. The structural properties over fi-

nite fields and the standard methods to understand polynomials fail to hold in such a ring.

For example, a univariate polynomial may have exponentially many roots over composites

(opposite to at most degree-many roots over a field). We attempt to understand these polyno-

mials by studying a few natural fundamental problems centred around their roots and factors.

These problems include finding and counting roots/factors of univariate polynomials, com-

puting p-adic zeta function (encoding number of roots) and solving a system of multivariate

polynomial equations. This thesis develops a common framework of polynomial ideals where

ideals ‘compactly’ represent all the exponentially many roots. The nice algebraic-geometric

properties of these ideals allows us to efficiently retrieve the required information about roots.

1

2

1.1 Polynomials over Composites

Polynomials over a composite N have several applications in computer science and math-

ematics. In complexity theory, they are used to represent boolean functions and to prove

lower bounds [AB01, BBR94, TMB98]. They have also been useful in primality testing

[AB03, AKS04], in communication complexity [BGL06] and in combinatorics to construct

Ramsey graphs and extremal set systems [Gop14, Gro00]. For more details we refer to the

PhD thesis of Gopalan [Gop06].

Polynomials over a composite N show bizarre behaviour which is quite counter-intuitive

as compared to behaviour over fields. Shamir gave an interesting example which shows that

factoring a polynomial in such a ring is as hard as factoring integers. This, in contrast to

a field, is opposite to the belief in complexity theory community. It is believed that integer

factoring is intractable but we know efficient algorithms for polynomial factoring whether the

field is rational or finite.

Example 1 ([Sha93]). : Let N = p1p2 where p1, p2 are primes. The polynomial f = x factors

modulo N as (p2
1 + p2

2)−1(p1x+ p2)(p2x+ p1). Thus knowing the factors gives us p1 and p2.

The example also shows another bizarre behaviour that even a linear monic polynomial

factors in such a ring. Thus to have efficient algorithms for our problems we assume that

factorization of N into its prime-power factors is given.

Now the classical Chinese remainder theorem allows us to work over the ring of integers

modulo prime-powers. Let N =
∏w
i=1 p

ki
i where pis are prime numbers and ki ∈ N for all

i ∈ [w]. Then,

Z
〈N〉

∼=
Z
〈pk1

1 〉
⊕ · · · ⊕ Z

〈pkww 〉

where right hand side is the direct product of rings. The isomorphism map is given as,

a mod N → (a mod pk1
1 , . . . , a mod pkww).

Thus from now on we assume N to be a prime power pk i.e., we will study polynomials

with coefficients in a Galois ring such as Z/〈pk〉. The use of Chinese remaindering in the case

of polynomial factoring is discussed in more details in [vzGH98].

3

Understanding polynomials over ring of integers modulo prime powers are important for

many reasons. Besides being natural generalisation of integers modulo a prime, these rings are

helpful for understanding operations over p-adic integers Zp. Informally, p-adic integers Zp

are the set of numbers in Z/〈pk〉 as k →∞ i.e., they have infinite precision and characteristic

zero. Thus due to requirement of infinite precision in representing them (as for reals), one

deals with their truncation modulo a prime-power pk in practical applications.

We now move to discuss our problems related to roots and factors of polynomials over

Galois rings. Galois rings are very different than finite (Galois) fields, for e.g., a univariate

polynomial over Galois rings may have exponentially many roots or factors. Perhaps this is

why we don’t have efficient algorithms for many fundamental problems, such as polynomial

factoring, which have efficient algorithms over finite fields.

1.2 Univariate Factoring and Root Counting

Factoring a univariate over finite fields have many efficient algorithms [Ber67, CZ81, Kal92,

KU11, vzGP01] and have found many applications in mathematics and computing [FS15,

Kal92, LN94, Sud97, vzGP01]. We consider the following (Galois) ring generalization of this

question (k > 1):

Problem 1.2.1 (Factoring). Given f ∈ Z[x] of degree d and a prime power pk, can we find

a non-trivial factor of f of degree δ < d in time poly(d, k log p)?

Though this problem is studied since the time of Hensel [Hen18] and it finds a section in

many textbooks on elementary number theory [NZM13], yet there is no efficient algorithm

known. The issue arises as f mod pk may possess exponentially many factors; for e.g., f =

x2 mod p2 has a factor (x+ pα), for each α ∈ {0, . . . , p− 1}. This happens because the ring

Z/〈pk〉 is not a unique factorization domain. A standard method in the literature is to find a

factor of f mod p and then try to lift this factor modulo a power of p. The following example

illustrates the difficulty of lifting.

Example 2. Let f = x2 + p2 and (p, k) := (5, 3). The factorization f = x · x mod 5 lifts

to p = 5 factorizations of f = x2 mod 52, as discussed above. But only the factorization

4

f = (x+ 2 · 5) · (x+ 3 · 5) = (x+ 10) · (x+ 15) mod 52 lifts to mod 53.

This example raises the question: How to efficiently determine which factorization out of

the pO(dj) (exponentially many) factorizations modulo pj will lift to the higher precision i.e.,

modulo pj+1?

Hensel’s lemma efficiently gives factoring when f mod p has two coprime factors. Basically,

the problem of picking a good factorization out of exponentially many factorizations do not

happen with coprime factorization of f mod p. This is because, Hensel’s lemma guarantees

that a coprime factorization modulo p lifts uniquely to any power of p (Lemma 2.2.2).

Example 3. Let f = x2 + 10x + 21. Then f ≡ x(x + 1) mod 3 and Hensel lemma lifts this

factorization uniquely mod 32 as f(x) ≡ (x + 1 · 3)(x + 1 + 2 · 3) ≡ (x + 3)(x + 7) mod 9.

Similarly, this lifting extends to any power of 3.

Thus, the hard case is to factor f which is power of an irreducible polynomial modulo

p as in Example 2. Interestingly, in the hard case, using an extension of Hensel’s lemma

[BS86, vzGH98], one can solve the problem when k is ‘large’ i.e., pk does not divide the

discriminant of f (disc(f)). In this case, [CL01, vzGH98] show that irreducible factors of

f mod pk correspond to unique p-adic factors, which we get via efficient p-adic factoring

algorithms [CG00, Chi87, Chi94, GNP12] (over Zp).

When k is ‘small’ the behaviour of factorization pattern is completely elusive. The main

issue is that a p-adic irreducible factor could become reducible modulo pk. Moreover, two dif-

ferent factorizations could be completely unrelated i.e., there is no one to one correspondence

between irreducible factors of two different factorizations. This is not the case when k is large

due to the connection with unique p-adic factorization of factorizations modulo pk. Below are

examples taken from Gathen and Hartlieb [vzGH96] who first discussed these issues in detail:

Example 4 ([vzGH96]). Polynomial f = x2 + 3k is irreducible over Z/〈3k+1〉, and so over

3-adic field. But, f = x2 mod 3k is reducible.

Example 5 ([vzGH96]). f = (x2 + 243)(x2 + 6) is an irreducible factorization over Z/〈36〉.

There is another completely unrelated factorization f = (x + 351)(x + 135)(x2 + 243x +

249) mod 36.

5

Due to these difficulties we don’t even have an efficient randomized algorithm to factor

f mod p3 [Săl05, Sir17]. Thus, the major open question in factoring f mod pk is when k is

constant.

Problem 1.2.2. Can we find a non-trivial factor of given univariate polynomial f ∈ Z[x], of

degree d, modulo a constant power of prime p in random poly(d, log p)-time?

The related problems of root finding and counting modulo pk is of significant interest

and finds application in arithmetic-algebraic geometry [CS23, DH01, DS20, Zhu20, ZG03],

factoring [CG00, Chi87, Chi94], coding theory [BLQ13, Săl05], and hyper/elliptic curve cryp-

tography [Lau04]. Understanding root counting also give better understanding of root-sets

modulo pk (i.e. which subsets of Z/〈pk〉 are zero-sets of some polynomial?). Their combinato-

rial properties are of significant interest in mathematics [Sie55, CP56, Bha97, DM97, Mau01].

Berthomieu et al. [BLQ13] gave the first efficient randomized algorithm to find and count

all the roots of f(x) mod pk. Note that f mod pk can have exponentially many roots as

discussed before. Berthomieu et al. [BLQ13] efficiently partitioned these roots into at most

degree many efficiently representable subsets, which we call representative roots (Chapter 2).

These subsets allow efficient root-counting as well as finding an arbitrary root. However,

derandomization of [BLQ13] is still an open question. Derandomization at least requires

efficient deterministic algorithm for root finding and counting over finite fields. Deterministic

root finding is a big open problem but efficient deterministic algorithm is known for root

counting over finite fields via the Frobenius morphism: x 7→ xp. Thus we consider the

following question:

Problem 1.2.3. Given an integral univariate polynomial f(x) and a prime power pk. Can

we count all the roots (possibly exponentially many) in deterministic polynomial time?

Efficiently solving above counting problem immediately gives an efficient deterministic way

to test the existence of a root of f mod pk. Before this work, the best known deterministic

algorithm for root counting is due to Cheng et al. [CGRW18] which takes time exponential

in the parameter k.

6

1.3 Multivariate System of Equations

Finding a common root of a system of multivariate polynomial equations (Search Hilbert’s

Nullstellensatz or SHN) is a fundamental problem in algebraic geometry [CLO13]. Over finite

fields (characteristic p), the problem is well-studied and very important in cryptography

[Din21a, KPG99, Pat96] even for p = 2 and systems of degree d = 2.

The problem has been studied mainly in two parameter settings over finite fields. In small

characteristic p = 2, there has been a flurry of work [BFSS13, LPT+17, BKW19, Din21b,

BDT21] to improve the brute force time complexity from Ô(2n)1 (for n-variate polynomial

equations) to finally Ô(20.6943n) by Dinur [Din21b] which even outperforms Ô(20.792n) com-

plexity for random system of equations (Bardet et al. [BFSS13]).

For large p but constant n, Huang and Wong [HW99] gave an efficient randomized

poly(d,m, log p) time algorithm to find a common zero of a system of m-many degree-d poly-

nomials in n variables. The decision version of the problem was derandomized by Kayal

[Kay05] in same time complexity. Note that the decision version of the problem, i.e., testing

existence of a common solution, is NP-complete for unbounded number of variables n, even

if p = 2 and d = 2 [EK90, GGL08]. Extending Huang and Wong [HW99] we consider the

following problem over Galois rings.

Problem 1.3.1. Find a common zero of a given system of n-variate m integral polynomials,

for a fixed n, of degree at most d modulo a prime power pk in random poly(d,m, k log p)-time.

Galois rings are important in the study of algebraic codes [HKC+94]. Efficiently solving

polynomial systems in Galois rings may be fruitful in study of such codes. For example,

univariate root finding [BLQ13] has application in Guruswami-Sudan type list-decoding in

Galois rings.

When k > 1, the classical methods of algebraic geometry fail; which is why perhaps we

are not aware of many works on it. Starting k = 2, we are unaware of any efficient way to

solve SHN; and there is no analogue of the famous theorems like Hilbert’s Nullstellensatz (we

refer to [Bro87, GS20, Dwi17] to read more about the rich machinery).

1Ô subsumes polynomial dependence on degree, number of variables and number of polynomials.

7

To understand the difficulty, consider a system with just one polynomial f such that

f(y1, . . . , yn) =: ϕe mod p, for ramification e > 1 and ϕ being absolutely irreducible (i.e. ir-

reducible over all extension fields of Fp). In this case, ϕ must have exponentially many (in

log p) roots and all those are singular roots (Section 8.3.1) of f mod p. So, there is no easy

way to determine which root will lift, and which root will not, to modulo p2 (i.e. they ramify

in a complicated way).

Example 6. f(x, y) := (x − y)2 + p mod p2. Thus, f = (x − y)2 mod p has p roots which

are exponential in log p. Suppose (x, y) = (a0 + pa1, b0 + pb1) is a zero of f mod p2 where

a0, a1, b0, b1 ∈ {0, . . . , p−1} and a0 = b0. Putting values of x and y we get f ≡ p 6≡ 0 mod p2.

Thus (x, y) = (a0 + pa1, b0 + pb1) can’t be a zero of f mod p2. So, f(x, y) has no zero mod p2

i.e., none of the p zeros mod p lifts to mod p2.

Example 7. Perturb the above example only slightly to f(x, y) := (x − y)2 + px modp2.

Again, f mod p has p roots. However, now (0, 0) is the unique root that lifts mod p2.

The above two examples explain that finding a zero even modulo p2 is non-trivial. One

of the main issue is: how to sample a potentially ‘good’ zero modulo p out of abundance of

zeros which actually lifts? The second example excludes the possibility of a blind random

sampling as it may happen that only one zero modulo p lifts. Thus a first good step is to

consider the problem when k is constant.

1.4 Computing p-adic Zeta Function

Zeta functions are one of the most important class of generating functions which encode

the count of objects encompassing some mathematical structure. Over the years, the study

of zeta functions have played a foundational role in the development of mathematics and

finds applications in diverse science disciplines. Often zeta functions show special analytic,

or algebraic properties, the study of which reveals various striking information about the

encoded object which is hidden otherwise. Inevitably it has driven the whole new areas of

mathematical research and this makes zeta functions specially interesting to mathematicians.

8

A classic example is the famous Riemann zeta function [Rie59] which encodes the density,

and distribution, of prime numbers [Con03, Tit86]. Riemann zeta function is a global zeta

function. Later many local zeta functions, i.e., associated to a specific prime p, had been

studied such as Hasse-Weil zeta function [Wei48, Wei49] which encodes the count of zeros of

a system of polynomial equations over finite fields (of a specific characteristic p). It lead to

the development of modern algebraic-geometry (see [Del74, Gro64]).

In this thesis our object of interest are polynomials over integers modulo prime powers

and the local zeta function which encodes the count on their roots is known as Igusa’s local

zeta function. Formally, Igusa’s local zeta function Zf,p(s), attached to a polynomial over

p-adic integers, f(x) ∈ Zp[x1, . . . , xn], is defined as,

Zf,p(s) :=

∫
Znp
|f(x)|sp · |dx|

where s is a complex variable with Re(s) > 0, |.|p denotes the absolute value over p-adic

numbers Qp, and |dx| denotes the Haar measure on Qn
p normalized so that Znp has measure 1.

These zeta functions, defined by Weil [Wei64, Wei65], bear the name of Jun-Ichi Igusa who

studied them extensively [Igu74, Igu75, IR78] and, using the method of resolution of singu-

larities, proved that Zf,p(s) converges to a rational function. A fundamental computational

problem in arithmetic geometry is,

Problem 1.4.1 (Computing IZF). Compute the rational function form of Igusa’s local zeta

function Zf,p(s) for a given integral polynomial f and prime p.

Original definition of Igusa’s local zeta function is not necessarily needed to compute its

rational form as it can be computed by computing rational form of a closely related Poincaré

series P (t). P (t), attached to f and p, is defined as

P (t) :=

∞∑
i=0

Ni(f)

pni
· ti

where t is a complex variable with |t| < 1, and Ni(f) is the count on roots of f mod pi. The

trivial root count N0(f) is defined to be 1. Note that pni is maximum root count of any

n-variate polynomial modulo pi and hence the term Ni(f)
pni
≤ 1. The relation between Zf,p(s)

9

and P (t) has been shown in [Igu00] as

P (t) =
1− t · Zf,p(s)

1− t
with t =: p−s.

So rationality of Zf,p(s) implies rationality of P (t) and vice versa. This relation with Poincaré

series makes it clear how Igusa’s local zeta function directly encodes the root count of poly-

nomials modulo prime powers.

Many researchers have tried to calculate the expression for Igusa zeta function for various

polynomial families. However, not much has been said about their algorithmic aspect except

the recent work of Chakrabarti and Saxena [CS23] which takes exponential time in the input

size. Indeed, the computation of Igusa zeta function for a general multivariate polynomial

seems to be an intractable problem since root counting of a multivariate polynomial over a

finite field is known to be #P-hard [EK90].

In this thesis, we focus on the computation of Igusa zeta function when the associated

polynomial is univariate. In the case of univariate polynomials one naturally expects an el-

ementary proof of convergence, as well as an efficient algorithm to compute the Igusa zeta

function. Indeed, Zúñiga-Galindo [ZG03] gives deterministic polynomial-time algorithm for

univariates in restricted case where the univariate completely splits over Q (with the factor-

ization given in the input). We ask,

Problem 1.4.2 (Computing univariate IZF). Is there a deterministic polynomial time al-

gorithm to compute the rational function form of Igusa zeta function, associated to a given

univariate polynomial f ∈ Z[x] and prime p? Is there an elementary proof of convergence?

Igusa zeta function for a univariate polynomial f is connected to the previously discussed

problem of root counting of f modulo prime powers pk, i.e., computing Nk(f). However, it

is not clear how computing Nk(f) for few values of k is sufficient for computing associated

Poincaré series though an explicit expression for Nk(f) may help. We ask,

Problem 1.4.3 (Computing Nk(f)). Can we compute explicit expression for number of roots

of f ∈ Z[x] modulo prime-power pk (if one exists) in deterministic polynomial time?

10

1.5 Our Contribution

One of the core contribution of this thesis is to develop a framework of polynomial ideals

which we call— The method of ideals. A polynomial ideal is a collection of one or more

polynomials which together act as a unit with its own set of operations and behaves in many

ways similar to a polynomial. All the problems we make progress on, partially or completely,

are either about roots of polynomials over Galois rings or reduced to the one. The method

works to handle these roots in two ways:

Firstly, it partitions the set of all roots (possibly exponentially many) into a relatively

small number of subsets. The method returns a set of special ideals in the end, each one

effectively and efficiently represents one of these subsets. That means, a large set of roots are

compactly represented by a small set of special ideals which provide the information about

these roots in an efficient manner.

Secondly, the method constructs those special ideals incrementally by giving an efficient

way to lift a possibly large set of roots compactly and simultaneously from a local space, i.e.,

modulo p, to a global space, i.e., p-adic integers Zp. This lifting is implicit without individual

access to roots and happens using a set of polynomials with nice algebraic-geometric properties

modulo p. This especially helps in those situations where direct access to roots are prohibited

either due to the requirement of determinism or their number being exponential as evident

from examples in previous sections. Further the method inherits those nice ‘local’ algebraic-

geometric properties modulo p to the final special ideals over Zp. It is these properties which

gives us required information about roots such as their count, p-adic multiplicity or the root

itself.

Our method is versatile and applies in the following two different contexts:

• Derandomizing known randomized algorithms and applications.

• Facilitating random sampling for inefficient brute force algorithms.

11

1.5.1 Derandomization via Ideals and Applications

Derandomization forms the first part of the thesis where we completely solve some of the

problems using the method of ideals. Basically we completely derandomize the algorithms of

[BLQ13] for univariate root counting modulo prime powers and extend it to arbitrary Galois

rings. We also derandomize univariate root counting over p-adic integers and its unramified

extensions. As applications, we count special factors called basic-irreducible factors modulo

prime powers and completely solve the problem of computing Igusa zeta function for univariate

polynomials in deterministic polynomial time.

Counting Roots of a Univariate Polynomial

We give the first deterministic polynomial time algorithm to count all the roots of a univariate

polynomial.

Theorem (Theorem 4.0.1). Let p be a prime, k ∈ N and f(x) ∈ Z[x] of degree d. Then all

the roots of f mod pk can be counted in deterministic poly(d, k log p)-time.

Theorem 4.0.1 is proved in Section 4.1.3. We also introduce an algorithm that efficiently

partitions the (possibly exponentially large) set of roots, into at most d subsets. This parti-

tioning via special split ideals, is reminiscent of the age-old fact that there are at most deg(g)

roots of a polynomial g(x) over a field. The parameters of a split ideal, degree and length,

immediately give us the count on the number of roots represented by that split ideal.

Next, we extend the ideas for counting roots to count all the basic-irreducible factors of

f mod pk. A basic-irreducible factor of f mod pk is a factor that is irreducible modulo p.

Theorem (Theorem 5.0.1). Let p be a prime, k ∈ N and f(x) ∈ Z[x] of degree d. Then all

the basic-irreducible factors of f mod pk can be counted in deterministic poly(d, k log p)-time.

We achieve this by extending the idea of counting roots to a general Galois ring.

Theorem (Informal Corollary 5.0.2). We can count all the roots of a univariate f with integer

coefficients over a given Galois ring G in deterministic time polynomial in size of description

of f and G.

12

Our method generalizes to efficiently count all the roots of a given polynomial f(x) ∈

(F[t]/〈h(t)k〉)[x] for a given polynomial h (respectively f ∈ F[[t]][x] with power-series coeffi-

cients); assuming that F is a field over which root counting is efficient. For example F could

be Q,R,Fp and their algebraic extensions.

Computing Igusa’s Local Zeta Function

We will compute the Igusa zeta function Zf,p(s) by finding the related Poincaré series P (t) =:

A(t)/B(t).

Theorem (Theorem 6.0.1). We are given a univariate integral polynomial f(x) ∈ Z[x] of

degree d, with coefficients magnitude bounded by C ∈ N, and a prime p. Then, we compute

Poincaré series P (t) = A(t)/B(t), associated with f and p, in deterministic poly(d, logC +

log p) time.

The degree of the integral polynomial A(t) is Õ(d2 logC) and that of B(t) is O(d).

Our method gives an elementary proof of rationality of Zf,p(s) as a function of t = p−s.

Previously, Zúñiga-Galindo [ZG03] gave a deterministic polynomial time algorithm to com-

pute Zf,p(s), if f completely splits over Q and the roots are provided. While, our Theorem

6.0.1 works for any input f ∈ Z[x]. Cheng et al.[CGRW18] could compute Zf,p(s) in deter-

ministic polynomial time, in the special case where the degree of A(t), B(t) is constant.

We achieve the rational form of Zf,p(s) by getting an explicit formula for the number

of zeros Nk(f), of f mod pk, which sheds new light on the properties of the function Nk(·).

Eventually, it gives an elementary proof of the rationality of the Poincaré series
∑∞

i=0Ni(f) ·

(p−1t)i.

Theorem (Corollary 6.0.2). Let k be large enough, namely, k ≥ k0 := O(d2(logC + log d)).

Then, we give a closed form expression for Nk(f) (in Theorem 6.4.1).

Interestingly, if f has non-zero discriminant, then Nk(f) is constant (independent of k)

for all k ≥ k0.

The closed form expression for Nk(f) involves the parameters ei which are multiplicities

of Zp roots of f . When we compute Nk(f) we also get the first deterministic polynomial time

13

algorithm to count all the Zp-roots of f with multiplicity.

Theorem (Corollary 6.0.3). We are given a univariate integral polynomial f(x) ∈ Z[x] of

degree d, with coefficients magnitude bounded by C ∈ N, and a prime p. Then, we can count

all the p-adic integral roots (in Zp) of f in deterministic poly(d, logC + log p)-time.

1.5.2 Random Sampling via Ideals

In the second part of the thesis we use the method of ideals to present randomized algorithms

for some of the problems. Using our framework we could solve a given system of polynomial

equations in random polynomial time modulo the constant power of a prime. We also give

efficient randomized algorithm in special cases of univariate polynomial factoring by reducing

it to the former problem.

Solving System of Polynomial Equations

We consider the problem of finding common zero of a given system of integral polynomials

modulo pk when k is constant.

Theorem (Simplified Theorem 8.1.3). Given a system of n-variate polynomials f1, . . . , fm,

with integer coefficients, of degrees at most d and a prime power pk. We can find a common

root of the system in randomized poly(dcnk ,m, log p)-time, where cnk ≤ (nk)O((nk)2).

Theorem 8.1.3 gives a polynomial time algorithm when n+k is constant. Recall that SHN

is intractable for growing n even when k = 1. Theorem 8.1.3 also resolves the open question

asked in [RRZ21, Zhu20] to efficiently find a point on a curve mod pk, for fixed k. Theorem

8.1.3 efficiently extends the root-finding result of Huang and Wong [HW99] from Galois fields

to Galois rings of characteristic pk, for k constant. In fact, the doubly exponential complexity

in nk comes from the doubly exponential time complexity of [HW99] which we use for root

finding modulo p. Our algorithm returns a set of special triangular ideals in nk variables, we

call ‘absolute’ ideals. These ideals collectively encode all the root of the system and it is easy

to find a root randomly from each of these ideals as they are absolutely irreducible modulo p.

14

Factoring a Univariate Polynomial

We see that even after a long series of efforts [BLQ13, CL01, Kli97, KRRZ20, Săl05, Sir17,

vzGH96, vzGH98], efficient modular factoring has remained elusive even for f mod p3. Nat-

urally, we would like to first understand the difficulty of the problem when k is constant.

In this direction we make our first progress by devising a unified method which solves the

problem when 1 < k ≤ 4. Our first result is,

Theorem (Theorem 7.0.1). Let p be prime, k ≤ 4 and f(x) be a univariate integral poly-

nomial. Then, f(x) mod pk can be factored (and tested for irreducibility) in randomized

poly(deg f, log p) time.

The procedure to factor f mod p4 also factors mod p3 and mod p2 (and tests for irre-

ducibility) in randomized poly(deg f, log p) time. This solves the open question of efficiently

factoring f mod p3 [Sir17] and generalizes [Săl05]. Our method can as well be used to fac-

tor a ‘univariate’ polynomial f ∈
(
Fp[z]/〈ψk〉

)
[x], for k ≤ 4 and irreducible ψ(z) mod p, in

randomized poly(deg f, degψ, log p) time.

Next, we do more than just factoring f modulo pk for k ≤ 4. Given that f is power of an

irreducible mod p, which is the hard case of Hensel lemma, we show that our method works

in this case to give all the lifts g(x) mod pk (possibly exponentially many) of any given factor

g̃ of f mod p, for k ≤ 4.

Theorem (Theorem 7.0.2). Let p be prime, k ≤ 4 and f(x) be a univariate integral polynomial

such that f mod p is a power of an irreducible polynomial. Let g̃ be a given factor of f mod p.

Then, in randomized poly(deg f, log p) time, we can compactly describe (and count) all possible

factors of f(x) mod pk which are lifts of g̃ (or report that there is none).

Theorem 7.0.2 can be seen as refinement of Hensel lifting method to Z/〈pk〉, k ≤ 4. To

lift a factor f1 of f mod p, Hensel lemma relies on a cofactor f2 which is coprime to f1. Our

method needs no such assumption and it directly lifts a factor g̃ of f mod p to (possibly

exponentially many) factors g(x) mod pk.

The known factoring methods mod p work by first reducing the problem to that of root

finding mod p. In this work, we efficiently reduce the problem of factoring f(x) mod pk to

15

that of finding roots of some polynomial E(y) ∈ (Z[x])[y] modulo a bi-generated ideal 〈pk, ϕ`〉,

where ϕ(x) is an irreducible factor of f(x) mod p. With the help of the special structure of

E(y) we could efficiently find all the roots y (possibly exponentially many) mod 〈pk, ϕ`〉 when

k ≤ 4.

It remains open whether this technique extends to k = 5 and beyond. However our

reduction of factoring to root finding of E(y) was only partial and it reduces further. Basically

it efficiently reduces the problem of finding a constant degree factor of f mod pk to the

problem of finding a solution to a system of polynomial equations of constant degree in

constant number of variables when k is constant. This advances the state-of-the-art by giving

first general result: to efficiently compute a constant-degree factor of f mod pk, when k is

constant. In particular, we can factor a fixed degree univariate polynomial into irreducibles.

Theorem (Theorem 8.1.1). Given a univariate polynomial f ∈ Z[x] and a prime-power pk,

in binary, with k fixed. We can find a constant-degree factor g of f mod pk in randomized

poly(deg(f), log p)-time; or decide that none exists.

The difficult case in factoring f mod pk happens when f mod p has no two coprime factors;

as this forbids the well-known Hensel’s lifting. For example, f ≡ ϕe mod p for a ϕ ∈ Z[x]

which is irreducible mod p. For such an f , we call e to be the ramification-degree of f . In

fact, our proof method provides more general factors:

Theorem (Corollary 8.1.2). Given f ∈ Z[x] and prime-power pk, with k constant. We can

find a factor g of f mod pk in randomized poly(deg(f), log p)-time, where the ramification-

degree of g is at most a given constant; or decide that no such factor exists.

The brute-force approach takes time pΩ(kδ); which is clearly exponential (in log p), even for

fixed k and fixed ramification-degree δ. Thus, for constant k, our methods extend the results

of [BLQ13] from unramified factors to ramified factors; albeit of ‘low’ ramification-degree.

Indeed, our algorithm is a first major step towards factoring polynomials modulo pk for any

constant k ≥ 5.

16

1.6 Thesis Organization

We study polynomials over composites under the framework of what we call, the method

of ideals. Chapter 2 gives the common preliminaries required for the later chapters. The

presentation of thesis is in two parts:

Part I is about the derandomization results via the method of ideals and its applications.

Chapter 3 introduces our algebraic tool, split ideals and their properties, required for efficient

de-randomization of root counting in Chapter 4. It gives further applications of split ideals

in deterministically, (1) counting strongly irreducible factors (Chapter 5) and (2) computing

Igusa zeta function for univariates and derandomizing p-adic root counting (Chapter 6).

Part II is about the application of the method of ideals in random sampling. It turns to

the problems of univariate factoring (Chapters 7, 8) and multivariate system solving (Chapter

8). Finally, Chapter 9 concludes the thesis and gives open problems and further directions

where the framework developed in the thesis could be useful.

Chapter 2

Preliminaries

2.1 Basic Notations and Definitions

F denotes a field unless explicitly stated otherwise. All the rings we deal in this thesis

are commutative rings with unity. N,Z,Q,R,C denotes natural numbers, integers, rational

numbers, real numbers and complex numbers respectively. We usually denote finite fields by

Fp or Fq where p is prime and q is a power of p. We use notation [n], called range n, to denote

the set {1, . . . , n}. The function b·c and d·e takes argument a real number r such that brc is

the greatest integer less than or equal to r and dre is the least integer greater than or equal

to r. Rad(·) denotes the radical of a polynomial or an ideal which means squarefree part of

the polynomial or the ideal respectively. We use the notation a := b to imply that a is defined

to be equal to b. For a polynomial f , deg(f) denotes its total degree and degy(f) denotes

its degree with respect to a variable y. The function poly(·) is used to denote a polynomial

function in its arguments.

Associated to a prime p, the field of p-adic rational numbers is denoted as Qp. This is also

called non-archimedean local field. As Z is the ring of integers of Q there is an associated

ring of integers Zp, called p-adic integers, to the field Qp. A p-adic integer is a formal power

series
∑

i≥0 aip
i where 0 ≤ ai ≤ p − 1. Zp is an integral domain and Z ⊂ Zp. In such a

field Qp there exists a non-archimedean valuation function vp : Qp → Z ∪ {∞}. Formally,

the valuation vp(a) of a ∈ Zp (Zp is a UFD) is defined to be the highest power of p dividing

17

18

a, when a 6= 0, and ∞ when a = 0. This definition extends to the rationals Qp naturally as

vp(
a
b) := vp(a)− vp(b), where b 6= 0 and a, b ∈ Zp (see [Kob77] as reference text).

An unramified extension K of Qp, denoted as K/Qp, is an algebraic extension Qp[z]/〈ϕ(z)〉

where ϕ ∈ Qp[z] is an irreducible polynomial modulo p. The degree of such an extension is

the deg(ϕ). K/Qp is called a ramified field extension, if ϕ is irreducible over Zp but not

modulo p. We denote the ring of integers of unramified extension K/Qp as OK . These are

more general p-adic integers than Zp. (we refer to [Kob77] for more on this).

Radical of a univariate polynomial h(x) over a field F is defined to be the univariate poly-

nomial, denoted by Rad(h), which is the product of coprime irreducible factors of h.

Discriminant of a polynomial h(x) ∈ F[x] is defined as D(h) := h2m−1
m ·

∏
1≤i<j≤m(ri− rj)2,

where F is a field, ri’s are the roots of h(x) over the algebraic closure F̄, degree of h is m, and

hm is its leading coefficient.

The discriminant D(h) is an element of F. It is clear by the definition: all the roots of h

are distinct iff D(h) 6= 0. For example, discriminant of radical is nonzero.

Now, we will present some basic concepts in commutative algebra. x denotes a variable

tuple (x1, . . . , xn).

Zero-Divisors. An element a 6= 0 is a zero-divisor in a ring R if there is a b 6= 0 in R such

that ab = 0.

Ideals. An ideal I of a commutative ring R(+, ·) is a closed subset of R under addition such

that for any a ∈ R and b ∈ I we have a · b ∈ I. When R is a polynomial ring such as F[x]

then the ideal I is called a polynomial ideal.

Ideal-Generators. Let f1, . . . , fm ∈ R, R is a commutative ring, and I ⊆ R is defined as

I := {f1g1 + · · ·+ fmgm | g1, . . . , gm ∈ R}. Then I is called an ideal generated by f1, . . . , fm

and denoted as I = 〈f1, . . . , fm〉.

Hilbert basis theorem in commutative algebra says that every ideal of a Noetherian ring

(e.g., polynomial rings over a field or a Galois ring) has finite number of generators.

Ideal sum. Let I, J be two ideals of the commutative ring R then I + J is defined to be

the set I + J := {f + g | f ∈ I, g ∈ J}. I + J is an ideal and if I := 〈f1, . . . , fm〉 and

J := 〈g1, . . . , g`〉 then I + J = 〈f1, . . . , fm, g1, . . . , g`〉.

19

Quotient ideals. Given two ideals I and J of a commutative ring R, we define the quotient

of I by J as, I : J := {a ∈ R | aJ ⊆ I}. It can be easily verified that I : J is an ideal.

2.2 Some Useful Results

This section is devoted to some useful preliminary results. First we will state results related

to factoring and lifting factorization. We then define and prove some properties of our main

ring object in this thesis– Galois rings.

2.2.1 Factoring and Lifting

The first efficient randomized algorithm to find all the roots of a univariate polynomial over

a finite field Fq was given by Cantor-Zassenhaus [CZ81] (Equivalently, it finds all irreducible

factors as well.). We state the following theorem, due to Kedlaya-Umans [KU11] which has

best known time complexity over a general finite field Fq.

Theorem 2.2.1 (Kedlaya-Umans [KU11]). Given a univariate degree d polynomial f(x)

over a finite field Fq. There is a randomized algorithm to find all the roots of f in Fq in

O(d1.5+o(1) log1+o(1) q + d1+o(1) log2+o(1) q) bit operations.

Currently, it is a big open question to derandomize the preceding theorem. The known

deterministic algorithms are ‘inefficient’ for example, the well known Berlekamp’s algorithm

[Ber67] takes time Õ(p · (dn)ω) where q = pn for p prime and ω is matrix-multiplication

exponent.

Below we state a lemma, originally due to Kurt Hensel [Hen18], for I-adic lifting of

factorization of a given univariate polynomial. Over the years, Hensel’s lemma has acquired

many forms in different texts, version presented here is due to Zassenhaus [Zas69].

Lemma 2.2.2 (Hensel’s lemma [Hen18]). Let R be a commutative ring with unity and the

corresponding polynomial ring over it R[x]. Let I ⊆ R be an ideal of ring R. Given a

polynomial f(x) ∈ R[x], suppose f factorizes as

f = gh mod I,

20

such that gu + hv = 1 mod I (for some g, h, u, v ∈ R[x]). Then, given any ` ∈ N, given

g, h, u, v we can efficiently compute g∗, h∗, u∗, v∗ ∈ R[x], such that,

f = g∗h∗ mod I`.

Here g∗ = g mod I, h∗ = h mod I and g∗u∗ + h∗v∗ = 1 mod I` (i.e., pseudo-coprime lifts).

Moreover g∗ and h∗ are unique up to multiplication by a unit.

Using Hensel’s lemma, for the purpose of counting roots and basic-irreducible factors, a

univariate polynomial f(x) ∈ Z[x] can be assumed to be a power of an irreducible mod p.

Recall that a basic-irreducible factor is an irreducible factor which is also irreducible mod p.

Lemma 2.2.3. Suppose a univariate f(x) ∈ Z[x] factors uniquely, over Fp, into coprime

powers as, f ≡
∏m
i=1 ϕi

ei , where each ϕi ∈ Z[x] is irreducible mod p and m, ei ∈ N. Then,

for all k ∈ N,

1. f factorizes mod pk as f = g1g2 . . . gm, where gi’s are mutually co-prime mod pk and

gi ≡ ϕiei mod p, for all i ∈ [m].

2. any basic-irreducible factor of f(x) mod pk is a basic-irreducible factor of a unique

gj mod pk, for some j ∈ [m]. Let Bk(h) denote the number of (coprime) basic-irreducible

factors of h(x) mod pk. Then Bk(f) =
∑m

i=1Bk(gi) .

3. any root of f mod pk is a root of a unique gi mod pk. Let Nk(h) denote the number of

(distinct) roots of h(x) mod pk. Then Nk(f) =
∑m

i=1Nk(gi).

Proof. We can apply Hensel’s lemma by taking ring R := Z and ideal I := 〈p〉. The co-prime

factorization of f mod p lifts to a unique coprime factorization f ≡ g1g2 . . . gm mod pk, for

any k ∈ N and gi ≡ ϕiei mod p.

Any basic-irreducible factor h(x) of f(x) mod pk has to be h ≡ ϕi mod p for some i ∈ [m];

otherwise, h will become reducible mod p. Since gi’s are co-prime and h|f mod pk, h must

divide a unique gi. So, any basic-irreducible factor h of f(x) mod pk is a basic-irreducible

factor of a unique gj mod pk. Clearly, any basic-irreducible factor of a gi is also a basic-

irreducible factor of f mod pk. This proves Bk(f) =
∑m

i=1Bk(gi).

The third part follows from a similar reasoning as the second part.

21

2.2.2 Properties of Galois rings: Ring analogues of Finite Fields

A Galois ring G of characteristic pk and size pkb (p prime and k, b ∈ N), denoted as G(pk, b),

is defined as the ring G := Z[y]/〈pk, ϕ(y)〉, where ϕ(y) ∈ Z[y] is an irreducible modulo p of

degree b [McD74]. Galois ring G is the ring analogue of the finite field Fq := Z[y]/〈p, ϕ(y)〉 of

size pb. Similar to finite fields, two Galois rings of same characteristic and size are isomorphic

to each other. Let us prove some useful properties of G below.

Proposition 1. Let χ(x) ∈ Z[x] be any irreducible modulo p of degree b. Then there are b

distinct roots of χ(x) in G, each of them are of the form rp
i

modulo p (i ∈ {0, . . . , b − 1})

where r ∈ G is one of the roots of χ(x).

Proof. G/〈p〉 is isomorphic to the finite field of degree b over Fp. So, irreducible χ(x) ∈ Fp[x]

has exactly b roots in G/〈p〉 [LN94, Ch.2]. By Hensel Lemma 2.2.2, roots in G/〈p〉 can be

lifted to G uniquely. Hence, χ(x) has exactly b distinct roots in G. In G/〈p〉 these roots are

conjugates (since χ(x) ∈ Fp[x] is irreducible) so if r is one of the roots then all b conjugates

are of the form rp
i

modulo p (i ∈ {0, . . . , b− 1}).

Using Proposition 1, denote the roots of ϕ(x) by y0, . . . , yb−1 with yi ≡ yp
i

0 mod p for all

i ∈ {0, . . . , b − 1}. Without loss of generality, take y = y0 (Since G := Z[y]/〈pk, ϕ(y)〉). We

will use y and y0 interchangeably in the proof of following proposition.

Proposition 2 (Symmetries of G). Let a map ψj : G → G is defined as ψj(y0) = yj

for j ∈ {0, . . . , b − 1}. Then these ψjs are only automorphisms of G under which the ring

R := Z/〈pk〉 remains fixed. Moreover, if j is co-prime to b then ψj fixes R and nothing else.

Proof. Since coefficients of ϕ(x) belong to R, an automorphism fixing R should map the root

y0 to another of its roots yj . We only need to show that ψj is an automorphism (it is a valid

map since we take y = y0).

Writing elements of G as a polynomial in y0 = y, it can be verified that ψj(ab) = ψj(a)ψj(b)

and ψj(a+ b) = ψj(a) + ψj(b), so ψj is a homomorphism.

Similarly, if ψj(g) = 0, writing g in terms of y0, we get that g = 0. So, kernel of ψj is the

set {0}; thus it is an isomorphism.

22

For the moreover part, let ψj be such that j is coprime to b. We will show a stronger

statement by induction: for any i ≤ k−1, if a(y0) = ψj(a(y0)) in G/〈pi〉, then a(y0) ∈ Z/〈pi〉.

Base case: If i = 1 and j = 1, then a(y0) = ψ1(a(y0)) mod p ⇒ a(y0) = a(y0)p mod p. It

means a(y0) ∈ Z/〈p〉.

If j is coprime to b, then ψj generates ψ1 modulo p. So, a(y0) = ψj(a(y0)) mod p implies

that, a(y0) mod p =: a0 ∈ Z/〈p〉.

This argument also proves: for any i ≤ k, if a(y0) = a(yj) in G/〈pi〉, then a(y0) ∈ Fp (in

other words, a(y0) is y0 free).

Induction step: Let us assume that a(y0) = ψj(a(y0)) in G/〈pi〉. By the previous argu-

ment, a(y0) = a0 + pa′(y0), where a0 ∈ Z/〈p〉 and a′(y0) ∈ G/〈pi−1〉.

From the definition, a(y0) = ψj(a(y0)) iff a′(y0) = ψj(a
′(y0)) in G/〈pi−1〉. By induction

hypothesis, the latter is equivalent to a′(y0) ∈ Z/〈pi−1〉. So, a(y0) ∈ Z/〈pi〉.

Hence, the only fixed elements under the map ψj (j coprime to b) are integers; in Z/〈pk〉.

2.3 Randomized Root Finding modulo Prime Powers

In this section we give a simplified exposition of the results of [Pan95, BLQ13] about finding

and counting all the roots of a univariate polynomial in the ring of integers modulo prime

powers. As discussed before, a univariate polynomial can have exponentially many roots in

such a ring, unlike fields, but we get all the roots in a succinct representation, a small set of

‘representative roots’, which is efficient and contains all the roots in an order.

2.3.1 Representatives and Representative Roots

Let R be a commutative ring with addition + and multiplication · and let S be a non-empty

subset of R. The product of the set S with a scalar a ∈ R is defined as aS := {as | s ∈ S}.

Similarly, the sum of a scalar u ∈ R with the set S is defined as u + S := {u + s | s ∈ S}.

Note that the product and the sum operations used inside the set are borrowed from the

underlying ring R. Also note that if S is the empty set then so are aS and u + S for any

23

a, u ∈ R.

Representatives. The symbol ‘∗’ in a ring R, wherever it appears, denotes any possible

choice of an arbitrary element of R. For example, suppose R = Z/〈pk〉 for a prime p and a

positive integer k. In this ring, we will use the notation y = y0 + py1 + · · · + piyi + pi+1∗,

where i+ 1 < k and each yj ∈ R/〈p〉 (R/〈p〉 is same as Z modulo p), to denote a set Sy ⊆ R

such that

Sy = {y0 + · · ·+ piyi + pi+1yi+1 + · · ·+ pk−1yk−1 | ∀yi+1, . . . , yk−1 ∈ R/〈p〉}.

Notice that the number of distinct elements in R represented by y is |Sy| = pk−i−1. We will

call y as representatives.

We will sometimes write the set y = y0 +py1 + · · ·+piyi+pi+1∗ succinctly as y = v+pi+1∗,

where v ∈ R stands for v = y0 + py1 + · · ·+ piyi.

We need to add and multiply the set {∗} with scalars from the ring R. Let us define these

operations as follows (∗ is treated as an unknown)

• u+ {∗} := {u+ ∗} and u{∗} := {u∗}, where u ∈ R.

• c+ {a+ b∗} = {(a+ c) + b∗} and c{a+ b∗} = {ac+ bc∗}, where a, b, c ∈ R.

Another important example of the ∗ notation: Let R0 = Fp[x]/〈ϕ(x)k〉 for a prime p and

an irreducible ϕ mod p. In this ring, we use the notation y = y0 + ϕy1 + · · · + ϕiyi + ϕi+1∗,

where i+ 1 < k and each yj ∈ R0/〈ϕ〉, to denote a set Sy ⊆ R0 such that

Sy = {y0 + · · ·+ ϕiyi + ϕi+1yi+1 + · · ·+ ϕk−1yk−1 | ∀yi+1, . . . , yk−1 ∈ R0/〈ϕ〉}.

Representative roots. Let R = Z/〈pk〉 for a prime p. Any element in R can be written

uniquely as y = y0 + py1 + · · ·+ pk−1yk−1, where each yj is in {0, . . . , p− 1}.

Let g(y) be a polynomial in R[y], then a set y = y0 + py1 + · · ·+ piyi + pi+1∗ will be called

a representative root of g iff

• All elements in y = y0 + py1 + · · ·+ piyi + pi+1∗ are roots of g and,

• Not all elements in y′ = y0 + py1 + · · ·+ pi−1yi−1 + pi∗ are roots of g.

24

We will sometimes represent the set of roots, y = y0 + py1 + · · ·+ pyi + pi+1∗, succinctly

as y = v+ pi+1∗, where v ∈ R stands for y = y0 + py1 + · · ·+ piyi. Such a pair, (v, i+ 1), will

be called a representative pair. We define the length of such a representative root to be i+ 1

and size to be pk−i−1 where i+ 1 ≤ k.

We have analogous definitions for the ring R0 = Fp[x]/〈ϕ(x)k〉 where ϕ ∈ Fp[x] irreducible.

2.3.2 Root Finding modulo Prime Powers

Let us denote the ring Z/〈pk〉 by R. In this section, we give an algorithm to find all the

roots y ∈ R of a polynomial g ∈ R[y]. To the best of our knowledge, the algorithm to find

roots modulo pk first appeared in Panayi’s PhD thesis [Pan95]. Here, we adapt the algorithm

by [BLQ13, Cor.4] ([Pan95] not available online) to find and count the roots in the form of

representative roots. Recall the notation of ∗ and representative roots from Section 2.3.1.

Note that R/〈pj〉 = Z/〈pj〉, for j ≤ k, and R/〈p〉 = Fp is the finite field of cardinality p.

A root y of g in R has the following unique structure

y = y0 + py1 + p2y2 + · · ·+ pk−1yk−1,

where each yj ∈ {0, . . . , p− 1} for all j ∈ {0, . . . , k − 1}.

The output of this algorithm is simply a set of at most deg g many representative roots

of g. This bound of deg g is a curious by-product of the algorithm [BLQ13, Cor.4].

Algorithm 1 Root-finding in ring R = Z/〈pk〉

1: procedure Root-find(g(y), pk)

2: If g(y) ≡ 0 in R/〈pk〉 return ∗ (every element is a root).

3: Let g(y) ≡ pαg̃(y) in R/〈pk〉, for the unique integer 0 ≤ α < k and the polynomial

g̃(y) ∈ R/〈pk−α〉[y], such that, g̃(y) 6≡ 0 in R/〈p〉 and deg(g̃) ≤ deg(g).

4: Using randomized factoring (Theorem 2.2.1) find all the roots of g̃(y) in R/〈p〉.

5: If g̃(y) has no root in R/〈p〉 then return {}. (Dead-end)

6: Initialize S = {}.

7: for each root a of g̃(y) in R/〈p〉 do

8: Define ga(y) := g̃(a+ py).

25

9: S′ ←Root-find(ga(y), pk−α).

10: S ← S ∪ (a+ pS′).

11: return S.

Note that in Step 8 we ensure: p|ga(y). This is because ga(y) = g̃(a + py) ≡ g̃(a) ≡

0 mod p. So, in every other recursive call to Root-find the second argument reduces by

at least one. Basically, the algorithm works by reducing the problem of root finding of

g(x) mod pk to root finding of ga(x) mod pk−α for at most deg(g)-many polynomial ga. The

process repeats for each ga and so on for k levels of recursion. This gives a rough estimate of

deg(g)k many recursions and so many representative roots in the returned set S. However,

|S| ≤ deg g. The key reason is: The number of representative roots of ga are upper bounded

by the multiplicity of the root a of g̃.

The implication of Algorithm 1 is summed up in the following theorem due to [Pan95,

BLQ13].

Theorem 2.3.1. [Pan95, BLQ13] Given a univariate g ∈ R[y] where R = Z/〈pk〉, let Z ⊆ R

be the root set of g(y). Then Z can be expressed as the disjoint union of at most deg(g) many

representative pairs (a0, i0) (a0 ∈ R and i0 ∈ N).

These representative pairs can be found in randomized poly(deg(g), k log p) time.

Notice that this compact description of the root set Z allows us to calculate the size of Z

too via the length of each representative root. Let us see how Algorithm 1 can be used to to

factor the polynomial in the following example.

Example 8. We have g(x) = x3+12x2+3x+36 and pk = 33. So g ≡ x3+12x2+3x+9 mod 27.

Using Theorem 2.2.1, the only root of g̃(x) := g mod 3 is 0. So we shift g as g(0 + 3x) ≡

9(x+ 4) mod 27.

Dividing by 9 both sides we have, ga(x) ≡ x+ 1 mod 3 which has only root 2 modulo 3.

So we get exactly one representative root of g mod 27: x = 0 + 3(2) + 32∗.

Putting 0, 1 and 2 in place of ∗ we get the roots −21,−15 and −3 modulo 27. These correspond

to degree one factors (x+ 21), (x+ 12) and (x+ 3) of g mod 27.

Part I

Derandomization via Ideals and

Applications

27

Chapter 3

Introducing Split Ideals

This chapter deals with various aspects of triangular ideals which are defined in Section 3.1.

Firstly in Section 3.2 we will define a special triangular ideal, called split ideals, and analyse

their structure and properties. Then in Sections 3.3 and 3.4, we will see how to perform

algebraic computations such as reduction, division, testing for zero-divisors and GCD modulo

a triangular ideal (not necessarily a split ideal). These ideals and subroutines will be used in

Chapter 4 to derandomize the root counting algorithm of [BLQ13] described in Section 2.3

of Chapter 2. These will have further applications in Chapters 5 and 6 in derandomizing the

counting of basic irreducible factors, p-adic roots and computing Igusa zeta function.

3.1 Notations and Definitions

First we give some useful notations and definitions:

Monic polynomial: We call a polynomial g ∈ F[x0, . . . , xl] (F be a ring) monic with respect

to xi if the leading coefficient of g with respect to xi is 1.

We denote the ring Z/〈pk〉 by R (ring R/〈p〉 is the same as field Fp). An element a ∈ R

can be seen in its p-adic representation as

a = a0 + pa1 + . . .+ pk−1ak−1,

where ai ∈ {0, . . . , p− 1} for all i ∈ {0, . . . , k − 1}.

29

30

Tuple: A tuple of variables (x0, . . . , xl) will be denoted by x̄l. Often, an (l + 1)-variate

polynomial a(x0, x1, . . . , xl) will be written as a(x̄l), and the polynomial ring F[x0, . . . , xl] as

F[x̄l], where F is a ring.

Zero-Set of a polynomial: Set ZF(g) := {r ∈ F | g(r) ≡ 0 in F} denotes the zero-set of a

polynomial g(x) ∈ F[x] over a ring F.

Triangular ideal: An ideal I ⊆ F[x̄l] is called a triangular ideal over a ring F if I :=

〈h0(x0), h1(x̄1), . . . , hl(x̄l)〉 where hi ∈ F[x̄i]. The length of I is defined as l+ 1 and its degree

is defined as
∏l
i=0 degxi(hi).

For more general triangular ideals used in Groebner basis theory to perform algebraic

operations, we refer to the textbook [CLO13]. Triangular ideals used here are different and

more specific.

Restriction: Let Il ⊆ F[x̄l] be a triangular ideal defined as Il := 〈h0(x0), h1(x̄1), . . . , hl(x̄l)〉.

Then any ideal Ij := 〈h0, . . . , hj〉, for all 0 ≤ j < l, is called its ‘restriction’.

Zero-set of an ideal: Zero-set of an ideal I ⊆ F[x0, . . . , xl], F be a ring, is defined as the

intersection of the zero-sets of all polynomials in I,

ZF(I) := {ā = (a0, . . . , al) ∈ (F)l+1 | g(ā) ≡ 0, ∀g ∈ I}.

We denote an ideal over R with a hat, for example Î, to distinguish with an ideal I defined

over Fp.

3.2 Split Ideals: Structure and Properties

In this section, we introduce our main tool: ‘split ideals’, which are the main content of

our data structure L to implicitly hold the roots of given f mod pk. It is the structure and

properties of these ideals, we will study in this section, which helps us to extract, from L, the

count on the number of roots of f mod pk.

We will be given a univariate polynomial f(x) ∈ Z[x] of degree d and a prime power pk

(for a prime p and a positive integer k ∈ N). Without loss of generality, we assume that f is

monic over Fp.

31

We will heavily use ideals of the form Î := 〈ĥ0(x0), . . . , ĥl(x̄l)〉 satisfying the following

condition: for any i ∈ [l] and ā ∈ ZR(〈ĥ0(x0), . . . , ĥi−1(x̄i−1)〉), the polynomial ĥi(ā, xi) splits

completely into distinct linear factors. They are formally defined as follows:

Definition 3.2.1 (Split ideal). Given f(x) ∈ R[x], an ideal Î ⊆ R[x̄l], is called a split ideal

with respect to f mod pk if,

(1) Î is a triangular ideal, defined as Î =: 〈ĥ0(x̄0), ĥ1(x̄1), . . . , ĥl(x̄l)〉, for some 0 ≤ l ≤ k−1,

where ĥi(x̄i) ∈ R[x̄i] is monic with respect to xi for all i ∈ {0, . . . , l},

(2) |ZFp(I)| =
∏l
i=0 degxi(hi), where hi := ĥi mod p and I := 〈h0, . . . , hl〉 ⊆ Fp[x̄l], and

(3) For all (a0, . . . , al) ∈ ZR(Î), f(a0 + pa1 + . . .+ plal) ≡ 0 mod pl+1.

The length of Î is l + 1 and its degree is deg(Î) :=
∏l
i=0 degxi(ĥi).

Split ideal Î relates to possible roots of f mod pk. Since f, p, k are fixed, we will call Î a

split ideal. The definition of split ideal enables us to precisely characterize the roots of f in

Z/(pl) for any l ∈ {0, . . . , k − 1}. Restriction of a split ideal is also a split ideal.

Lemma 3.2.2 (Restriction of a split ideal). Let Îl := 〈ĥ0(x̄0), . . . , ĥl(x̄l)〉 be a split ideal in

R[x̄l], then the ideal Îj := 〈ĥ0(x̄0), . . . , ĥj(x̄j)〉 is also a split ideal in R[x̄j], for all 0 ≤ j ≤ l.

Proof. It is enough to show the lemma for j = l − 1. It is easy to observe that Îl−1 is

triangular. Define hi := ĥi mod p for all i ∈ {0, . . . , l} and Il−1 := 〈h0, . . . , hl−1〉.

Looking at the second condition for being a split ideal, |ZFp(Il−1)| ≤
∏l−1
i=0 degxi(hi) follows

because a degree d ≥ 1 polynomial can have at most d roots in Fp.

To show equality, notice that for any ā = (a0, . . . , al−1) ∈ ZFp(Il−1), degxl(hl(ā, xl)) is

bounded by degxl(hl). This implies hl(ā, xl) can have at most degxl(hl) roots in Fp. If

|ZFp(Il−1)| <
∏l−1
i=0 degxi(hi) then |ZFp(Il)| < degxl(hl) ·

∏l−1
i=0 degxi(hi), contradicting that Îl

is a split ideal.

For the third condition, since Îl is a split ideal, for any (a0, . . . , al−1) ∈ ZR(Îl−1), f(a0 +

pa1 + . . .+ plal) ≡ 0 mod pl+1 ⇒ f(a0 + pa1 + . . .+ pl−1al−1) ≡ 0 mod pl.

The following corollary of Lemma 3.2.2 shows that every Fp-zero of Il−1 ‘induces’ exactly

degxl(hl) many Fp-zeros of Il.

32

Corollary 3.2.3. Let Îl ⊆ R[x̄l] be a split ideal defined as Îl := 〈ĥ0(x0), . . . , ĥl(x̄l)〉. For

all 0 ≤ j ≤ l, define Ij := 〈h0(x0), . . . , hj(x̄j)〉 where hi := ĥi mod p for all i ∈ {0, . . . , l}.

Then h0(x0) splits completely over Fp and hj(ā, xj) splits completely over Fp for all j ∈ [l]

and ā ∈ ZFp(Ij−1).

Lemma 3.2.4 generalises the point (2) in Definition 3.2.1.

Lemma 3.2.4. Let Îl ⊆ R[x̄l] be a split ideal, defined as Îl := 〈ĥ0(x0), . . . , ĥl(x̄l)〉, and

Il := Îl mod p be an ideal over Fp. Then every zero (ã0, . . . , ãl) ∈ ZFp(Il) has a unique lift

(a0, . . . , al) ∈ ZR(Îl). In particular,

|ZR(Îl)| =
l∏

i=0

degxi(ĥi) = |ZFp(Il)|.

Proof. Define hi := ĥi mod p, for all i ∈ {0, . . . , l}, so that Il = 〈h0, . . . , hl〉. Let (ã0, . . . , ãl) ∈

ZFp(Il) i.e., h0(ã0) = 0, h1(ã0, ã1) = 0, . . . , hl(ã0, . . . , ãl) = 0. We prove the lemma by apply-

ing induction on the length l of the split ideal. By Corollary 3.2.3, h0(x0) splits completely

hence ã0 is a zero of multiplicity 1 of h0. So we can apply Hensel’s lemma (Lemma 2.2.2) to

lift the zero ã0 of h0 uniquely to a zero, say a1, of ĥ0.

By induction hypothesis, let the zero (ã0, . . . , ãl−1) of Il−1 := 〈h0, . . . , hl−1〉 lifts uniquely

to a zero, say (a0, . . . , al−1), of Îl−1 := 〈ĥ0, . . . , ĥl−1〉. By Corollary 3.2.3, ãl must be a

multiplicity 1 zero of the univariate hl(ã0, . . . , ãl−1, xl). So by Hensel’s lemma (Lemma 2.2.2),

ãl lifts ‘uniquely’ to a zero, say al, of ĥl(a0, . . . , al−1, xl). This proves the first part of the

lemma.

Now we will show that |ZR(Îl)| =
∏l
i=0 degxi(ĥi) = |ZFp(Il)|. We know that any zero of

Îl is a lift of a unique zero of Il (just reduce mod p) and any zero of Il lifts uniquely to a zero

of Îl, hence |ZR(Îl)| = |ZFp(Il)|. By Definition 3.2.1, each ĥi(x̄i) is a monic polynomial, so

degxi(ĥi) = degxi(hi). Thus |ZFp(Il)| =
∏l
i=0 degxi(ĥi). This proves the lemma.

Lemma 3.2.5 shows that a split ideal Î can be decomposed into an intersection of ideals

of the form Îā := 〈x0 − a0, . . . , xl − al〉, where ā =: (a0, . . . , al) is a root of Î.

To prove this structural lemma, following proposition is useful.

33

Proposition 3. Let a1, . . . , an ∈ R such that ai 6= aj mod p for i 6= j and i, j ∈ [n]. Then,

〈
n∏
i=1

(x− ai)〉 =
n⋂
i=1

〈x− ai〉.

Proof. We prove the lemma for the case n = 2 as the proof of the generalised form is similar

via induction.

Define the ideals I := 〈(x − a1)(x − a2)〉 and Iai := 〈x − ai〉 for i ∈ [2]. It is easy to see

that if h ∈ I then h ∈ Ia1 and h ∈ Ia2 .

Let h ∈ Ia1 ∩ Ia2 . Let h̃(x) := h(x) mod p such that h̃(x) =: (x− ã1)e1 · (x− ã2)e2 · g̃3(x)

where ã1 ≡ a1 mod p and ã2 ≡ a2 mod p and g̃3 is co-prime to both (x− ã1)e1 and (x− ã2)e2 .

Applying Hensel’s lemma (Lemma 2.2.2), we get h(x) =: g1(x) · g2(x) · g3(x) where g1 ≡

(x − ã1)e1 mod p, g2 ≡ (x − ã2)e2 mod p and g3 ≡ g̃3 mod p. Hensel’s lemma (Lemma 2.2.2)

also says that this is unique co-prime factorisation of h(x) (g1, g2 and g3 are mutually co-

prime). So if h1 ∈ R[x] is an irreducible factor of h then h1 divides exactly one of the g1, g2

and g3. Hence, (x − a1)|h ⇒ (x − a1)|g1 (since (x − a1) does not divide g2 or g3 modulo p).

Similarly, (x− a2)|g2 which implies (x− a1)(x− a2)|h. Thus h ∈ I proving the lemma.

Now, we can show that a split ideal Î can be decomposed in terms of its zeros.

Lemma 3.2.5 (Split ideal structure). Let Î := 〈ĥ0(x0), . . . , ĥl(x̄l)〉 be a split ideal of R[x̄l].

Let hi := ĥi(x̄i) mod p, for all i ∈ {0, . . . , l}, and I := 〈h0, . . . , hl〉 be an ideal of Fp[x̄l]. Then,

1. I =
⋂
b̄∈ZFp (I) Ib̄ where Ib̄ := 〈x0−b0, . . . , xl−bl〉 corresponds to b̄ =: (b0, . . . , bl) ∈ ZFp(I)

and,

2. Î =
⋂
ā∈ZR(Î) Îā where Îā := 〈x0 − a0, . . . , xl − al〉 corresponds to ā =: (a0, . . . , al) ∈

ZR(Î).

Proof. We will prove only Part (2) of the lemma as proving Part (1) is similar and easier.

We will prove this decomposition by applying induction on the length of the split ideal. For

the base case, length of Î is 1 and Î = 〈ĥ0(x0)〉 ⊆ R[x0]. By Corollary 3.2.3, h0(x0) =∏deg(h0)
i=1 (x0 − ã0,i) for distinct ã0,i ∈ Fp. By Hensel’s Lemma (Lemma 2.2.2) and Lemma

3.2.4 , ĥ0(x0) =
∏degx0

(ĥ0)

i=1 (x − a0,i) where a0,i ≡ ã0,i mod p. So, Î =
⋂
a0,i∈ZR(Î) Îa0,i by

Proposition 3.

34

Let Î be a split ideal of length l + 1, Î = 〈ĥ0(x0), . . . , ĥl(x̄l)〉 ⊆ R[x̄l]. Define ideal

Ĵ := 〈ĥ0, . . . , ĥl−1〉. By Lemma 3.2.2, Ĵ is a split ideal. From the induction hypothesis, we

have Ĵ =
⋂
ā∈ZR(Ĵ) Ĵā, where Ĵā := 〈x0 − a0, . . . , xl−1 − al−1〉 for a zero ā =: (a0, . . . , al−1) of

Ĵ . We know that,

Î = Ĵ + 〈ĥl(x̄l)〉 =
⋂

ā∈ZR(Ĵ)

Ĵā + 〈ĥl(x̄l)〉 =
⋂

ā∈ZR(Ĵ)

(
Ĵā + 〈ĥl(ā, xl)〉

)
. (3.1)

By Definition 3.2.1, ĥl is monic with respect to xl and so deg(ĥl(ā, xl)) = degxl(ĥl) =

deg(hl(ā, xl)) for all ā ∈ ZR(Ĵ). By Corollary 3.2.3, hl(ā, xl) splits completely over Fp

and so by Hensel’s lemma (Lemma 2.2.2), ĥl(ā, xl) splits completely over R as ĥl(ā, xl) =:∏degxl
(hl)

i=1 (xl − al,i). Thus by Proposition 3, 〈ĥl(ā, xl)〉 =
⋂degxl

(hl)

i=1 〈xl − al,i〉. So, for any

ā ∈ ZR(Ĵ), Ĵā + 〈hl(ā, xl)〉 = Ĵā +
⋂degxl

(hl)

i=1 〈xl − al,i〉 =
⋂degxl

(ĥl)

i=1 Îā,al,i , where (ā, al,i) are

the roots of Î induced from ā. Hence from Eqn. 3.1, Î =
⋂
b̄∈ZR(Î) Îb̄.

This finishes the inductive proof, completely factoring Î.

Let Î =: 〈ĥ0(x0), . . . , ĥl(x̄l)〉 be a split ideal. Suppose some ĥi factors as ĥi(x̄i) =

ĥi,1(x̄i) · · · ĥi,m(x̄i). Define Îj := 〈ĥ0(x0), . . . , ĥi−1(x̄i−1), ĥi,j(x̄i), ĥi+1(x̄i+1), . . . , ĥl(x̄l)〉, for

j ∈ [m]. The following corollary of Lemma 3.2.5 is evident because root-sets of Îj partition

the root-set of Î.

Corollary 3.2.6 (Splitting split ideals). Let Î =: 〈ĥ0(x0), . . . , ĥl(x̄l)〉 be a split ideal of R[x̄l].

Let some ĥi(x̄i) factor as ĥi(x̄i) = ĥi,1(x̄i) · · · ĥi,m(x̄i). Then,

Î =

m⋂
j=1

Îj ,

where each Îj := 〈ĥ0(x0), . . . , ĥi−1(x̄i−1), ĥi,j(x̄i), ĥi+1(x̄i+1), . . . , ĥl(x̄l)〉 is a split ideal.

Our list data structure L actually contains a list of special split ideals, called maximal

split ideals, that partition the roots of f in Z/(pk).

Definition 3.2.7 (Maximal Split Ideal). We call a split ideal Îl := 〈ĥ0, . . . , ĥl〉 to be maximal

split ideal if,

1) for all ā = (a0, . . . , al) ∈ ZR(Îl), g(x) := f(a0 +pa1 + . . .+plal+p
l+1x) vanishes identically

35

mod pk,

2) the restriction Îl−1 := 〈ĥ0, . . . , ĥl−1〉 does not follow the previous condition.

Lemma 3.2.8 shows that a root of a maximal split ideal represents a set of roots of f mod pk

and provides the size of that set.

Lemma 3.2.8 (Roots represented by a root of maximal split ideal). Let Î be a maximal split

ideal of length l+1, then a zero ā = (a0, . . . , al) ∈ ZR(Î) maps to (‘represents’) exactly pk−l−1

zeros of f in ZR(f). In particular, Î represents exactly deg(Î) · pk−l−1 zeros of f mod pk.

Proof. By Definition 3.2.7 of a maximal split ideal, for any ā = (a0, . . . , al) ∈ ZR(Î), g(x) ≡

0 mod pk where g(x) := f(a0 + pa1 + p2a2 + . . .+ plal + pl+1x). In other words, g(x) vanishes

identically over R irrespective of any x in R. The distinct choices of x in R are pk but pl+1x

has only pk−l−1 distinct choices in R. The reason is as follows:

Any b ∈ R can be written ‘uniquely’ in p-adic representation as b = b0+pb1+· · ·+pk−1bk−1

where each bi ∈ {0, . . . , p−1}. Hence pl+1 ·b ≡ pl+1(b0 +pb1 +· · ·+pk−l−2bk−l−2) mod pk takes

distinct values for distinct choices of b0, . . . , bk−l−2 which are pk−l−1. By Lemma 3.2.4 and

Definition 3.2.1, |ZR(Î)| = deg(Î) so Î represents exactly deg(Î)·pk−l−1 zeros of f mod pk.

3.3 Reduction and Division modulo a Triangular Ideal

We will show that it is efficient to reduce a polynomial a(x̄l) ∈ G[x̄l] modulo a triangular ideal

Jl = 〈b0(x0), b1(x̄1), . . . , bl(x̄l)〉 ⊆ G[x̄l], where G is any Galois ring (in particular, R = Z/pk,

or Fp).

Note that Jl need not be a split ideal, though the algorithms of this section work for split

ideals as they are triangular by Definition 3.2.1.

Assumptions: In the generators of the triangular ideal we assume degxi bi(x̄i) ≥ 2 (for

0 ≤ i ≤ l). Otherwise, we could eliminate variable xi and work with fewer variables (& smaller

length triangular ideal). Additionally, each bi(x̄i) (for 0 ≤ i ≤ l) is monic (leading coefficient

is 1 with respect to xi), and presented in a reduced form modulo the prior triangular ideal

Ji−1 := 〈b0(x̄0), . . . , bi−1(x̄i−1)〉 ⊆ G[x̄i−1].

Let us first define reduction modulo an ideal (assume G to be the Galois ring G(pk, b)).

36

Definition 3.3.1 (Reduction by a triangular ideal). The reduction of a multivariate poly-

nomial a(x̄l) ∈ G[x̄l] by a triangular ideal Jl = 〈b0(x̄0), . . . , bl(x̄l)〉 ⊆ G[x̄l] is the unique

polynomial ã(x̄l) ≡ a(x̄l) mod Jl, where degxi(ã) < degxi(bi), for all i ∈ {0, . . . , l}.

Idea of reduction: The idea behind the algorithm is inspired from the univariate reduc-

tion. If l = 0, then reduction of a(x0) modulo b0(x0) is simply the remainder of the division

of a by b0 in the underlying polynomial ring G[x0]. For a larger l, the reduction of a(x̄l)

modulo the triangular ideal Jl = 〈b0(x0), . . . , bl(x̄l)〉 is the remainder of the division of a(x̄l)

by bl(x̄l) in the polynomial ring (G[x0, . . . , xl−1]/Jl−1)[xl]. The fact that bl is monic, helps in

generalizing ‘long division’ (Steps 8-12 in Algorithm 2 below).

Input: An a(x̄l) ∈ G[x̄l] and a triangular ideal Jl = 〈b0(x̄0), . . . , bl(x̄l)〉 ⊆ G[x̄l].

Output: Reduction ã of a mod Jl as defined above.

Algorithm 2 Reduce a(x̄l) modulo Jl

1: procedure Reduce(a(x̄l), Jl)

2: if l = 0 then

3: [Reduce a(x0) by b0(x0)] return remainder of univariate division of a by b0 in

G[x0].

4: dl(a)← degxl(a) and dl(b)← degxl(bl).

5: Let a(x̄l) =: Σ
dl(a)
i=0 ai(x̄l−1)xil be the polynomial representation of a(x̄l) with respect

to xl.

6: Recursively reduce each coefficient ai(x̄l−1) of a modJl−1:

ãi(x̄l−1)← Reduce(ai(x̄l−1), Jl−1), for all i ∈ {0, . . . , dl(a)}.
7: while dl(a) ≥ dl(b) do

8: a(x̄l)← a−
(
adl(a) · x

dl(a)−dl(b)
l · bl

)
9: Update dl(a)← degxl(a). Update ai’s such that a(x̄l) =: Σ

dl(a)
i=0 ai(x̄l−1) · xil .

10: Call Reduce(ai(x̄l−1), Jl−1) for all i ∈ {0, . . . , dl(a)}: recursively reduce each

coefficient ai(x̄l−1) mod Jl−1 (like Step 7).

11: return a(x̄l).

Following lemma shows that reduction modulo a triangular ideal (Algorithm 2) is efficient.

37

Lemma 3.3.2 (Reduction). Given a(x̄l) ∈ G[x̄l] and Jl ⊆ G[x̄l] defined as Jl := 〈b0(x0), . . . , bl(x̄l)〉

with each bi monic with respect to xi. Define Jl−1 := 〈b0, . . . , bl−1〉. If degxi(a) ≤ 2 degxi(bi)

for each i ∈ {0, . . . , l−1} then Reduce(a(x̄l), Jl) takes time Õ(degxl(a)2 ·deg(Jl−1)4 ·log |G|).

Proof. Let T (d, l) denotes the time taken by Algorithm 2 to reduce a degree d polynomial

(with respect to xl) modulo Jl. Let di(g) = degxi(g) for all i ∈ {0, . . . , l}. Then we get the

recurrence,

T (dl(a), l) = dl(a)2 · T (2dl−1(bl−1), l − 1) + Õ(dl(a)2 · deg(Jl−1)2 · log |G|). (3.2)

Let us first see how we got the recurrence.

Firstly, Step-9 takes time (including the while loop) Õ(dl(a)2 ·deg(Jl−1)2 · log |G|). This is

because the while loop runs dl(a) times and adl(a)(x̄l−1) is multiplied to dl(bl) coefficients (with

respect to xl) of bl. So there are in total dl(a) ·dl(bl) ≤ dl(a)2 multiplications (safely assuming

dl(a) ≥ dl(bl)), each taking time (
∏l−1
i=0 di(adl(a)) · di(bl)) · Õ(log |G|) = Õ((

∏l−1
i=0 di(adl(a)) ·

di(bi))·log |G|) where Õ(log |G|) comes from ring operations (addition/multiplication/division)

in G (refer to [Sho09]). At Step-9, adl(a) is already reduced modulo Jl−1 (due to Steps 7 and

11), so we have di(adl(a)) < di(bi). Thus multiplications at Step-9 (including the while loop)

takes time Õ(dl(a)2 · deg(Jl−1)2 · log |G|).

After multiplication at Step-9 we have di(a) < 2di(bi), for each i ∈ {0, . . . , l − 1}, at

Step-10. So the calls to Reduce at Step-11 subsumes the calls to Reduce at Step-7. There

are dl(a)2 such calls (including the loop) each taking time at most T (2dl−1(bl−1), l− 1). This

gives us Recurrence 3.2.

Now we will use induction on l to show that T (dl(a), l) = Õ(degxl(a)2 ·deg(Jl−1)4 · log |G|).

When l = 0, Algorithm 2 performs a univariate division at Step-3. Thus T (d0(a), 0) =

d0(a) · d0(b0) · Õ(log |G|) = Õ(d0(a)2 · log |G|).

When l = 1, T (d1(a), 1) = d1(a)2 · T (2d0(b0), 0) + Õ(d1(a)2 · deg(J0)2 · log |G|). Now,

T (2d0(b0), 0) = Õ((2d0(b0))2·log |G|) = Õ(d0(b0)4·log |G|) since d0(b0) ≥ 2. Thus T (d1(a), 1) =

Õ(d1(a)2 · deg(J0)4 · log |G|) as deg(J0) = d0(b0).

By induction hypothesis, T (2dl−1(bl−1), l − 1) = Õ((2dl−1(bl−1))2 · deg(Jl−2)4 · log |G|) =

Õ(deg(Jl−1)4 · log |G|) as 2 ≤ dl−1(bl−1) and deg(Jl−1) = dl−1(bl−1) · deg(Jl−2). Substituting

38

value of T (2dl−1(bl−1), l − 1) in Equation 3.2 we get, T (dl(a), l) = Õ(dl(a)2 · deg(Jl−1)4 ·

log |G|).

Lemma 3.3.3 (Division modulo triangular ideal). Given a triangular ideal Jl ⊆ G[x̄l] defined

as Jl := 〈b0(x0), . . . , bl(x̄l)〉 with each bi monic with respect to xi. If a(x̄l) ∈ G[x̄l]/Jl is a unit

then we can compute a−1 mod Jl, in reduced form, in time Õ(deg(Jl)
4 · log |G|).

Proof. Let u(x̄l) ∈ G[x̄l]/Jl be such that u · a ≡ 1 mod Jl. We can write u as

∑
ē ≥ 0̄

∀ 0≤i≤l, ei < degxi (bi)

uē · x̄ēl .

We want to find the unknowns uē in G, satisfying u · a ≡ 1 mod Jl. First we compute the

product u ·a =: c (where degxi(c) ≤ 2 degxi(bi)) and then reduce, using Algorithm 2, c mod Jl

(now degxi(c) ≤ degxi(bi)). This gives us a linear system in the unknowns of size n×n where

n = O(deg(Jl)). Since there exists a unique u, our linear system is efficiently solvable (in

deg(Jl)) by standard linear algebra.

The time taken is dominated by the time to reduce c mod Jl where degxi(c) ≤ 2 degxi(bi).

Using Lemma 3.3.2, it takes time Õ((2 degxl(bl))
2 · deg(Jl−1)4 · log |G|) = Õ(deg(Jl)

4 · log |G|)

as 2 ≤ degxl(bl) and deg(Jl) = degxl(bl) · deg(Jl−1).

3.4 Testing for Zerodivisors and GCD Computation

In this section we will work over a finite field Fq instead of general Galois ring G. Similar to

Section 3.3, we will work with a triangular ideal Il ⊆ Fq[x̄l] defined as Il := 〈h0(x0), . . . , hl(x̄l)〉

where each hi is assumed to be monic with respect to xi and reduced modulo Ii−1 :=

〈h0, . . . , hi−1〉.

Test-Zero-Div(a(x̄l), Il), for the triangular ideal Il, either reports that a(x̄l) is not a ze-

rodivisor modulo Il, or returns a non-trivial factorization of some generator hi =: hi,1 · · ·hi,m

(into monic, with respect to xi, factors modulo the prior ideal Ii−1 := 〈h0, . . . , hi−1〉).

Idea and Overview: The main idea is inspired from the univariate case: if a(x) ∈ Fq[x]

39

is a zero divisor modulo h(x) ∈ Fq[x] then a and h must share a non-trivial common factor.

Generalising this, Algorithm 3 is based on the following idea:

In the quotient ring Fq[x̄l]/〈Il〉, a monic (with respect to xi) polynomial a(x̄i) is a zero-

divisor iff it contains a non-trivial factor, with respect to xi, of the generator hi(x̄i) modulo

the triangular ideal Ii−1.

So, firstly the algorithm ‘recursively’ checks if the given polynomial a(x̄l) is monic with

respect to xl. While in recursion if it fails, it outputs True and a non-trivial factorization of

some generator hi for i < l. After making a(x̄l) monic the algorithm takes the gcd of a and

hl: similar to taking univariate gcd with respect to xl over the coefficient ring Fq[x̄l−1]/Il−1.

if it finds non-trivial gcd it factors hl, else a(x̄l) is not a zero-divisor.

Algorithm 3 Zerodivisor test of a(x̄l) modulo Il

1: procedure Test-Zero-Div(a(x̄l),Il)

[Steps 2 to 9 handle base case. A zero-divisor a(x0) in Fq[x0]/〈h0(x0)〉 must share a factor

with h0(x0).]

2: if l = 0 then

3: gcd← gcd(a(x0), h0(x0)). [Taking univariate GCD]

4: if gcd is non-trivial then

5: Factorize h0(x0) =: gcd · h0
gcd ; return (True, gcd, h0

gcd).

6: else

7: return (False).

[Steps 10 to 15 either make the given a(x̄l) monic, with respect to xl, or the algorithm

ends factoring a generator hi(x̄i) of Il.]

8: Let the leading coefficient of a(x̄l) with respect to xl be ã(x̄l−1).

9: Test if the leading coefficient of a(x̄l) is a unit by calling Test-Zero-Div(ã(x̄l−1),

Il−1).

10: if The test returned True then

11: return (True, hi,1, . . . , hi,m); where a generator hi(x̄i) of Il factors as hi =:

hi,1 · · ·hi,m.

12: Compute 1/ã mod Il−1 (using Lemma 3.3.3) and update a← (1/ã) · a mod Il.

40

[Steps 17-25 take the gcd of a and hl, with respect to xl, using iterated division method

(Euclid’s method).]

13: Define b(x̄l)← hl(x̄l).

14: while b(x̄l) 6= 0 do

[Steps 18-22 make b(x̄l) monic, with respect to xl, to make reduction at Step 23

possible.]

15: Let b̃(x̄l−1) be the leading coefficient of b(x̄l) with respect to xl.

16: if Test-Zero-Div(b̃(x̄l−1), Il−1) = True then

17: return (True, a non-trivial factorization of some generator hi(x̄i)).

18: Compute 1/b̃ mod Il−1 (using Lemma 3.3.3) and update b← (1/b̃) · b mod Il. [b is

now monic.]

19: Let c(x̄l)← Reduce(a(x̄l), Il−1+〈b(x̄l)〉) (same as taking remainder of a(x̄l) when

divided by the monic polynomial b(x̄l) modulo Il−1).

20: a(x̄l)← b(x̄l), b(x̄l)← c(x̄l).

[The loop ends eventually as degxl(b) falls with each iteration.]

[Gcd of original a(x̄l) and hl(x̄l) mod Il is stored in a(x̄l).]

21: if gcd a(x̄l) is non-trivial then

22: return (True, a non-trivial factorization of hl(x̄l)).

23: else

24: return (False). [a(x̄l) is not a zerodivisor.]

Lemma 3.4.1 (Efficiency of testing zero-divisors). Assuming a(x̄l) is reduced modulo Il,

Algorithm 3 takes time Õ(deg(Il)
4 · log |Fq|).

Proof. Denote degxi(hi) by di. Since a(x̄l) is reduced modulo Il, we have degxi(a) ≤ di for

all i ∈ {0, . . . , l}. Let T (l) denote the time taken by the call Test-Zero-Div(a(x̄l), Il).

The time taken to compute gcd of a and hl i.e., the while loop (Steps 17-25) subsumes

the time taken by all other major steps. Since the while loop runs at most dl times (as

degxl(a) ≤ dl and degxl(b) ≤ dl), we get the recurrence

T (l) = dl · (T (l − 1) + Õ(d2
l · deg(Il−1)4 · log |Fq|)).

41

The term Õ(d2
l ·deg(Il−1)4 · log |Fq|) in the recurrence comes from the time taken by Steps

22 and 23. Computing inverse at Step 22 takes time Õ(deg(Il−1)4 · log |Fq|) by Lemma 3.3.3.

Update b ← (1/b̃) · b mod Il takes degxl(b) ≤ dl reductions modulo Il−1 which by Lemma

3.3.2 takes time dl · Õ(deg(Il−1)4 · log |Fq|). The call Reduce(a(x̄l), Il−1 + 〈b(x̄l)〉) at Step 23

takes time Õ(d2
l · deg(Il−1)4 · log |Fq|) (by Lemma 3.3.2). Hence we get the desired recurrence

T (l) = dl · T (l − 1) + Õ(d3
l · deg(Il−1)4 · log |Fq|).

To prove the time complexity we will apply the induction on l. It is easy to see the base

case l = 0 which is just a univariate gcd. By induction hypothesis, we have T (l − 1) =

Õ(deg(Il−1)4 · log |Fq|). Substituting this in the recurrence we get T (l) = Õ(d3
l · deg(Il−1)4 ·

log |Fq|) = Õ(deg(Il)
4 · log |Fq|) as deg(Il) = dl · deg(Il−1).

GCD(a(x̄l, x), b(x̄l, x), Il) either successfully computes a ‘monic’ polynomial g(x̄l, x)

which is the gcd of the polynomials a(x̄l, x) and b(x̄l, x) modulo the triangular ideal Il =

〈h0(x0), . . . , hl(x̄l)〉 or returns False and outputs a non-trivial factorization of some genera-

tor hi(x̄i) in case it fails to compute the gcd.

Algorithm 4 GCD computation modulo Il

1: procedure GCD(a(x̄l, x), b(x̄l, x), Il)

2: Let b̃(x̄l) be the leading coefficient of b with respect to x.

3: if Test-Zero-Div(b̃(x̄l), Il) = True then

4: return False, Test-Zero-Div(b̃(x̄l), Il) factors some generator hi(x̄i).

5: Let c(x̄l, x)←Reduce(a, Il + 〈b/b̃〉).

6: if c = 0 then

7: return b/b̃.

8: else

9: return GCD(b(x̄l, x), c(x̄l, x), Il).

Lemma 3.4.2 (GCD modulo a triangular ideal). Algorithm 4 either factors a generator hi

(& outputs False), or computes a monic polynomial g(x̄l, x) ∈ Fq[x̄l, x], such that, g divides

a, b modulo Il. Moreover, g = ua+ vb mod Il, for some u(x̄l, x), v(x̄l, x) ∈ Fq[x̄l, x].

Let a and b are in reduced form modulo Il and degx(a) ≥ degx(b) then Algorithm 4 takes

42

time Õ(degx(a)3 · deg(Il)
4 · log |Fq|).

Proof. Algorithm 4 is just an implementation of univariate Euclidean gcd algorithm, with

respect to x, over the coefficient ring Fq[x̄l]/Il =: R′. If the algorithm outputs g(x̄l, x) ∈ R′[x]

then, by standard Euclidean gcd arguments (using recursion), there exists u(x̄l, x), v(x̄l, x) ∈

R′[x], such that, ua+ vb = g, and g divides both a and b modulo Il.

The algorithm works fine if in each step it was able to work with a monic divisor. Oth-

erwise, it gets stuck at a ‘division’ step, implying that the divisor’s leading-coefficient is a

zero-divisor, factoring some generator of Il.

For time complexity, each recursive step makes one call each to Test-Zero-Div, Reduce,

and division procedures. They take time Õ(degx(a)2 · deg(Il)
4 · log |Fq|) (∵ coefficients of a

and b are in reduced form mod Il, degx(a) is assumed to be at least degx(b), and use Lemmas

3.3.2, 3.3.3 & 3.4.1). Since number of recursive steps are bounded by degx(a) ≥ degx(b), total

time is bounded by Õ(degx(a)3 · deg(Il)
4 · log |Fq|).

Chapter 4

Derandomizing Univariate Root

Counting modulo Prime Powers

In this chapter we will provide an algorithm to count all the roots of a univariate polynomial

f(x) with integer coefficients modulo a prime power pk in deterministic polynomial-time.

Thus we also solve the problem of testing the existence of a root of f mod pk in deterministic

polynomial-time.

Theorem 4.0.1 (Root count). Let p be a prime, k ∈ N and f(x) ∈ Z[x]. Then all the roots

of f mod pk can be counted in deterministic poly(deg f, k log p)-time.

The outline is similar to that of randomized root counting (Chapter 2, Section 2.3) but the

data structure, split ideals, returned by our algorithm contains roots implicitly. Moreover, if

randomization is allowed, the data structure naturally provides all the roots efficiently.

Notations: In this chapter we will use the notations defined and used in Chapter 3.

4.1 Counting All the Roots of f(x) modulo Prime Power pk

The algorithm to compute a compact data-structure which stores roots of f mod pk will be

described in Section 4.1.1. The correctness of our algorithm will be proved in Section 4.1.2,

which involves studying the algebraic structure underlying the algorithm. Its efficiency will be

43

44

shown in Section 4.1.3, by devising an auxiliary structure called roots-tree and the important

notion of ‘degree of a node’.

4.1.1 Algorithm to Implicitly Partition the Root-Set

The input and output to our algorithm are as follows.

Input: A monic univariate polynomial f ∈ Z[x] of degree d and a prime-power pk (in binary).

Output: A list L of at most d maximal split ideals whose roots partition the root-set of

f mod pk.

A maximal split ideal Îj =: 〈ĥ0(x̄0), . . . , ĥl(x̄l)〉 has |ZR(Îj)| =
∏l
i=0 degxi(ĥi) zeros

(Lemma 3.2.4), and each such zero ‘represents’ pk−l−1 actual zeros of f mod pk (Lemma

3.2.8). Thus this algorithm gives an exact count on the number of zeros of f in R.

Overview of Algorithm 5: Since any root of f mod pk is a lift of a root modulo p, the

algorithm starts by initializing a stack S (Steps 1 − 3) with the ideal Î := 〈ĥ0(x0)〉, where

where ĥ0 is some ‘monic’ lift of h0(x0) := gcd(xp0 − x0, f(x0)) over R. This is indeed a split

ideal containing all the roots of f mod p (for every r0 ∈ ZR(Î0) we have f(r0) ≡ 0 mod p).

At every intermediate iteration (Steps 4− 21), we pop a split ideal from the stack and try

to increase the precision of its root-set (equivalently, lengthen the split ideal) before pushing

it back to Stack S. This step mostly results in two cases: either we succeed and get a split

ideal whose root-set has increased precision (Step 18) by a new placeholder xl+1, or the split

ideal factors into more split ideals increasing the size of the stack S (Steps 10, 14, 20). We

update the relevant ‘part of f ’ to fI(x̄l, xl+1 + px) mod Ĵ (Ĵ is the new split ideal) that we

carry around with each split ideal. This helps in efficiently increasing the precision of roots in

the next iteration. Otherwise, computing f
(
x0 + px1 + · · ·+ plxl + pl+1x

)
/pα mod Î is too

expensive, in Step 7, due to the underlying degree-d (l + 1)-variate monomials blowup.

If we reach a maximal split ideal (Step 6), it is moved to a list L. Sometimes the split ideal

cannot be extended and we get a dead-end (Step 16). The size of the stack decreases when

we get a maximal split ideal or a dead-end. The algorithm terminates when stack becomes

empty. List L contains maximal split ideals which partition, and cover, the root-set of f

(implicitly). This becomes our output.

45

The main intuition behind our algorithm: If two roots of a split ideal (representing po-

tential roots of f) give rise to different number of roots of f , the split ideal will get split

further. Though not at all apparent immediately, we will show that the algorithm takes only

polynomial number of steps (Section 4.1.3).

We will use four subroutines to perform standard ring arithmetic modulo split ideals; they

are described in the Sections 3.3 & 3.4.

1. Modify f (Steps 3, 18, 20) whenever pushing in the stack (Lemma 4.1.1 & 4.1.2).

2. Reduce(a(x̄l), Jl) gives the reduced form of a mod triangular ideal Jl (over a Galois

ring).

3. Test-Zero-Div(a(x̄l), Il) either reports that a is a not a zero-divisor modulo triangular

ideal Il or outputs a non-trivial factorization of one of the generators of Il when true.

4. GCD(a(x̄l, x), b(x̄l, x), Il) either successfully computes a monic gcd, with respect to x,

of a(x̄l, x) and b(x̄l, x) modulo a triangular ideal Il, or encounters a zero-divisor in

intermediate computation (outputting False and a non-trivial factorization of one of

the generators of Il).

Algorithm 5 Root-counting mod pk

1: Let L = {} be a list and S = {} be a stack (both initially empty).

2: Let f̃(x0) := f(x0) mod p for a monic univariate f̃ ∈ Fp[x0] of degree d.

3: [Initializing the stack S] Let h0(x0) := gcd(f̃(x0), xp0 − x0), I := 〈h0〉. Let Î ⊆ R[x0]

be a lift of I defined as Î = 〈ĥ0(x0)〉 where ĥ0 is a ‘monic’ lift of h0 over R. Compute

fI(x0, x) := f(x0 + px) mod Î using Lemma 4.1.1. Update S ← push(({ĥ0}, fI)).
4: while S is not empty do

5: Stop ← pop(S). Let Stop = ({ĥ0(x0), . . . , ĥl(x̄l)}, fI(x̄l, x)) where Î = 〈ĥ0, . . . , ĥl〉 ⊆

R[x̄l] is a split ideal and fI(x̄l, x) is already computed in reduced form modulo Î.

6: [Maximal split ideal found] if(fI ≡ 0 mod Î) then update L ← L ∪ {Î}. Go to

Step 4.

7: [Valuation computation] Compute α ∈ N and g ∈ R[x̄l, x] such that fI ≡

pαg(x̄l, x) mod Î and p 6 |g mod Î. [Note: α < k due to check at Step 6.]

46

8: Let g̃ := g(x̄l, x) mod I (where I := Î mod p) be the polynomial in Fp[x̄l, x], and let

g1(x̄l) be the leading coefficient of g̃(x̄l, x) with respect to x.

9: if Test-Zero-Div(g1(x̄l), I)= True then

10: Test-Zero-Div(g1(x̄l), I) returns a factorization hi(x̄i) =:

hi,1(x̄i) · · ·hi,m(x̄i) mod Ii−1 of some generator hi(x̄i) of I. Use univariate

Hensel lifting, with respect to xi (Lemma 2.2.2), to lift each hi,j ∈ Fp[x̄i] to

ĥi,j ∈ R[x̄i] and get the factorization ĥi = ĥi,1 · · · ĥi,m mod Îi−1. Go to Step 20.

[Filter out distinct virtual Fp-roots by taking gcd with xp − x]

11: Recompute g̃ = g(x̄l, x) · g1(x̄l)
−1 mod I (Lemmas 3.3.3, 3.3.2). Compute xp by re-

peatedly squaring and reducing modulo the triangular ideal I + 〈g̃〉 (Algorithm 2 and

Lemma 3.3.2). This yields h̃l+1(x̄l, x) := xp−x mod I + 〈g̃〉 in a reduced form. [Note:

gcd(xp − x, g̃) = gcd(g̃, (xp − x) mod g̃).]

12: if GCD(g̃, h̃l+1, I) = False then

13: The call GCD(g̃, h̃l+1, I) returns a factorization hi(x̄i) =: hi,1(x̄i) · · ·hi,m(x̄i) mod

Ii−1 of some generator hi(x̄i) of I. Use univariate Hensel lifting, with respect to

xi (Lemma 2.2.2), to lift each hi,j ∈ Fp[x̄i] to ĥi,j ∈ R[x̄i] and get the factorization

ĥi = ĥi,1 · · · ĥi,m mod Îi−1. Go to Step 20.

14: else if g̃ and h̃l+1 are coprime then

15: [Dead End] The ideal Î cannot grow more, go to Step 4.

16: else

17: [Grow the split ideal I] Here gcdx(g̃, h̃l+1) mod I is non-trivial, say hl+1(x̄l, x)

(monic with respect to x). Substitute x by xl+1 in hl+1(x̄l, x) and update Ĵ ←

Î + 〈ĥl+1(x̄l+1)〉 where ĥl+1 is a ‘monic’ lift, with respect to xl+1, of hl+1 over R.

Substitute x by xl+1 + px in fI(x̄l, x), and compute fJ(x̄l+1, x) := fI(x̄l, xl+1 +

px) mod Ĵ using Lemma 4.1.1. Update S ← push(({ĥ0, . . . , ĥl+1}, fJ)), and go to

Step 4.

47

18: [Factoring split ideals] We have a factorization ĥi(x̄i) = ĥi,1(x̄i) · · · ĥi,m(x̄i) mod

Îi−1 of a generator ĥi of Î. Push Stop back in stack S. For every entry (U, f〈U〉) ∈ S,

where ĥi(x̄i) appears in U , find m (smaller) split ideals 〈Uj〉 (using Corollary 3.2.6);

using Lemma 4.1.2 compute Uj and f〈Uj〉 in reduced form and push (Uj , f〈Uj〉) in S,

for j ∈ [m].

19: Return L (the list of maximal split ideals partitioning the root-set ZR(f)).

First, we explain how Algorithm 5 (Steps 3, 18) computes reduced fJ modulo the newly

computed split ideal Ĵ , when x is replaced by xl+1 + px in the intermediate polynomial

fI(x̄l, x).

Lemma 4.1.1 (Updating stack with reduced polynomial). Let Î ⊆ R[x̄l] be a split ideal

defined as Î := 〈ĥ0(x0), . . . , ĥl(x̄l)〉 and fI(x̄l, x) ∈ R[x̄l, x] be reduced modulo Î. Define split

ideal Ĵ ⊆ R[x̄l+1] as Ĵ := Î + 〈ĥl+1(x̄l+1)〉 where degxl+1
(ĥl+1) ≤ degx(fI).

Then, in time Õ(degx(fI)
3 · deg(Î)4 · log |R|), we can compute a reduced polynomial fJ

modulo Ĵ defined by, fJ(x̄l+1, x) := fI(x̄l, xl+1 + px) mod Ĵ .

Proof. Since fI(x̄l, x) is already reduced modulo Î, degxi(fI) < degxi(ĥi). Define D :=

degx(fI), perform the shift x→ xl+1 + px in fI , and expand fI using Taylor series,

fJ(x̄l, x) = fI(x̄l, xl+1 + px) =: g0(x̄l+1) + g1(x̄l+1)(px) + . . .+ gD(x̄l+1)(px)D ,

where gi could also be seen as the i-th derivative of fI(x̄l, xl+1) (with respect to xl+1) divided

by i!. To compute fJ mod Ĵ , we call Reduce(gi, Ĵ) (for all i) to get the reduction of each

term mod Ĵ .

To calculate the time complexity of Reduce(gi, Ĵ), note that coefficients of each gi, with

respect to xl+1, is already reduced mod Î. Since Ĵ = Î + 〈hl+1〉, using Lemma 3.3.2, time

complexity of reducing each gi by Ĵ is at most Õ(degxl+1
(gi)

2 · deg(Î)4 · log |R|).

Since degxl+1
(gi) ≤ degx(fI) (for i ≤ D) and there are degx(fI) + 1 many gis, total time

complexity is Õ(degx(fI)
3 · deg(Î)4 · log |R|).

Next, we explain Step 20 in Algorithm 5 a bit more.

48

Lemma 4.1.2 (Ideal factors in reduced form). Consider the tuple (U, f〈U〉(x̄l, x)) ∈ S, where

U := {ĥ0(x0), . . . , ĥl(x̄l)}, and consider a non-trivial factorization ĥi =: ĥi,1 · · · ĥi,m for some

ĥi ∈ U where each factor ĥi,j is monic with respect to xi.

Then we can compute the factor-related tuples (Uj , f〈Uj〉), for all j ∈ [m], in time Õ(m ·

degx(f〈U〉) · deg(〈U〉)4 · log |R|) (f〈Uj〉 will be in reduced form modulo 〈Uj〉).

Proof. We have U = {ĥ0(x̄0), . . . , ĥl(x̄l)}. Using Corollary 3.2.6 we get splits of U in non-

reduced from as: Uj = {ĥ0, . . . , ĥi−1, ĥi,j , ĥi+1, . . . , ĥl} for all j ∈ [m].

So we first successively reduce ĥi+t, for 1 ≤ t ≤ l− i, modulo the triangular ideal Îi+t−1,j

defined as Îi+t−1,j := 〈ĥ0, . . . , ĥi−1, ĥi,j , ĥi+1, . . . , ĥi+t−1〉. Time complexity of each of these

steps is bounded by Õ(deg(〈U〉)4 · log |R|) (Lemma 3.3.2). We replace each ĥi+t in Uj with

the new reduced ĥi+t to get reduced Uj .

Then f〈Uj〉 can be calculated by reducing each degx(f〈U〉) + 1 coefficients of f〈U〉 (with

respect to x) by the split ideal 〈Uj〉. Since coefficients (with respect to x) of f〈U〉 were already

reduced modulo 〈U〉, by Lemma 3.3.2 the computation time is bounded by (degx(f〈U〉) + 1) ·

Õ(deg(〈U〉)4 · log |R|) = Õ(degx(f〈U〉) · deg(〈U〉)4 · log |R|). Since j ∈ [m], total computation

time is Õ(m · degx(f〈U〉) · deg(〈U〉)4 · log |R|).

We now illustrate Algorithm 5 with the help of the following example.

Example 9. Let we are given f(x) = x4 − 8x3 + 7x2 and pk = 75.

In Steps 1-3 the algorithm computes f̃ := f mod 7 = x4 − x3 = x3(x − 1) and takes gcd

of f̃ with x7 − x which is x(x − 1). This gives h0(x0) = x2
0 − x0. Let monic R-lift of h0 is

defined as ĥ0 := x2
0 − x0 and Î0 = 〈ĥ0〉.

Substituting x → x0 + 7x in f(x) and reducing modulo Î0 (i.e., replacing x4
0, x3

0 and

x2
0 by x0) we get fI0(x0, x) := f(x0 + 7x) = 7 · [73x4 + 72x3(4x0 − 8) + 7x2(−18x0 + 7) −

(6x0)x] mod Î0 + 〈75〉. Then (Î0, fI0) is pushed into Stack S.

First iteration of the while loop: The algorithm pops (Î0, fI0) and at Step-7, gets α = 1

and g(x0, x) = 73x4 + 72x3(4x0 − 8) + 7x2(−18x0 + 7) − (6x0)x modulo Î0 := 〈x2
0 − x0〉. At

Step-8 we get g̃ = (−6x0)x mod I0 and g1 = −6x0 mod I0 where I0 := Î0 mod 7.

49

Step-9 computes that g1 is a zero-divisor and this splits ĥ0 = x2
0 − x0 into ĥ0,1 = x0 and

ĥ0,2 = x0 − 1 (at Step-10). Then Step-10 sends the control to Step-20.

At Step-20, the algorithm discards the current tuple (Î0, fI0) and push back into S two new

tuples (Î0,1, fI0,1) and (Î0,2, fI0,2) where Î0,1 := 〈ĥ0,1〉 = 〈x0〉 and Î0,2 := 〈ĥ0,2〉 = 〈x0 − 1〉 and

fI0,1, fI0,2 are as follows:

fI0,1 = fI0 mod Î0,1 + 〈75〉 = 73 · [7x4−8x3 +x2] mod Î0,1 + 〈75〉 (substituting x0 = 0) and,

fI0,2 = fI0 mod Î0,2 + 〈75〉 = 7 · [73x4−4 ·72x3−11 ·7x2−6x] mod Î0,1 + 〈75〉 (substituting

x0 = 1).

Second iteration of the while loop: The algorithm pops (Î0,1, fI0,1) and at Step-7 we get

α = 3 and g = 7x4 − 8x3 + x2 mod Î0,1. Step-8 gives g̃ = x2 − x3 and g1 = −1 (not a

zero-divisor).

So Step-12 recomputes g̃ = x3 − x2 = x2(x − 1) and takes gcd of g̃ with x7 − x which is

x(x− 1) = x2 − x (non-trivial gcd).

This leads us to Step-18 where we get ĥ1(x0, x1) = x2
1 − x1 and Î1 := Î0,1 + 〈ĥ1〉 =

〈x0, x
2
1 − x1〉. Step-18 then push (Î1, fI1) into S where fI1 = fI0,1(x0, x1 + 7x) mod Î1 + 〈75〉.

Expanding fI0,1(x0, x1 + 7x), replacing x4
1, x3

1 and x2
1 by x1 (reducing mod Î1), and reducing

modulo 〈75〉 we get,

fI1(x̄1, x) = 74 · (−22x1)x mod Î1 + 〈75〉. The control now moves to Step-4.

Third iteration of the while loop: The algorithm pops (Î1, fI1) where (at Step-7) we have

α = 4 and g = (−22x1)x. Thus at Step-8, g̃ = −x1 mod I1 and g1 = −1 where I1 := Î1 mod 7.

Step-9 tests g1 to be a zero-divisor and Step-10 sends control to Step-20 after splitting

ĥ1 = x1(x1 − 1) into ĥ1,1 := x1 and ĥ1,2 := x1 − 1.

At Step-20, the algorithm splits Î1 into Î1,1 := Î0,1 + 〈ĥ1,1〉 = 〈x0, x1〉 and Î1,2 := Î0,1 +

〈ĥ1,2〉 = 〈x0, x1 − 1〉 and computes fI1,1 = fI1 mod Î1,1 + 〈75〉 = 0 (substituting x1 = 0) and

fI1,2 = fI1 mod Î1,2 + 〈75〉 = 74(−22)x (substituting x1 = 1). It discards the current tuple

(Î1, fI1) and push tuples (Î1,1, fI1,1) and (Î1,2, fI1,2) into S.

Fourth iteration of the while loop: The algorithm pops (Î1,1, fI1,1) and adds Î1,1 to List

L (Step-6) as fI1,1(x̄1, x) is identically zero modulo Î1,1 + 〈75〉 (Î1,1 is a maximal split ideal).

Go to Step-4 now.

50

Fifth iteration of the while loop: The algorithm pops (Î1,2, fI1,2) and gets (at Step-7)

α = 4, g = −22x and (at Step-8) g̃ = −x and g1 = −1. After recomputing g̃ at Step-12, we

have g̃ = x. Thus at Step-18, we get gcd(g̃, x7 − x) = x. This yields ĥ2,1 := x2 and the split

ideal Î2,1 := Î1,2 + 〈ĥ2,1〉 = 〈x0, x1−1, x2〉. The algorithm (Step-18) then push (Î2,1, fI2,1) into

S where fI2,1 := fI1,2(x̄1, x2 + 7x) ≡ 0 mod Î2,1 + 〈75〉 (obtained by substituting x2 = 0 and

reducing mod 75). The control now moves to Step-4.

Sixth iteration of the while loop: The algorithm pops (Î2,1, fI2,1) and adds Î2,1 to List L

(Step-6) as fI2,1(x̄2, x) is identically zero modulo Î2,1 + 〈75〉 (Î2,1 is a maximal split ideal). Go

to Step-4 now.

Seventh iteration of the while loop: The algorithm pops (Î0,2, fI0,2) and gets (at Step-7)

α = 1, g = 73x4 − 4 · 72x3 − 11 · 7x2 − 6x and (at Step-8) g̃ = −6x and g1 = −6. After

recomputing g̃ at Step-12, we have g̃ = x. Thus at Step-18, we get gcd(g̃, x7 − x) = x. This

yields ĥ1,3 := x1 and the split ideal Î1,3 := Î0,2 +〈ĥ1,3〉 = 〈x0−1, x1〉. The algorithm (Step-18)

then push (Î1,3, fI1,3) into S where fI1,3 := fI0,2(x0, x1+7x) ≡ 72·[−11·72x2−6x] mod Î1,3+〈75〉

(obtained by substituting x1 = 0 and reducing mod 75). The control now moves to Step-4.

As the last few iterations of the loop are similar to seventh iteration we omit the details. In

eighth iteration we get Î2,2 := Î1,3 + 〈ĥ2,2 := x2〉. In ninth iteration we get Î3 := Î2,2 + 〈ĥ3 :=

x3〉 and then in tenth iteration we get Î4 := Î3 + 〈ĥ4 := x4〉 which is added to L as it is a

maximal split ideal.

Algorithm 5 returns L = {Î1,1, Î2,1, Î4} where Î1,1 = 〈x0, x1〉, Î2,1 = 〈x0, x1 − 1, x2〉 and

Î4 = 〈x0 − 1, x1, x2, x3, x4〉. The degree of each of these ideals (Definition 3.2.1) is one so

each of them have exactly one zero in their zero-set over R = Z/〈75〉.

We have (0, 0) ∈ ZR(Î1,1), so roots represented by Î1,1 are of the form 0 + 0 · 7 + 72x2 +

73x3 + 74x4 = 72x2 + 73x3 + 74x4 for x2, x3, x4 ∈ {0, . . . , 6}. Thus it represents 73 roots of

f mod 75 (also by Lemma 3.2.8).

We have (0, 1, 0) ∈ ZR(Î2,1), so roots represented by Î2,1 are of the form 0 + 1 · 7 + 0 · 72 +

73x3 + 74x4 = 7 + 73x3 + 74x4 for x3, x4 ∈ {0, . . . , 6}. Thus it represents 72 roots of f mod 75

(also by Lemma 3.2.8).

We have (1, 0, 0, 0, 0) ∈ ZR(Î4), so Î4 represents exactly one root of f mod 75 which is

51

1 + 0 · 7 + 0 · 72 + 0 · 73 + 0 · 74 = 1.

Thus root count of f = x4 − 8x3 + 7x2 mod 75 is 73 + 72 + 1 = 393.

One can verify the roots computed in Example 9 using the randomized root counting

algorithm of Chapter 2. We refer the reader to Section 4.1.3 to see the pictorial view of

working of Algorithm 5 on Example 9.

4.1.2 Correctness of the Algorithm

Our main goal is to prove the following result about partitioning of root-set.

Theorem 4.1.3 (Algorithm 5 partitions ZR(f)). Algorithm 5 yields the structure of the root-

set ZR(f) through a list data structure L (a collection of maximal split ideals Î1, . . . , În) which

partitions the zero-set ZR(f) =:
⊔
j∈[n] Sj, where Sj is the set of roots of f mod pk represented

by ZR(Îj).

The maximum number n of partitions, given by Theorem 4.1.3, is bounded by degree d

(in Example 9, d = 4 and n = 3). This will be proved in Section 4.1.3.

We defer the proof of Theorem 4.1.3 to the end of this subsection. For now, let us see the

properties of our algorithm which go in proving Theorem 4.1.3.

Given a polynomial g(x̄l) ∈ Fp[x̄l] and an element ā ∈ Flp, consider the projection

gā(xl) := g(ā, xl). Chinese remaindering (on decomposition given by Lemma 3.2.5) gives

us the following gcd property under projections: GCD taken at Step-18 of Algorithm 5 is

equivalent to univariate gcd over Fp under projections.

Lemma 4.1.4. Let w(x̄l), z(x̄l) ∈ Fp[x̄l] and Il−1 ⊆ Fp[x̄l−1] be the reduction modulo p of a

split ideal Î ⊆ R[x̄l−1]. Define h(x̄l) := GCD(w(x̄l), z(x̄l), Il−1) such that h is monic, with

respect to xl, and there exist u, v ∈ (Fp[x̄l−1]/Il−1)[xl] such that h = uw+vz mod Il−1. Then,

for all ā ∈ ZFp(Il−1): hā(xl) ∈ Fp[xl] equals gcd(wā(xl), zā(xl)) ∈ Fp[xl] up to a unit multiple

(in F∗p).

Proof. h(x̄l) is a monic polynomial mod Il−1, s.t., h|w and h|z (mod Il−1). Fix ā ∈ ZFp(Il−1).

Since hā(xl) 6≡ 0 mod p (∵ h is monic), restricting x̄l−1 to ā gives hā|wā and hā|zā, showing

hā| gcd(wā, zā), in Fp[xl].

52

Since there exists u, v ∈ (Fp[x̄l−1]/Il−1)[xl], such that, h = uw + vz. Restricting first l

co-ordinates to ā, we get hā = uāwā + vāzā. This equation implies gcd(wā, zā)|hā. Thus we

get hā(xl) = gcd(wā(xl), zā(xl)) up to a unit multiple.

Algorithm 5 calls Algorithm 4 to compute gcd of g̃(x̄l, x) and h̃l+1(x̄l, x) (with respect to

x) modulo I ⊆ Fp[x̄l] which in turn gives us a gcd satisfying the conditions of Lemma 4.1.4.

Thus the conclusion of Lemma 4.1.4 holds for Step-18 of Algorithm 5.

Prefix-free: Let Î ⊆ R[x̄i], Ĵ ⊆ R[x̄j] be two split ideals (say i ≤ j). Î and Ĵ are called

prefix-free iff @ ā = (a0, a1, . . . , ai) ∈ ZR(Î), b̄ = (b0, b1, . . . , bj) ∈ ZR(Ĵ) : al = bl ∀l ≤ i.

(Note that it may still happen that (a0, . . . , ai−1) = (b0, . . . , bi−1).)

Our next lemma shows an invariant about Algorithm 5. Essentially it says that Algorithm

5 push and pop only split ideals in and out of Stack S and all the ideals in S remain disjoint

(with respect to roots) all the time.

Lemma 4.1.5 (Stack contents). Stack S in Algorithm 5 satisfies following conditions at every

point:

1) Let (Îl, fIl) ∈ S such that pα||fIl mod Îl. Then the length of Îl, l + 1 ≤ min(α, k).

2) All ideals in S are split ideals.

3) Any two ideals in S are prefix-free.

Proof. Let us assume that ideals in S are split ideals (proved later), to show that their

lengths are at most min(α, k). Step 7 defines g via fIl as, fIl =: pαg(x̄l, x) mod Îl. Looking

at the fIl analogues pushed in Steps 3, 18, 20, one can easily deduce f(
∑

0≤i≤l xip
i+xpl+1) ≡

fIl(x̄l, x) mod Îl. We also have for all (a0, . . . , al) ∈ ZR(Îl), f(a0 + · · · + plal) ≡ 0 mod

pl+1 (condition 3 of Definition 3.2.1). Thus applying inverse chinese remaindering (on the

decomposition given by Lemma 3.2.5) we get f(
∑

0≤i≤l xip
i) ≡ 0 mod Îl + 〈pl+1〉.

Thus f
(∑

0≤i≤l xip
i
)
≡ pαg(x̄l, x) ≡ 0 mod Î + 〈pl+1〉. Since, p - g mod Î, we deduce

α ≥ l + 1. Moreover, by Step 6 we know that l < k throughout the algorithm.

Now we will prove invariants 2 and 3. There are three ways in which a new ideal is added

to stack S. We show below that the invariant is maintained in all three cases.

(Step 3) S is initialized with the ideal Î0 = 〈ĥ0(x0)〉 ⊆ R[x0] such that h0 ≡ ĥ0 mod

53

p := gcd(f(x0) mod p, xp0 − x0). The triangular ideal Î0 is a split ideal, because |ZFp(I0)| =

degx0
(h0) (where I0 := Î0 mod p) and its root are all the distinct roots of f(x0) mod p.

(Step 20) Ideal Îl is popped from S, and some generator ĥi of Îl splits. In this case, we

update S with the corresponding factors of any (Î , fI) ∈ S, whenever currently Î has ĥi.

Corollary 3.2.6 shows that the factors of Î are split ideals themselves, and their root-sets

partition that of Î (by Lemma 3.2.5). Thus these root-sets are prefix-free among themselves.

Moreover, they are prefix-free with any other ideal Ĵ appearing in S, because Î was prefix-free

with Ĵ .

(Step 18) Ideal Îl is popped and it grows to Îl+1 as follows: Let fIl =: pαg(x̄l, x) mod Îl,

where α ≥ l+1 (Invariant 1 on split ideal Îl), and g̃ = g mod p. Algorithm 5 computes hl+1 :=

gcd(g̃, xp−x) mod Il where Il := Îl mod p. Then it defines Îl+1 := Îl + 〈ĥl+1(x̄l, xl+1)〉 where

ĥl+1 is a ‘monic’ R-lift of hl+1. Then (Îl+1, fIl+1
) is added to S where fIl+1

:= fIl(x̄l, xl+1 +

px) mod Îl+1.

Clearly Îl+1 is a triangular ideal with monic generators: it follows first part of Definition

3.2.1. Since g̃(x̄l, xl+1) ≡ 0 mod Il + 〈hl+1〉, we have p|g(x̄l, xl+1 + px) mod Îl+1 + 〈ĥl+1〉.

Thus fIl+1
= pαg(x̄l, xl+1 + px) =: pα

′
g′ mod Îl+1 where α′ ≥ α + 1 ≥ l + 2. Substituting

fIl+1
= f(

∑
0≤i≤l+1 xip

i + xpl+2) we have f(
∑

0≤i≤l+1 xip
i) ≡ 0 mod Îl+1 + 〈pl+2〉. Thus Îl+1

follows third condition of Definition 3.2.1.

For the second condition for Îl+1 being a split ideal, fix a particular root ā ∈ ZFp(Il). Using

Lemma 4.1.4, the projection hl+1,ā(x) equals gcd(g̃ā(x), xp − x) (up to a unit multiple). By

Lemma 3.4.2, hl+1 is monic mod Il; giving deg(hl+1,ā) = degxl+1
(hl+1). Since hl+1,ā|(xp− x),

there are exactly degx(hl+1)-many al+1 ∈ Fp, such that hl+1,ā(al+1) ≡ 0 mod p. So, every

root ā ∈ ZFp(Il) can be extended to degx(hl+1)-many roots; giving |ZFp(Il+1)| = degx(hl+1) ·∏l
i=0 degxi(hi). This makes Îl+1 a split ideal.

Îl+1 remains prefix-free with any other ideal Ĵ of S, because roots of Îl+1 are extension

of roots of Îl (recall: Îl was prefix-free with Ĵ and it was popped out of S).

This proves all the invariants for the stack S.

Using the invariant, we prove that Algorithm 5 terminates on any input.

54

Lemma 4.1.6 (Algorithm 5 always terminates). Algorithm 5 finishes in finite number of

steps for any f ∈ Z[x] and a prime power pk.

Proof. We show that the number of iterations in Algorithm 5 are finite. Assume that all the

ideals which result in a dead-end are moved to a list D; say C is the disjoint union of all

ideals in S, L and D. Whenever a split ideal Î from S is moved to L or D, the underlying

roots (of Î) stop extending to the next precision. Togetherwith Lemma 4.1.5, we deduce that

in fact all the ideals in C are prefix-free and split ideals. Now by Step 18, and the rate of

growth of split ideals up to length l + 1 ≤ k, we get a lazy estimate of |C| ≤ min(dk, pk).

Let len(Î) denote the length of an ideal Î, it is bounded by k (Lemma 4.1.5). Notice that

factoring/growing an ideal increases
∑

Î∈C len(Î); and getting a maximal split ideal/ dead-

end increases |L|+ |D|. Thus every iteration of the algorithm strictly increases the quantity

(
∑

Î∈C len(Î))+ |L|+ |D|. By the estimate on |C|, all the terms in this quantity are bounded;

thus the number of iterations are finite.

The following lemma shows that if there is an ideal Îl ∈ S which represents a root r ∈

ZR(f) modulo pl+1 then at a later point of time there will be Îl+1 ∈ S representing r modulo

pl+2 (higher precision).

Lemma 4.1.7. Let Algorithm 5 pops an ideal Îl of length l + 1, not a maximal split ideal,

which represents a root r ∈ ZR(f) modulo pl+1 i.e., there is an āl := (a0, . . . , al) ∈ ZR(Îl)

such that r ≡ a0 + pa1 + · · ·+ plal mod pl+1. Then at a later point of time Algorithm 5 pops

an ideal Îl+1 (of length l+ 2) representing r modulo pl+2 i.e., there is a unique al+1 ∈ R such

that (āl, al+1) ∈ ZR(Îl+1) and r ≡ a0 + · · ·+ al+1p
l+1 mod pl+2.

Let us verify the claim of Lemma 4.1.5 on Example 9.

Example 10. Recall Example 9: f = x4 − 8x3 + 7x2 and R = Z/〈75〉. Consider a root

r = 350 = 0 + 7 · 1 + 72 · 0 + 73 · 1 + 74 · 0 of f mod 75.

At first iteration: Î0 = 〈x2
0 − x0〉 is popped and (0) ∈ ZR(Î0) represents r as 350 ≡ 0 mod 7.

At third iteration: Î1 = 〈x0, x
2
1 − x1〉 is popped and (0, 1) ∈ ZR(Î1) represents r as 350 ≡

0 + 7 · 1 mod 72.

55

At sixth iteration: Î2,1 = 〈x0, x1 − 1, x2〉 is popped and (0, 1, 0) ∈ ZR(Î2,1) represents r as

350 ≡ 0 + 7 · 1 + 72 · 0 mod 73. Now Î2,1 becomes a maximal split ideal so it represents r.

Proof of Lemma 4.1.7. We again consider three possible situations.

(Step 18) The ideal Îl grows to another split ideal Îl+1 as follows: Let fIl =: pαg(x̄l, x) mod

Îl, where p - g and α ≥ l + 1 (Lemma 4.1.5), and g̃ = g mod p. Algorithm 5 computes

hl+1 := gcd(g̃, xp−x) mod Il where Il := Îl mod p. Then it defines Îl+1 := Îl+〈ĥl+1(x̄l, xl+1)〉

where ĥl+1 is a ‘monic’ R-lift of hl+1.

Looking at the fI analogues pushed in Steps 3, 18, 20, one can deduce the invariant:

f
(∑

0≤i≤l xip
i + xpl+1

)
≡ fI(x̄l, x) mod Î. Substituting x̄l = āl we get f(a0 + · · · + plal +

pl+1x) ≡ pαg(āl, x) mod pk. Notice that pαg(āl, x) 6≡ 0 mod pk as α < k (∵ Îl is not maximal)

and p - g(āl, x). This is because leading coefficient of g mod p (with respect to x) is a unit

(due to check at Step-9).

Write r ∈ ZR(f) in the unique representation r = r0 + pr1 + · · · + pk−1rk−1 where each

ri ∈ {0, . . . , p − 1}. We know that
∑

0≤i≤l rip
i ≡

∑
0≤i≤l aip

i mod pl+1, thus (
∑

0≤i≤l aip
i −∑

0≤i≤l rip
i) = bl+1p

l+1 for some bl+1 ∈ R.

So f
(∑

0≤i≤l aip
i + xpl+1

)
≡ f

(∑
0≤i≤l rip

i + (bl+1 + x)pl+1
)
≡ pαg(āl, x) mod pk.

Let ãl+1 ∈ Fp such that bl+1 + ãl+1 = rl+1 mod p then g̃(āl, ãl+1) = 0 mod p (thus g̃(āl, x)

has degree at least 1). It implies hl+1(āl, ãl+1) = 0 mod p (due to Lemma 4.1.4). Since

ãl+1 is a root of hl+1(āl, x) of multiplicity 1, hence there is a unique al+1 ∈ R such that

ĥl+1(āl, al+1) = 0 mod pk and ãl+1 ≡ al+1 mod p (Hensel Lemma 2.2.2). Hence (āl, al+1) ∈

Îl+1.

(Step 16) Proof of the previous case shows that hl+1(ā, x) has degree at least 1, so Îl could

not result in a dead-end.

(Step 20) Ideal Îl factors into (smaller) split ideals. In this case, āl will be included in

exactly one of those ideals (Lemma 4.1.5). This ideal will be handled later in the algorithm

and will give an ideal Îl+1 with (āl, al+1) as root.

Now, we can prove Theorem 4.1.3.

56

Proof of Theorem 4.1.3. Lemma 4.1.5 states that at any point, Stack S only contains split

ideals which have disjoint root sets. Lemma 4.1.6 assures that Algorithm 5 terminates on

every input. So both these lemmas and Definition 3.2.7 of maximal split ideal makes it

clear that Algorithm 5 returns a list L containing maximal split ideals Î1, . . . , În, for n ∈ N.

Further, we show:

1) The root-set of Îj (1 ≤ j ≤ n) yields a subset Sj of ZR(f), and they are pairwise disjoint.

2) Given a root r ∈ ZR(f), there exists j such that r is represented by a root in ZR(Îj).

For the first part, root-sets for different maximal split ideals Îj are pairwise disjoint because

of Lemma 4.1.5. Each of these root-set yields a subset of the zero-set of f mod pk (follows

from the definition of maximal split ideal).

For the second part, let r be a root in ZR(f) which has unique representation r0 + · · ·+

rk−1p
k−1 where ri ∈ {0, . . . , p − 1}. Stack S was initialized by the R-lift Î0 of the ideal

I0 = 〈h0 := gcd(f(x0) mod p, xp0 − x0)〉; so r0 ∈ ZFp(I0), as f(r0) ≡ f(r) ≡ 0 mod p. Thus

there must be a unique r̂0 ∈ ZR(Î0) such that r̂0 ≡ r0 mod p (Hensel Lemma 2.2.2).

Assume that Î0 is not a maximal split ideal (otherwise we are done). Applying Lemma 4.1.7,

there must exist an Î1 whose root-set contains (r̂0, r̂1) such that r0 + pr1 ≡ r̂0 + pr̂1 mod p2.

Repeated applications of Lemma 4.1.7 show that we will keep getting split ideals of larger

lengths, partially representing r; finally, reaching a maximal split ideal (say Îj) fully repre-

senting r. In other words, if length of Îj is l + 1 then r ≡ r̂0 + · · ·+ r̂lp
l mod pl+1 and since

for all r̂l+1 ∈ R, r̂0 + · · · + r̂lp
l + r̂l+1p

l+1 ∈ ZR(f) so we have a unique r̂l+1 ∈ R such that

r = r̂0 + · · ·+ r̂lp
l + r̂l+1p

l+1.

We showed that each root r of f mod pk is represented by a unique maximal split ideal

Î, given by Algorithm 5, and they collectively represent exactly the roots of f modulo pk.

Hence, root-sets of ideals in L partition the zero-set ZR(f).

4.1.3 Time Complexity Analysis: Introducing the Roots-Tree RT

We know that Algorithm 5 takes finite amount of time and terminates (Lemma 4.1.6). To

show that it is efficient, note that the time complexity of the algorithm can be divided into

two parts.

57

1) Number of iterations taken by Algorithm 5, which is clearly bounded by the number

of updates on Stack S in the algorithm.

2) Time taken by the various algebraic operations in one iteration of the algorithm: re-

duction by a triangular ideal, valuation computation modulo a split ideal, testing if some

polynomial is a zerodivisor modulo a split ideal, performing repeated squaring modulo a

triangular ideal and computing gcd of two multi-variates modulo a split ideal.

For the purpose of bounding iterations, we define a data structure we call a roots-tree

(RT) which essentially keeps track of the updates on Stack S. We will map an element (Î , fI)

in stack S to a node NI := (Î , fI) in the roots-tree. Each push will create a new node in RT .

The nodes are never deleted from RT .

Construction of roots-tree (RT):

1. Denote the root of RT by N〈0〉 := (〈0〉, f〈0〉 := f(x)). Add a child node NI0 to the

root corresponding to the initialization of Stack S (Steps 1-3) by (Î0, fI0), where Î0 :=

〈ĥ0(x0)〉 (label the edge by ĥ0 in RT).

2. If, at some time t, the algorithm pops (Îl−1, fIl−1
) from S then the current node in RT

will be the leaf node NIl−1
= (Îl−1, fIl−1

). For the next three points, assume the current

node is NIl−1
= (Îl−1, fIl−1

).

3. If the current ideal Îl−1 grows to Îl := Îl−1 + 〈ĥl〉 (Step 18) and (Îl, fIl) is pushed in S,

then create a child of the current node NIl−1
in RT using an edge labelled ĥl (label the

node NIl := (Îl, fIl)).

4. (Step 16) If the algorithm reached dead-end (no update in stack S or list L), then add

a child labelled D to the current node NIl−1
. It indicates a dead-end at the current

branch. Analogously, if the algorithm finds a maximal split ideal (Step 6), we add a

child labelled M to the current node NIl−1
(indicating Îl−1 is a maximal split ideal).

5. (Step 20) Suppose, processing of the current split ideal Îl−1 of length-l results in fac-

toring each ideal Û in S, containing ĥi, to m split ideals. We describe the duplication

process for a particular Û (repeat it for each split ideal containing ĥi).

58

N〈0〉

NI0

ĥ0 = x2
0 − x0

Figure 4.1: Initialization

N〈0〉

NI0,1

ĥ0,1 = x0

NI0,2

ĥ0,2 = x0 − 1

N〈0〉

NI0,1

NI1

ĥ1 = x2
1 − x1

ĥ0,1

NI0,2

ĥ0,2

N〈0〉

NI0,1

NI1,1

M

ĥ1,1 = x1

NI1,2

ĥ1,2 = x1 − 1

ĥ0,1

NI0,2

ĥ0,2

After first iteration After second iteration After fourth iteration

N〈0〉

NI0,1

NI1,1

M

ĥ1,1

NI1,2

NI2,1

M

ĥ2,1 = x2

ĥ1,2

ĥ0,1

NI0,2

ĥ0,2

N〈0〉

NI0,1

NI1,1

M

ĥ1,1

NI1,2

NI2,1

M

ĥ2,1

ĥ1,2

ĥ0,1

NI0,2

NI1,3

ĥ1,3 = x1

ĥ0,2

N〈0〉

NI0,1

NI1,1

M

ĥ1,1

NI1,2

NI2,1

M

ĥ2,1

ĥ1,2

ĥ0,1

NI0,2

NI1,3

NI2,2

NI3

NI4

M

ĥ4 = x4

ĥ3 = x3

ĥ2,2 = x2

ĥ1,3

ĥ0,2

After sixth iteration After seventh iteration Final roots-tree RT

Figure 4.2: Construction of roots-tree RT for Example 9

59

Let Ûi−1 be the length-i restriction of Û . First, we move to the ancestor node NUi−1 :=

(Ûi−1, fUi−1) of NU . Make m copies of the sub-tree at Node NUi−1 , each of them at-

tached to NUi−1 by edges labelled with ĥi,1, . . . , ĥi,m respectively. The copy of each old

node N = (V̂ , fV), in sub-tree corresponding to ĥi,j , will be relabelled with (V̂j , fVj)

corresponding to the factor split ideal V̂j of V̂ and the newly computed fVj .

This step does not increase the height of the tree, though it increases the size.

For the rest of this section, RT denotes the final roots-tree created at the end of the above

process.

Example 11. Figure 4.1, 4.2 explains the construction of RT for Example 9. Figure 4.2

gives the final roots-tree RT constructed at the end of Algorithm 5 on Example 9.

Properties of RT : We state some easy properties of RT , which will help us in analyzing

the time complexity. These can be easily verified on Example 9 and Figure 4.2.

1) By construction, size of the roots-tree increases at every iteration. We never delete a

node or an edge (though relabelling might be done). So, the size of RT bounds the number

of iterations taken by Algorithm 5.

2) Consider a node NI =: (Î , fI) in RT such that its child is notM or D. Here fI(x̄l, x) ∈

R[x̄l, x], and let gI ∈ R[x̄l, x] be defined as in Algorithm 5 (Step-7), fI(x̄l, x) =: pαgI mod Î,

where pα || fI mod Î. Then gI mod I (I := Î + 〈p〉) is a non-constant polynomial, with

respect to x, over Fp.

3) For each node NI =: (Î , fI(x̄l, x)) and its child NJ =: (Ĵ , fJ(x̄l+1, x)), we have the

relation, fJ = fI(x̄l, xl+1 + px) mod Ĵ .

Bounding |RT |: To bound the size of RT , we define a parameter for a node N of RT , called

the degree of the node N and denoted by [N]. Intuitively, degree of a node NI := (Î , fI(x̄l, x))

is the modulo p degree of the ‘effective’ part (part free from p-powers) of fI times the number

of zeroes in ZR(Î) (which is deg(I)).

Definition 4.1.8 (Degree of a node in RT). The degree of a node in RT is defined as follows:

1. The degree of root node N〈0〉 is [N〈0〉] := d (= deg(f) mod p). The degree of leaves D

and M is defined to be 1.

60

2. If a node NI = (Î , fI) is parent of a leaf D or M then [NI] := deg(Î).

3. For any other node NI =: (Î , fI), where Î ⊆ R[x̄l] and fI ∈ R[x̄l, x], let fI =:

pαgI(x̄l, x) mod Î such that pα || fI mod Î. Then [NI] := degx(gI mod I) × deg(Î)

where I := Î mod p.

We show that the degree of a parent node bounds the sum of the degree of its children.

Lemma 4.1.9 (Degree distributes in RT). Let N be a node in roots-tree RT and des(N)

denote the set of all children of N . Then [N] ≥
∑

C∈des(N)[C].

So, the sum of the degrees of all nodes, at any level l, is at least the sum of the degrees of

all nodes at level l + 1.

Following example illustrates Definition 4.1.8 and Lemma 4.1.9.

Example 12. Recall Example 9 and the associated final roots-tree RT in Figure 4.2. The

degree of root node N〈0〉 is 4 as the degree of f = x4 − x3 − 7x3 + 7x2 is 4 modulo 7. Its

two children are NI0,1 = (Î0,1, fI0,1) and NI0,2 = (Î0,2, fI0,2). The degree of both the ideals

Î0,1 = 〈x0〉 and Î0,2 = 〈x0 − 1〉 is clearly 1.

Since fI0,1 = 7α · gI0,1(x0, x) = 73 · [7x4 − 8x3 + x2] mod Î0,1 + 〈75〉, we have [NI0,1] =

deg(Î0,1)×degx(gI0,1 mod Î0,1 + 〈7〉) = 3. Similarly since fI0,2 = 7 · [73x4−4 ·72x3−11 ·7x2−

6x] mod Î0,2 + 〈75〉 so [NI0,2] = 1× 1 = 1. Hence, [N〈0〉] = [NI0,1] + [NI0,2].

Further, NI0,1 has two child NI1,1 and NI1,2. The degree of both the ideals Î1,1 = 〈x0, x1〉

and Î1,2 = 〈x0, x1 − 1〉 is clearly 1. So by Definition 4.1.8 (point 2), [NI1,1] = 1. Since

fI1,2 = 74 ·(−22)x mod Î1,2 +〈75〉, we have [NI1,2] = 1. Thus [NI0,1] = 3 > 2 = [NI1,1]+[NI1,2].

Similarly, we can verify the claim of Lemma 4.1.9 for the degree of other nodes.

Proof of Lemma 4.1.9. Let N = (Î , fI), where Î = 〈ĥ0, . . . , ĥl〉 and fI(x̄l, x) ∈ R[x̄l, x] such

that fI = pαg(x̄l, x) mod Î. We also have I := 〈h0, . . . , hl〉 where hi := ĥi mod p. Define

g̃I ∈ Fp[x̄l, x] as g̃I := gI(x̄l, x) mod I. Assume α < k, otherwise we are done. So, g̃I is

non-trivial with respect to x; by Step 9 (failure) leading coefficient with respect to x of g̃I is

a unit modulo I so we get,

∀ā ∈ ZFp(I) : degx(g̃I mod I) = degx(g̃I(ā, x)) . (4.1)

61

Recall hl+1(x̄l, x) := gcd(g̃I(x̄l, x), xp − x). Let C be a child node of N in RT such that

C =: (ĴC , fJC), where ĴC =: Î + 〈ĥl,C(x̄l+1)〉 and fJC (x̄l+1, x) := fI(x̄l, xl+1 + px) mod ĴC

(by property 3 of RT). We also have hl,C := ĥl,C mod p and JC = I + 〈hl,C〉. This gives us

the factorization hl+1(x̄l, x) =
∏
C∈des(N) hl,C(x̄l, x) mod I (Step 20, and ‘duplication step’

when we constructed RT). Again,

∀b̄ ∈ ZFp(JC) : degx(g̃JC mod JC) = degx(g̃JC (b̄, x)) . (4.2)

If gJC =: fJC/p
v′ mod ĴC for some v′ ∈ N, by property 3 of RT , we have gJC = fI(x̄l, xl+1 +

px)/pv
′

mod ĴC .

By definition, [N] = deg(I) · degx(g̃I) and [C] = deg(JC) · degx(g̃JC) (∵ deg(Î) = deg(I)).

Since deg(JC) = deg(I) · degx(hl,C(x̄l, x)), the lemma statement is equivalent to showing,

degx(g̃I) ≥
∑

C∈des(N)

degx(hl,C(x̄l, x)) · degx(g̃JC) . (4.3)

Continuing with the notation of a particular child C, fix an ā ∈ ZFp(I). Since ĴC is a split

ideal so by Corollary 3.2.3, hl,C(ā, x) (of degree d′C) can be written as
∏d′C
i=1(x−ci), where each

ci ∈ Fp and are distinct. Then each ci is also a root of g̃I(ā, x), say with multiplicity mi ∈ N.

So, there exists G(x) ∈ Fp[x] (coprime to x−ci), such that, g̃I(ā, x) ≡ (x−ci)mi ·G(x) mod p.

Lifting this equation mod pk, there exists G1(x) ∈ R[x], of degree less than mi, and a unique

‘monic’ lift G2(x) ∈ R[x] of G(x) (Hensel lemma (2.2.2)) : gI(ā, x) ≡ ((x− ci)mi + pG1(x)) ·

G2(x) mod pk . Substituting x→ ci + px, we get, gI(ā, ci + px) ≡ ((px)mi + pG1(ci + px)) ·

G2(ci + px) mod pk .

Let b̄i = (ā, ci) ∈ ZFp(JC). We know that g̃JC (b̄i, x) = fI(ā, ci + px)/pv
′

mod p is non-

trivial (otherwise [C] = 1 as it will be parent of D or M). This implies that, ((px)mi +

pG1(ci + px))/pv
′

mod p is a nonzero polynomial of degree at most mi (∵ G2(ci + px) ≡

G2(ci) 6≡ 0 mod p so p - G2(ci)).

Since G2(ci + px) 6≡ 0 mod p is a unit, degx(g̃JC (b̄i, x)) = degx(g̃JC) ≤ mi (Eqn. 4.2).

Summing up over all the roots ci of g̃I(ā, x),

d′C∑
i=1

degx(g̃JC (b̄i, x)) = d′C · degx(g̃JC) ≤
d′C∑
i=1

mi =: dC(gI) .

62

Summing over all children C ∈ des(N) (using Eqn. 4.1, factorization of hl+1 & distinctness

of Fp-roots), we deduce,

∑
C∈des(N)

degx(hl,C) degx(g̃JC) ≤
∑
C

dC(gI) ≤ degx(g̃I(ā, x)) = degx(g̃I) .

This proves Eqn. 4.3, and hence the lemma.

Define the degree of list L as, deg(L) := ΣÎ∈L deg(Î).

Lemma 4.1.10 (Bounding |RT |, deg(Î), deg(L), |L|). Let RT be the roots-tree constructed

from the execution of Algorithm 5. The number of leaves of RT , respectively deg(L), is at

most d = deg(f(x)). Also, the size |RT | of the roots-tree (hence, the number of iterations by

Algorithm 5) is bounded by dk.

Proof. Applying Lemma 4.1.9 inductively, sum of the degrees of nodes at any level is bounded

by the degree d of the root node. In particular,

1) We can extend every leaf to bring it to the last level (create a chain of nodes of same

degree) without changing the degree distribution property. So, deg(L) = ΣÎ∈L deg(Î) ≤ d.

Since the number of leaves is ≥ |L| (leaves are either D or M), we get |L| ≤ d.

2) For any split ideal Î in stack S, deg Î ≤ d.

3) Since the depth of the roots-tree is at most k, |RT | ≤ kd.

Lemma 4.1.11 (Computation cost at a node). Computation cost at each node of RT (time

taken by Algorithm 5 in every iteration of the while loop) is bounded by poly(d, k log p).

Proof. During an iteration, the major computations performed by the algorithm are— testing

for zerodivisors (Step 9), computing modular gcd (Step 13), computing reduced fI (Steps

3, 18), performing reduction for repeated squaring (Step 12), and factoring ideals (Step 20).

These operations are described by Lemmas 3.3.2, 3.3.3, 4.1.1, 3.4.1 and 3.4.2. All of them

take time poly(d, k log p, deg(Î)), where Î is the concerned triangular ideal.

For any split ideal Î (or its reduction I), we know that deg(Î) ≤ d (Lemma 4.1.10). So,

Steps 3, 9, 13, 18, 20 take time poly(d, k log p). Step 12 to compute repeated squaring modulo

63

I + 〈g̃〉 takes time poly(degx(g̃),deg(I), k log p) (using Lemma 3.3.2). Since deg(I) ≤ d, and

degree of g̃ is at most d, so Step 12 also takes poly(d, k log p) time.

Hence the computation cost at each node is poly(d, k log p).

Proof of Theorem 4.0.1. The definition of roots-tree shows that the number of leaves upper

bound the number of all maximal split ideals in L. Lemmas 4.1.10 and 4.1.11 show that

the time complexity of Algorithm 5 is bounded by poly(d, k log p) (by bounding both number

of iterations and the cost of computation at each iteration). Using Lemma 3.2.8 on the

output of Algorithm 5, we get the exact count on the number of roots of f mod pk in time

poly(d, k log p).

4.2 Summary

We saw the de-randomization of the algorithm of [BLQ13] via the algebraic tool split ideals.

The algorithm for deterministic root-counting goes similar to randomized root-counting with

extra work on the implementation with the help of ideals. These ideals will further help in

solving more problems deterministically in later chapters.

Chapter 5

Counting Unramified Factors

modulo Prime Powers

In this chapter, we extend the ideas for counting roots to count all the basic-irreducible

factors of a given f ∈ Z[x] modulo pk. Recall that a basic-irreducible factor of f mod pk is an

irreducible factor that remains irreducible modulo p. This can be seen as the first significant

move towards deterministically counting all the irreducible factors of f mod pk.

Theorem 5.0.1 (Factor count). Let p be a prime, k ∈ N and f(x) ∈ Z[x]. Then all the

basic-irreducible factors of f mod pk can be counted in deterministic poly(deg f, k log p)-time.

We achieve this by extending the idea of counting roots to more general p-adic integers.

Essentially, we efficiently count all the roots of f(x) in OK/〈pk〉, where OK is the ring of

integers of a p-adic unramified extension K/Qp.

Corollary 5.0.2. Let K/Qp be an unramified p-adic extension of degree ∆ and OK be its

ring of integers. Given f(x) ∈ Z[x], ∆, and prime power pk (in binary) as input, we can

count all the roots of f , in OK/〈pk〉, in deterministic poly(deg(f), k log p,∆)-time.

5.1 Counting Factors with Strong Irreducibility

A polynomial f can be factored mod pk if it has two basic-irreducible factors of different

degree (using distinct degree factorization [vzGP01] and Hensel Lemma 2.2.2). Further, if

65

66

two basic-irreducible factors appear with different exponents/multiplicities, then again f can

be factored (using formal derivatives [vzGP01] and Hensel Lemma 2.2.2). So, for factoring

f mod pk, we can assume f ≡ (ϕ1 . . . ϕt)
e + ph mod pk, where every ϕi ∈ (Z/〈pk〉)[x] is a

basic-irreducible polynomial of a fixed degree b. Also, d := deg(f) = bte. Let us fix this

assumption for this section, unless stated explicitly.

A basic-irreducible factor of f mod pk has the form ϕi + pwi(x) mod pk, for i ∈ [t]

(Lemma 2.2.3). If b = 1, counting basic-irreducible factors of f is equivalent to counting

roots of f . When b > 1, we prove a simple generalization of this idea; it is enough to count

all the roots of f in the ring extension Z[y]/〈pk, ϕ(y)〉, where ϕ(y) is an irreducible mod p of

degree b. Recall that these rings are called Galois rings denoted by G(pk, b) (unique, for fixed

k and b, up to isomorphism).

5.1.1 Reduction to Root Counting in G(pk, b)

By Lemma 2.2.3, any basic-irreducible factor of f mod pk is a factor of a unique (ϕi
e+pwi(x));

and ϕi are coprime mod p. So in this subsection, for simplicity of exposition, we will assume

that f(x) equals ϕe mod p (ϕ is a monic degree-b irreducible mod p).

Define G := G(pk, b). Let y0, y1, . . . , yb−1 be the roots of ϕ(x) in G (Proposition 1).

Without loss of generality, take y := y0, yi ≡ yp
i

mod p, for all i ∈ {0, . . . , b − 1} (Frobenius

conjugates in Fp).

The lemma below associates a root of f , in G, to a unique basic-irreducible factor of f in

(Z/〈pk〉)[x].

Lemma 5.1.1 (Root to factor). Let r(y) ∈ G be a root of f(x). Then

h(x) :=

b−1∏
i=0

(x− r(yi))

is the unique basic-irreducible factor of f having root r(y). We say that h(x) is the basic-

irreducible factor associated to root r(y).

Proof. The coefficients of h are symmetric polynomials in r(yi) (over 0 ≤ i < b). Since the

automorphism ψ1 : y → y1 of G (as defined in Proposition 2) permutes r(yi)’s (∵ it permutes

67

yi’s), it fixes all the coefficients of h. From Proposition 2, all these coefficients are then in

Z/〈pk〉. Hence, h ∈ (Z/〈pk〉)[x].

If r(y) is a root of another polynomial h′ in (Z/〈pk〉)[x], then r(yi)’s are also roots of h′

(applying automorphisms ψi of G). Since these roots are coprime mod p, we actually get:

h|h′. Thus h is the unique monic irreducible factor of f containing r(y).

Looking mod p, the r(yi)’s are a permutation of the roots of ϕ(x), so h(x) ≡ ϕ(x) mod p.

Hence, h(x) is the unique monic basic-irreducible factor of f having root r(y).

Following is the reduction to counting all roots of f in G.

Theorem 5.1.2 (Factor to root). Any degree-b basic-irreducible factor of f mod pk has ex-

actly b roots in G. Conversely, if f has a root r(y) ∈ G, then it must be a root of a unique

degree-b basic-irreducible factor of f mod pk.

So, the number of degree-b basic-irreducible factors of f mod pk is exactly the number of

roots, of f in G, divided by the degree b.

Proof. By Lemma 5.1.1 (and uniqueness of Galois rings), for every root r(y) ∈ G of f , we

can associate a unique basic-irreducible factor of f(x).

Conversely, let h(x) =: ϕ(x) + pw(x) be a basic-irreducible factor of f(x). It splits

completely in G (as, h(x) ≡ ϕ mod p; first factor in G/〈p〉 and then Hensel lift to G). So, h

has exactly b roots in G, each of them is also a root of f in G.

Hence the theorem statement follows.

Remark. This ‘irreducible factor vs root’ correspondence, for f mod pk, breaks down if

G is not a Galois ring.

5.1.2 Counting Roots in G(pk, b)

In this section, we show how to count the roots of f ≡ (ϕ1ϕ2 . . . ϕt)
e + ph(x) mod pk in

G(pk, b). Since G := G(pk, b) is a Galois ring, so G/〈p〉 = Fpb =: Fq. (Recall: R = Z/〈pk〉.)

Split ideals and zero-sets in the Galois ring: First, we will modify the definition of

zero-sets (Section 3.1) to include zeros of f in G. A G-zero-set of f(x) ∈ R[x] will be defined

68

as ZG(f) := {r ∈ G | f(r) ≡ 0 mod pk}. Similarly, for an ideal I ⊆ Fp[x̄l], its Fq-zero-set is

defined as ZFq(I) := {ā = (a0, . . . , al) ∈ (Fq)l+1 | g(ā) ≡ 0 mod pk,∀g ∈ I}. Similarly, for

Î ⊆ R[x̄l], ZG(Î) := {ā = (â0, . . . , âl) ∈ (G)l+1 | g(ā) ≡ 0 mod pk,∀g ∈ Î}.

The definition of triangular ideals, split ideals and maximal split ideals will remain exactly

same (generators defined over R, Section 3.2), except that in the third condition for split

ideals, zero-set will be over G instead of R. They can now be seen as storing potential roots

of f(x) in G (or, storing potential basic irreducible factors of f mod pk). The reason is, a

root r(y) ∈ G of f mod pk can be viewed ‘uniquely’ as, r(y) = r0(y) + pr1(y) + p2r2(y) +

. . .+pk−1rk−1(y), where each ri(y) ∈ G such that degy(ri) < degy(ϕ(y)) and coefficients with

respect to y are in {0, . . . , p − 1}. So, the decomposition of formal variable x =: x0 + px1 +

p2x2 + . . .+ pk−1xk−1, now represents candidates for r0, r1, and so on, over G.

A split ideal Îl ⊆ R[x̄l], defined as Îl := 〈ĥ0(x0), . . . , ĥl(x̄l)〉, now implicitly stores the

candidates as follows: for (r0) there exists (r̂0) ∈ ZR(ĥ0): r0 ≡ r̂0 mod p, for (r0, r1) there

exists (r̂0, r̂1) ∈ ZR(ĥ1): r0+pr1 ≡ r̂0+pr̂1 mod p2, and so on. These, in turn, give candidates

for basic-irreducible factors of f mod pl
′

(some l′ ≤ k).

In particular, when Îl is a maximal split ideal, an (r̂0, . . . , r̂l) implicitly denote a basic-

irreducible factor of f mod pk. The number of such factors is deg(Îl) · qk−l−1/b (thanks to

Theorem 5.1.2 and Lemma 3.2.8).

Split ideals follow all the properties given in Section 3.2, just by replacing the fact that

roots belong to G and not R.

Description of the modified algorithm: Algorithm 5, to count roots in R, extends

directly to count roots in G. The algorithm is exactly same except one change: to compute

GCD (Steps 3 and 13), we now use the Frobenius polynomial xq−x instead of the prior xp−x

(GCD computation implicitly stores the candidate roots truncated modulo p, they are in Fq

now).

So the algorithm works as follows:

1. It gets f(x) ≡ (ϕ1 . . . ϕt)
e+pw(x) mod pk as input, computes gcd h0(x) := gcd(f(x), xq−

x) over Fp. Since xq − x, over Fp, is the product of all irreducible factors of degree di-

viding b, we deduce: h0(x) = ϕ1 . . . ϕt mod p; and define the first split ideal Î0 := 〈ĥ0〉

69

where ĥ0 is a ‘monic’ lift of h0 over R. (Note: We do not have access to ϕi’s themselves.)

Remark. The length 1 split ideal stores all the roots of f in G/〈p〉, or all the basic

irreducible factors of f mod p; as h0(x) = ϕ1 . . . ϕt. Also, its degree is tb, which when

divided by b, gives the count of the basic-irreducible factors of f mod p.

2. The algorithm then successively looks for the next precision candidates. It computes

hl by taking gcd with xq − x, and adds its monic lift ĥl ⊆ R[x̄l] to the previous ideal

Îl−1 ⊆ R[x̄l] like before.

3. All the supporting algebraic algorithms and lemmas (given in Sections 3.3, 3.4 and

4.1.1) work the same as before; since they are being passed the same parameters— a

split ideal, or a triangular ideal, or a polynomial over R.

Thus a similar proof of correctness and time complexity can be given as before.

Proof of Theorem 5.0.1. Consider a univariate f(x) mod pk. As discussed in the beginning

of this section, f mod pk can be efficiently factorized as f ≡
∏m
i=1 fi mod pk, where each

fi(x) is a power of a product of degree-bi irreducible polynomials mod p (i.e., of the form

≡ (ϕ1ϕ2 . . . ϕt)
e + ph(x), where ϕj is a degree-bi irreducible mod p).

On each such fi mod pk, we use Algorithm 5 with the new Frobenius polynomial (xqi −x)

(qi = pbi), in Steps 3 and 18, as discussed above. Let the final list output, for fi mod pk, be

Li =: {Î1(l1, D1), . . . , În(ln, Dn)}. Thus we get the count on the G(pk, bi)-roots of fi mod pk

as Σn
j=1Djq

k−lj
i (Lemma 3.2.8). Using Theorem 5.1.2, the number of the degree-bi basic-

irreducible factors of f mod pk is Bk(fi) := (1/bi)× Σn
j=1Djq

k−lj
i .

Using Lemma 2.2.3, we get the count on the basic-irreducible factors of f mod pk as,

Bk(f) = Σm
i=1Bk(fi).

For the time complexity, only difference is the repeated-squaring to compute the reduced

form of polynomial xqi − x (Steps 3, 12), it will take bi log p operations instead of log p oper-

ations. But bi ≤ d, so the algorithm runs in time poly(d, k log p) (and remains deterministic).

Now, we can prove Corollary 5.0.2.

70

Proof of Corollary 5.0.2. The proof of Corollary 5.0.2 comes with a slight change in the proof

of Theorem 5.0.1.

We are given an integral univariate f(x) ∈ Z[x], a degree of extension ∆ and a prime

power pk (in binary) and we are required to count all the roots of f in OK/〈pk〉 for some

unknown p-adic extension K/Qp of degree ∆.

As in the proof of Theorem 5.0.1, assume f ≡
∏m
i=1 fi mod pk, where each fi(x) is a power

of a product of degree-bi irreducible polynomials mod p (i.e., of the form ≡ (ϕ1ϕ2 . . . ϕt)
e +

ph(x), where ϕj is a degree-bi irreducible mod p).

Note that, for an unramified extension K/Qp, OK/〈pk〉 ∼= G(pk,∆) and so OK/〈p〉 ∼= Fq

where q = p∆. Hence any root of f(x) in OK/〈pk〉 corresponds to a unique fi (using Lemma

2.2.3) and so finding roots of each fi in OK/〈pk〉 individually is enough.

Any fi can have a root in G(pk,∆) only if fi ≡ (ϕ1ϕ2 . . . ϕt)
e mod p has a root in Fq.

Since xq − x is product of all irreducible factors (over Fp) of degrees dividing ∆ hence, fi has

a root in OK/〈pk〉 only when bi|∆.

So, we can discard in advance those fis for which bi - ∆. To find roots of fi in G(pk,∆)

we follow the root-counting algorithm as in proof of Theorem 5.0.1 (Sec. 5.1.2) with just one

difference: each time GCD is taken with forbenius polynomial xq−x instead of xqi−x (recall

q = p∆). This is the main difference with the proof of Theorem 5.0.1 where root-counting

was done in G(pk, bi) for fi opposite to root-counting in same Galois-ring G(pk,∆) here for

all fi (s.t. bi - ∆). Collectively the sum of the count on the roots of all fis, for i ∈ [m], gives

exactly the count on the roots of f in OK/〈pk〉.

For the time complexity, only difference with the proof of Theorem 5.0.1 is the repeated-

squaring to compute the reduced form of polynomial xq − x, it will take log q = ∆ log p

operations, so the algorithm runs in time poly(d, k log p,∆) (and remains deterministic).

71

5.2 Discussions

In this chapter we saw the application of split ideals in efficient deterministic counting of

(1) basic irreducible factors of f(x) mod pk and, (2) roots of f(x) over unramified extension

of p-adic integers mod pk. The definition of split ideals naturally extends to count roots in

higher extensions. We will further see in next chapter that the parameters of split ideals like

their length and degree and even their structural evolution during their construction quite

naturally provide us crucial information to compute rational form of an important generating

function in arithmetic geometry– Igusa local zeta function. Similar to the techniques of

extended Hensel’s lemma, we will connect the roots of f ∈ Z[x] modulo pk for large enough

k to p-adic roots of f to give an elementary proof of convergence of Igusa zeta function for

univariate polynomials and to get them in rational function form.

Chapter 6

Computing Igusa’s Local Zeta

Function and p-adic Applications

In this chapter, we will see two applications of split ideals– (1) Computing Igusa’s local zeta

function associated to univariate polynomials and, (2) counting all the p-adic (Zp) roots with

multiplicity of a univariate polynomial. The former has appeared in [DS20] and the latter

application is a direct consequence of the new methods used in [DS20] (unmentioned there).

We are interested in computing rational function form of Igusa’s local zeta function as-

sociated to a univariate polynomial f ∈ Z[x] and prime p. Essentially, the function encodes

root count of f modulo prime powers as evident from the definition of the equivalent Poincaré

series P (t) :=
∑∞

i=0Ni(f) · (p−nt)i where Ni(f) is the root count of f mod pi (N0(f) := 1)

and t ∈ C with |t| < 1. We will compute the Igusa zeta function for f by finding polynomials

A(t) and B(t) such that P (t) =: A(t)/B(t).

Theorem 6.0.1. We are given a univariate integral polynomial f(x) ∈ Z[x] of degree d, with

coefficients magnitude bounded by C ∈ N, and a prime p. Then, we compute Poincaré series

P (t) = A(t)/B(t), associated with f and p, in deterministic poly(d, logC + log p) time.

The degree of the integral polynomial A(t) is Õ(d2 logC) and that of B(t) is O(d).

We achieve the rational form of P (t) by getting an explicit formula for the number of

zeros Nk(f), of f mod pk, which sheds new light on the properties of the function Nk(·).

73

74

Eventually, it gives an elementary proof of the rationality of the Poincaré series P (t).

Corollary 6.0.2. Let k be large enough, namely, k ≥ k0 := O(d2(logC + log d)). Then, we

give a closed form expression for Nk(f) (in Theorem 6.4.1).

Interestingly, if f has non-zero discriminant, then Nk(f) is constant (independent of k)

for all k ≥ k0.

The new insight on the properties of the function Nk(·) has more consequences. As a

corollary of Theorem 6.0.1 we give the first deterministic polynomial-time algorithm to count

all the Zp-roots of f .

Corollary 6.0.3. We are given a univariate integral polynomial f(x) ∈ Z[x] of degree d, with

coefficients magnitude bounded by C ∈ N, and a prime p. Then, we can count all the p-adic

integral roots (in Zp) of f in deterministic poly(d, logC + log p)-time.

6.1 Preliminaries

Recall the definition of representatives and representative roots from Chapter 2. Throughout

the chapter, we denote them using bold small letters, like a,b etc. We denote the length of a

representative a by |a|, so if a := a0 + pa1 + . . .+ pl−1al−1 + pl∗ then its length is |a| = l.

Also recall the definition of a maximal split ideal I from Chapter 3. Essentially, I is

encoding some representative-roots of f mod pk in the form of common roots of its generators.

If (a0, . . . , al) is a common zero of the generators then a0 + pa1 + . . .+ plal + pl+1∗ follows all

the conditions to be a representative-root. So we restate some results of the previous chapters

in the following Lemma 6.1.1 and Theorem 6.1.2 in slightly modified form to be used in later

sections of this chapter.

Lemma 6.1.1 (Lemma 3.2.5 & 3.2.8). The length of an MSI I is the length of each representative-

root encoded by it and the degree of I is the count on them. Thus, we get the count on the

roots of f mod pk encoded by I as
∏l
i=0 degxi(hi)× p

k−l−1.

We restate the result of which returns all the representative-roots, in MSI form, in deter-

ministic polynomial time.

75

Theorem 6.1.2. (Compute Nk(f)) In deterministic poly(|f |, k log p)-time one gets the max-

imal split ideals which collectively contain exactly the representative-roots of a univariate poly-

nomial f(x) ∈ Z[x] modulo prime-power pk.

Moreover, using Lemma 6.1.1 we can count them, and all the roots of f mod pk, in deter-

ministic poly-time.

6.1.1 Some Definitions and Notations related to f

We are given an integral univariate polynomial f(x) ∈ Z[x] of degree d with coefficients

magnitude at most C ∈ N, and a prime p. Then, f can also be thought of as an element of

Zp[x] (as Z ⊆ Zp).

Now we define the factors of f in Zp[x] as follows (note: we do not require f to be monic).

Definition 6.1.3. Let the p-adic integral factorization of f , into coprime irreducible factors,

be

f(x) =:
∏
i∈[n]

(x− αi)ei ·
m∏
j=1

gj(x)tj

where each αi is a Zp-root of f with multiplicity ei. Each gj(x) ∈ Zp[x] has multiplicity tj; it

is irreducible over Zp and has no Zp-root.

For example, over Z2, f = 2x2 + 3x+ 1 = (x+ 1) · (2x+ 1) has n = m = 1.

Definition 6.1.4. For each i ∈ [n], we define fi(x) ∈ Zp[x], called αi-free part of f , as

fi(x) := f(x)/(x− αi)ei. We denote valuation vp(fi(αi)) as νi, for all i ∈ [n].

Definition 6.1.5. Define Rad(f) := (
∏n
i=1(x− αi)) · (

∏m
j=1 gj(x)). Analogously, the radical

of fi, for each i ∈ [n], is defined as Rad(fi) := Rad(f)/(x− αi).

Definition 6.1.6. We denote by ∆, the valuation with respect to p of the discriminant of

radical of f , i.e, ∆ := vp(D(Rad(f))).

We see that ∆ must be finite, since roots of Rad(f) are distinct. The following fact is

easily established by the definition of discriminant and the fact that α1, . . . , αn are also roots

of Rad(f).

76

Fact 1. For i 6= j ∈ [n], we have vp(αi − αj) ≤ ∆/2 <∞.

For our algorithm, ∆ will be crucial in informing us about the behavior of the roots of

f mod pk.

Properties of Discriminant:

1. Over Zp, if u(x)|w(x) then D(u) | D(w) and vp(D(u)) ≤ vp(D(w)).

2. Discriminant of a linear polynomial is defined to be 1.

3. If w(x) = (x − a) · u(x) then by the definition of discriminant, it is clear that D(w) =

D(u) · u(a)2.

4. Discriminant D(h) of a degree-l univariate polynomial h(x) := hlx
l+ . . .+h1x+h0, over

Zp, is also a multivariate polynomial over Zp in the coefficients h0, . . . , hl (see [LN94,

Chapter 1]). Moreover, it is computable in time polynomial in size of given h using

determinant of a Sylvester matrix [vzGG13, Chapter 11]).

6.2 Interplay of Zp-Roots and
(
Z/〈pk〉

)
-Roots

In this section we will establish a connection between
(
Z/〈pk〉

)
-roots and Zp-roots of the given

f , when k is sufficiently large i.e, k > d∆ (see Section 6.1.1 for the related notation).

Recall that α1, . . . , αn are the distinct Zp-roots of f (Definition 6.1.3). The following

claim establishes a notion of ‘closeness’ of any ᾱ ∈ Zp to an αj . Later we will apply this to a

representative-root ᾱ.

Claim 6.2.1 (Close to a root). For some j ∈ [n], ᾱ ∈ Zp, if vp(ᾱ − αj) > ∆/2, then

vp(ᾱ− αi) = vp(αj − αi) ≤ ∆/2, for all i 6= j, i ∈ [n].

Proof. vp(ᾱ − αi) = vp(ᾱ − αj + αj − αi). Since vp(ᾱ − αj) > ∆/2 and vp(αj − αi) ≤ ∆/2

(by Fact 1), we deduce, vp(ᾱ− αi) = min{vp(ᾱ− αj), vp(αj − αi)} = vp(αj − αi) ≤ ∆/2.

The following lemma says that an irreducible can not take values with ever increasing

valuation.

77

Lemma 6.2.2 (Valuation of an irreducible). Let h(x) ∈ Zp[x] be a polynomial with no Zp-

root, and discriminant D(h) 6= 0. Then, for any ᾱ ∈ Zp , vp(h(ᾱ)) ≤ vp(D(h)) .

Proof. We give the proof by contradiction i.e, we show that if vp(h(ᾱ)) > vp(D(h)), then h(x)

has a root in Zp.

Define vp(D(h)) =: d(h). Let ᾱ ∈ Zp such that h(ᾱ) ≡ 0 mod pδ, for δ > d(h). Then we

write, h(x) = (x− ᾱ) · h1(x) + pδ · h2(x). The two things to note here are:

(1). D(h) ≡ D(h mod pδ) mod pδ by discriminant’s Property (4) in Section 6.1.1. Also,

D(h) 6= 0 is given.

(2). Let h′(x) be the first derivative of h(x) and let i := vp(h
′(ᾱ)). Then, we claim that

δ > d(h) ≥ 2i.

Consider h′(x) = h1(x)+(x− ᾱ)h′1(x)+pδh′2(x). So, h′(ᾱ) ≡ h1(ᾱ) mod pδ. By Property

(3) (Section 6.1.1) of discriminants, D(h) ≡ D((x − ᾱ) · h1(x)) ≡ D(h1) · h1(ᾱ)2 ≡ D(h1) ·

h′(ᾱ)2 mod pδ. Togetherwith D(h) 6= 0 mod pδ, we deduce, 2i ≤ d(h) < δ.

Now, we show that the root ᾱ of h mod pδ lifts to roots of h mod pδ+j , for all j ∈ Z+. This

is due to Hensel’s Lemma (see [vzGG13, Chapter 15]); for completeness we give the proof.

By Taylor expansion, we have h(ᾱ+pδ−ix) = h(ᾱ)+h′(ᾱ)·pδ−ix+h′′(ᾱ)·p2(δ−i)x2/2!+· · · .

Note that there exists a unique solution x0 ≡ (−h(ᾱ)/h′(ᾱ)pδ−i) mod p : h(ᾱ+ pδ−ix0) ≡

0 mod pδ+1. This follows from the Taylor expansion and since 2(δ − i) > δ.

So, ᾱ − pδ−i(h(ᾱ)/h′(ᾱ)pδ−i) mod pδ+1 is a lift, of ᾱ mod pδ. By a similar reasoning, it

can be lifted further to arbitrarily high powers pδ+j . Thus, proving that h(x) has a Zp-root;

which is a contradiction.

The following lemma is perhaps the most important one. It associates every root ᾱ of

f(x) mod pk to a unique Zp-root of f . Recall the notation from Section 6.1.1.

Lemma 6.2.3 (Unique association). Let k > d(∆ + 1) and ᾱ ∈ Zp be a root of f(x) mod pk.

There exists a unique αi such that vp(ᾱ − αi) > ∆ + 1 and thus, vp(ᾱ − αi) > vp(αi − αj),

for all j 6= i, j ∈ [n].

Proof. Let us first prove that there exists some i ∈ [n], given ᾱ, such that vp(ᾱ−αi) > ∆ + 1.

For the sake of contradiction, assume that vp(ᾱ − αi) ≤ ∆ + 1 for all i ∈ [n]. Then, by

78

Definition 6.1.3, vp(f(ᾱ)) =
∑n

i=1 ei · vp(ᾱ− αi) +
∑m

j=1 tj · vp(gj(ᾱ)) ≤ (∆ + 1) ·
∑n

i=1 ei +∑m
j=1 tj · vp(gj(ᾱ)) .

Since gj has no Zp-root, for all j ∈ [m], by Lemma 6.2.2, vp(gj(ᾱ)) ≤ vp(D(gj)). By

the properties given in Section 6.1.1 we get: vp(D(gj)) ≤ vp(D(Rad(f))) = ∆; proving that

vp(gj(ᾱ)) ≤ ∆.

Going back, vp(f(ᾱ)) ≤ (∆ + 1) · (
∑n

i=1 ei +
∑m

j=1 tj) ≤ d(∆ + 1) < k. It implies that

f(ᾱ) 6≡ 0 mod pk; which contradicts the hypothesis that ᾱ is a root of f mod pk.

Thus, ∃i ∈ [n], vp(ᾱ− αi) > ∆ + 1. The uniqueness of i follows from Claim 6.2.1.

Having seen that every root ᾱ, of f mod pk, is associated (or close) to a unique Zp-root

αi, the following lemma tells us that the valuation of αi-free part of f (respectively factors of

f with no Zp-root) is the same on any ᾱ close to αi. This unique valuation is important in

getting an expression for Nk(f).

Lemma 6.2.4 (Unique valuation). Fix i ∈ [n]. Fix ᾱ ∈ Zp such that vp(ᾱ− αi) > ∆. Recall

gj(x), fi from Section 6.1.1. Then,

1. vp(gj(ᾱ)) = vp(gj(αi)), for all j ∈ [m],

2. vp(fi(ᾱ)) = vp(fi(αi)).

In other words, valuation with respect to p of fi = f(x)/(x − αi)ei , on x 7→ ᾱ, is fixed

uniquely to νi := vp(fi(αi)), for any ‘close’ approximation ᾱ ∈ Zp of αi.

Proof. Since gj | Rad(fi) and Rad(fi) | Rad(f), we have by the properties of discriminants

(Section 6.1.1): vp(gj(αi)) ≤ vp(Rad(fi)(αi)) ≤ ∆, for all j ∈ [m].

Since vp(ᾱ − αi) > ∆, we deduce vp(gj(ᾱ) − gj(αi)) > ∆. Furthermore, vp(gj(αi)) ≤ ∆

implies: vp(gj(ᾱ)) = vp(gj(αi)). This proves the first part.

By Claim 6.2.1, vp(ᾱ − αu) = vp(αi − αu), for all u 6= i, u ∈ [n]. Also, by the first part,

vp(gw(ᾱ)) = vp(gw(αi)), for all w ∈ [m]. Consequently, vp(fi(ᾱ)) =
∑n

u=1,u6=i eu ·vp(αi−αu) +∑m
w=1 tw · vp(gw(αi)) = vp(fi(αi)). This proves the second part.

79

6.3 Representative Roots versus Neighborhoods

We now connect the Zp-roots of f to the representative-roots of f mod pk. Later we charac-

terize each representative-root as a ‘neighborhood’ in Theorem 6.3.3.

Lemma 6.3.1 (Perturb a root). Let k > d(∆ + 1) and ᾱ be a root of f(x) mod pk with

l := vp(αi − ᾱ) > ∆ + 1, for some i ∈ [n] (as in Lemma 6.2.3). Then, every β̄ ∈ ᾱ + pl∗ is

also a root of f(x) mod pk.

Proof. Since f(ᾱ) ≡ 0 mod pk, we have vp(f(ᾱ)) ≥ k. Using Lemma 6.2.4 we have vp(fi(ᾱ)) =

vp(fi(αi)) = νi. Thus, vp(f(ᾱ)) = vp(αi − ᾱ) · ei + vp(fi(ᾱ)) = vp(αi − ᾱ) · ei + νi ≥ k.

Similarly, vp(f(β̄)) = vp(αi− β̄) · ei + vp(fi(β̄)) = vp(αi− β̄) · ei + νi ≥ vp(αi− ᾱ) · ei + νi.

Last inequality follows from vp(αi − β̄) ≥ l = vp(αi − ᾱ) .

From the above two paragraphs we get, vp(f(β̄)) ≥ k. Hence, f(β̄) ≡ 0 mod pk.

Now we define a notion of ‘neighborhood’ of a Zp-root of f .

Definition 6.3.2 (Neighborhood). For i ∈ [n], k > d(∆ + 1), we define neighborhood Sk,i

of αi mod pk to be the set of all those roots of f mod pk, which are close to the Zp-root αi of

f . Formally,

Sk,i := {ᾱ ∈ Z/〈pk〉 | vp(ᾱ− αi) > ∆ + 1, f(ᾱ) ≡ 0 mod pk} .

The notion of representative-root was first given in [DMS21]. Below we discover its new

properties which will lead us to the understanding of length of a representative-root; which in

turn will give us the size of a neighborhood contributing to Nk(f).

Theorem 6.3.3 (Rep.root is a neighborhood). Let k > d(∆ + 1) and a := a0 + pa1 + p2a2 +

. . . + pl−1al−1 + pl∗ be a representative-root of f(x) mod pk. Define the Zp-root reduction

ᾱi := αi mod pk, for all i ∈ [n]. Fix an i ∈ [n], then,

1. Length of a is large. Formally, l > ∆ + 1.

2. If ᾱi ∈ a, then ᾱj 6∈ a for all j 6= i, j ∈ [n]. (This means with Lemma 6.2.3: a has a

uniquely associated Zp-root.)

80

3. If a contains ᾱi then it also contains the respective neighborhood. In fact, if ᾱi ∈ a,

then Sk,i = a.

Proof. 1. Consider ᾱ := a0 + pa1 + . . . + pl−1al−1. By Lemma 6.2.3, there is a unique

s ∈ [n]: vp(ᾱ − αs) > ∆ + 1. Suppose l ≤ ∆ + 1. Then, vp(ᾱ + p∆+1 − αs) = ∆ + 1.

As, ᾱ′ := (ᾱ + p∆+1) is also in a, it again has to be close to a unique αt, s 6= t ∈ [n]

: vp(ᾱ
′ − αt) > ∆ + 1. In other words, αs + p∆+1 ≡ ᾱ + p∆+1 ≡ αt mod p∆+2. Thus,

vp(αs − αt) = ∆ + 1 > ∆/2; contradicting Fact 1. This proves l > ∆ + 1.

2. Consider distinct ᾱi, ᾱj ∈ a. Then, by the definition of a, we have vp(ᾱi − ᾱj) ≥ l >

∆ + 1 > ∆/2; contradicting Fact 1. Thus, there is a unique i.

3. Suppose there exists a neighborhood element β̄ 6∈ a, satisfying the conditions vp(αi −

β̄) > ∆ + 1 and f(β̄) ≡ 0 mod pk. Let j be the index of the first coordinate where β̄

and a differ; so, j < l since β̄ 6∈ a. Clearly, j > ∆ + 1; otherwise, since ᾱi ∈ a and

β̄ 6∈ a, we deduce vp(αi − β̄) = j ≤ ∆ + 1; which is a contradiction.

By vp(αi− β̄) = j > ∆ + 1 and Lemma 6.3.1, we get: every element in β̄+ pj∗ is a root

of f(x) mod pk. Consequently, each element in a0 + pa1 + p2a2 + . . . + pj−1aj−1 + pj∗

is a root of f(x) mod pk; which contradicts that a is a representative-root (∵ j < l, see

Section 2.3.1 in Chapter 2). Thus, β̄ ∈ a; implying Sk,i ⊆ a.

Conversely, consider ᾱ ∈ a. Then, as before, vp(ᾱi − ᾱ) ≥ l > ∆ + 1; implying that

ᾱ ∈ Sk,i. Thus, Sk,i ⊇ a..

Next, we get the expression for the length of a representative-root.

Theorem 6.3.4. For k > d(∆ + 1), the representative-roots, of f(x) mod pk, are in a one-

to-one correspondence with Zp-roots of f . Moreover, the length of the representative-root a,

corresponding to αi, is li,k := d(k − νi)/eie.

Proof. Every root of f mod pk is in exactly one of the representative-roots. So each reduced

Zp-root ᾱi := αi mod pk is in a unique representative-root. Thus, by Theorem 6.3.3 parts (2)

& (3), we get the one-to-one correspondence as claimed.

81

Consider a p-adic integer ᾱ with vp(ᾱ−αi) =: lᾱ > ∆. We have the following equivalences:

ᾱ ∈ a iff vp(f(ᾱ)) ≥ k iff vp((ᾱ − αi)ei · fi(ᾱ)) ≥ k iff eilᾱ + νi ≥ k (by Lemma 6.2.4) iff

lᾱ ≥ d(k − νi)/eie = li,k.

Write the representative-root corresponding to αi as a =: a0 +pa1 +p2a2 + . . .+pl−1al−1 +

pl∗. Clearly, l = min{lᾱ | ᾱ ∈ a} ≥ li,k. Note that if l > li,k then by the equivalences

we could reduce the length l of the representative-root a; which is a contradiction. Thus,

l = li,k.

6.4 Formula for Nk(f)

For large enough k, the earlier section gives us an easy way to count the roots. In fact, we

have the following simple formula for Nk(f).

Theorem 6.4.1 (Roots mod pk). For k > d(∆ + 1), Nk(f) =
∑

i∈[n] p
k−d(k−νi)/eie, where

clearly νi, ei and n (as in Sec.6.1.1) are independent of k.

Proof. Fix i ∈ [n] and k > d(∆+1). By Theorem 6.3.4 we get that in the unique representative-

root a, corresponding to αi mod pk, the (k − d(k − νi)/eie)-many higher-precision coordinates

could be set arbitrarily from [0 . . . p− 1] (while the rest lower-precision ones are fixed). That

gives us the count via contribution for each i ∈ [n]. Moreover, the sum over neighborhoods,

for each i ∈ [n], gives us exactly Nk(f).

Also, note that if n = 0 then the count Nk(f) = 0.

Proof of Corollary 6.0.2. Theorem 6.4.1 gives a closed form expression for Nk(f), when k ≥

k0 := d(∆ + 1) + 1 ≤ d(2d− 1)(logpC + logp d) + 1.

For the other part, note that the discriminant D(f) 6= 0 iff f is squarefree. In the

squarefree case ei = 1, for all i ∈ [n]. By Theorem 6.4.1, Nk(f) =
∑

i∈[n] p
νi ; which is

independent of k.

82

6.5 Computing Poincaré Series

Building up on the ideas of the previous sections, we will show how to deterministically

compute Poincaré series P (t) =
∑∞

k=0Nk(f)(p−1t)k, associated to the input f(x), efficiently;

thereby proving Theorem 6.0.1. Before that, we need few notation as follows.

Set k0 := d(∆ + 1) + 1 so we know by Theorem 6.4.1 that for k ≥ k0, Nk(f) =
∑n

i=1Nk,i(f),

where Nk,i(f) := pk−d(k−νi)/eie. For each i ∈ [n], define ki to be the least integer such that

ki ≥ k0 and (ki−νi)/ei is an integer. Then, Poincaré series P (t) can be partitioned into finite

and infinite sums as,

P (t) = P0(t) +

n∑
i=1

Pi(t)

where P0(t) :=
(∑k0−1

k=0 Nk(f) · (p−1t)k
)

+
∑n

i=1

∑ki−1
k=k0

Nk,i(f) · (p−1t)k and Pi(t) :=∑∞
k=ki

Nk,i(f) · (p−1t)k.

We now compute the multiplicity ei by viewing it as the step that increments the length,

of the representative-root associated to αi, as k keeps growing above k0.

Lemma 6.5.1 (Compute ei). We can compute the number of Zp-roots n of f as well as ki, νi

and ei, for each i ∈ [n], in deterministic poly(d, logC + log p) time.

Proof. By Theorem 6.1.2, we get all the representative-roots of f mod pk implicitly in the

form of maximal split ideals (in short we call split ideals). By Lemma 6.1.1, the length of a

split ideal is also the length of all the representative-roots represented by it and the degree

is the number of representative roots represented by it. Since by Theorem 6.3.4, n is also

the number of representative roots of f mod pk for k ≥ k0 hence we run the algorithm of

Theorem 6.1.2 for k = k0 and sum up the degree of all the split ideals obtained, to get n.

Suppose the split ideal I we find contains a representative-root a of f mod pk correspond-

ing to αi, with ki as defined before. How do we compute ki? By Theorem 6.3.4 length of a,

when k = ki, is li,ki = (ki − νi)/ei. Now, for all k = ki + 1, ki + 2, . . . , ki + ei, the length li,k

remains equal to li,ki + 1; while for the next k = ki + ei + 1, li,k increments by one.

So we run the algorithm of Theorem 6.1.2, for several k ≥ k0. When we find the length

incrementing by one, namely, at the two values k = ki + 1 and k = k′i := ki + 1 + ei, then we

83

have found ei (and ki). From the equation, ki − νi = ei · li,ki , we also find νi.

Suppose the split ideal I we find contains two representative-roots a and b mod pk,

corresponding to Zp-roots αi and αj respectively, such that ei 6= ej (wlog say ei < ej). In this

case, even if a and b have the same length, when k = ki, they will evolve to different length

representative-roots when we go to a ‘higher-precision’ arithmetic mod pki+1+ei (by formula

in Theorem 6.3.4). So a,b must lie in different length split ideals, say Ia and Ib respectively.

Now, for another representative-root c in Ia, say corresponding to αs, we have ei = es

and hence νi = νs. By computing ei and νi as before, now using the length of I and Ia, we

compute es and νs (and ks) for every c in Ia. Since, by Lemma 6.1.1, the degree of Ia is the

number of such representative-roots in Ia, we could compute n; moreover, we get ki, νi, ei for

all i ∈ [n].

Clearly, we need to run the algorithm of Theorem 6.1.2 at most 2 maxi∈[n]{ei} = O(d)

times, to study the evolution of split ideals (implicitly, that of the underlying representative-

roots). Also ∆ is logarithm (to base p) of the determinant of a Sylvester matrix which gives

∆ = O(d · (logpC + logp d)). So, the algorithm is poly-time as claimed.

Now we prove Corollary 6.0.3.

Proof of Corollary 6.0.3. Recall n is the number of distinct Zp-roots of f and eis are the

multiplicities of the Zp-roots αi for i ∈ [n]. Lemma 6.5.1 computes both of them in required

time. Hence the proof.

Now we prove that the infinite sums Pi(t) are formally equal to rational functions of

t = p−s.

Lemma 6.5.2 (Infinite sums are rational). For each i ∈ [n], the series Pi(t) is a rational

function of t as,

Pi(t) =
tki · (p− t(p− 1)− tei)

p(ki−νi)/ei · (1− t) · (p− tei)
.

Proof. Recall that Pi(t) =
∞∑
k=ki

Nk,i(f) · (p−1t)k. For simplicity write T := p−1t and define

84

integer δi := ki − (ki − νi)/ei. Now Pi can be rewritten using residues mod ei as,

Pi(t) =

ki+ei−1∑
l=ki

∞∑
k=0

Nl+kei,i(f) · T l+kei .

For simplicity take l = ki and consider the sum,
∞∑
k=0

Nki+kei,i(f) · T ki+kei . We find that

Nki,i(f) = pδi , Nki+ei,i(f) = pδi+ei−1, Nki+2ei,i(f) = pδi+2(ei−1), and so on. Hence,
∞∑
k=0

Nki+kei,i(f)·T ki+kei = pδiT ki ·[1+pei−1T ei+(pei−1T ei)2+. . .] = pδi ·T ki/
(
1− pei−1T ei

)
.

So, Pi(t) =
pδiT ki

1− pei−1T ei
+

pδiT ki+1

1− pei−1T ei
+

pδi+1T ki+2

1− pei−1T ei
+ . . .+

pδi+ei−2T ki+ei−1

1− pei−1T ei

=
pδiT ki

1− pei−1T ei
+

pδiT ki+1

1− pei−1T ei
·
(
1 + pT + (pT)2 + . . .+ (pT)ei−2

)
=

pδiT ki

1− pei−1T ei
·
(

1 + T · 1− (pT)ei−1

1− pT

)
.

Putting T = t/p and δi = ki − (ki − νi)/ei we get,

Pi(t) =
tki(p− t(p− 1)− tei)

p(ki−νi)/ei(1− t)(p− tei)
.

Now we are in a position to prove our main theorem.

Proof of Theorem 6.0.1. Recall P (t) = P0(t) +
∑n

i=1 Pi(t). We first compute P0(t) which is

the sum of two polynomials in t, namely, Q1(t) :=
∑k0−1

j=0 Nj(f)(p−1t)j of degree O(d∆),

and Q2(t) =
∑n

i=1

∑ki−1
l=k0

Nl,i(f)(p−1t)l also of degree O(d∆). By a standard determi-

nant/Sylvester matrix calculation one shows: d∆ ≤ O
(
d2 · (logpC + logp d)

)
.

We can compute the polynomial Q1(t) in deterministic poly(d, logC + log p)-time by

calling the root-counting algorithm (Theorem 6.1.2) k0 − 1 times, getting each Nj(f), for

j = 1, . . . , k0 − 1 (note: N0(f) := 1).

Polynomial Q2(t) is a sum of n ≤ d polynomials, each with ki−k0 ≤ d many simple terms.

Using Lemma 6.5.1, we can compute each νi, ei, hence, Nl,i(f). So, computation of Q2 again

takes time poly(d, logC + log p).

Lemma 6.5.2 gives us the rational form expression for Pi(t), for each i ∈ [n]. So, using

85

Lemma 6.5.1 we can compute the Poincaré series

P (t) = P0(t) +
n∑
i=1

tki(p− t(p− 1)− tei)
p(ki−νi)/ei(1− t)(p− tei)

in deterministic poly(d, logC + log p) time.

By inspecting the above expression, the degree of denominator B(t) is 1+
∑n

i=1 ei = O(d).

The degree of numerator A(t) is ≤ k0 + 2d ≤ O
(
d2 · (logpC + logp d)

)
.

6.6 Summary

We presented the first complete solution to the problem of computing Igusa’s local zeta

function for any given integral univariate polynomial and a prime p. Indeed, our methods

work for given f ∈ Zp[x] (with f having computable representation) as our proof for integral

f goes by considering its factorization over Zp.

We also found explicit closed-form expression for Nk(f) and efficiently computed the

explicit parameters involved therein, which could be used to compute Greenberg’s constants

associated with a univariate f and a prime p. Greenberg’s constants appear in a classical

theorem of Greenberg [Gre66, Theorem 1] which is a generalization of Hensel’s lemma to

several n-variate polynomials. We hope that our methods for one-variable case could be

generalized to compute Greenberg’s constants for n-variable case to give an effective version

of Greenberg’s theorem.

We also hope that our methods extend computing Igusa’s local zeta function from char-

acteristic zero (Zp) to positive characteristic (Fp[[T]]) at least if some standard restrictions

are imposed on the characteristic for e.g. p is ‘large-enough’. This is supported by the fact

that the root counting algorithm of [DMS19] (Chapter 4) also extends to F[[T]] for a field F.

Part II

Random Sampling via Ideals

87

Chapter 7

Reduction of Factoring to Root

Finding and Factoring modulo p4

In this part of the thesis, we study two important problems over Galois rings of character-

istic pk: (1) Factoring an integral univariate polynomial f(x) and, (2) Solving a system of

multivariate polynomial equations (Search Hilbert’s Nullstellensatz SHN).

For these problems, only inefficient brute force algorithms are known even when k = 3.

We will establish a connection between these two seemingly different problems in the constant

k regime. Firstly in the present chapter, we will reduce univariate factoring modulo prime

powers to univariate root finding modulo a bi-generated ideal. This partial reduction helps us

to make first progress in factoring f mod pk for k = 3, 4. Then in Chapter 8, we extend the

reduction further and reduce low-degree univariate factoring to low-variate polynomial system

solving when k is constant. Finally, we utilize the method of ideals which allowed efficient

random sampling for the latter, thereby making significant progress on both the problems.

Our first result is,

Theorem 7.0.1. Let p be prime, k ≤ 4 and f ∈ Z[x] be a univariate integral polynomial.

Then, f mod pk can be factored (find a non-trivial factor or report irreducible) in randomized

poly(deg f, log p) time.

The procedure to factor f mod p4 also factors mod p3 and mod p2 (and tests for irre-

89

90

ducibility) in randomized poly(deg f, log p) time. We also give a refinement of Hensel lifting

to get all the lifts of a factor of f mod p to mod pk when k ≤ 4.

Theorem 7.0.2. Let p be prime, k ≤ 4 and f ∈ Z[x] be a univariate integral polynomial

such that f mod p is a power of an irreducible polynomial. Let g̃ be a given factor of f mod p.

Then, in randomized poly(deg f, log p) time, we can compactly describe (and count) all possible

factors of f mod pk which are lifts of g̃ (or report that there are none).

We give some assumptions here, on the given input polynomial f ∈ Z[x], which will be

followed in further sections unless explicitly stated otherwise.

Preprocessing: Our task is to non-trivially factor a univariate integral polynomial f ∈ Z[x]

of degree d modulo a prime power pk. Without loss of generality, we can assume that f 6≡

0 mod p. Otherwise, we can efficiently divide f by the highest power of p possible, say p`,

such that f(x) ≡ p`f̃(x) mod pk and f̃(x) 6≡ 0 mod p. In this case, it is equivalent to factor f̃

instead of f .

To simplify the input further, write f mod p (uniquely) as a product of powers of coprime

irreducible polynomials (Theorem 2.2.1). If there are two coprime factors of f , using Hensel

lemma (Lemma 2.2.2), we get a non-trivial factorization of f mod pk. So we can assume that

f is a power of a monic irreducible polynomial ϕ ∈ Z[x] modulo p. In other words, we can

efficiently write

f ≡ ϕe + p` mod pk

for a polynomial ` in (Z/〈pk〉)[x]. We have e · degϕ ≤ deg f , for the integral polynomials f

and ϕ.

Organization: Factoring a univariate modulo p goes through root finding in an extension

field of Fp. Our factoring method passes through a similar stage. In Section 7.2, we reduce

factoring f mod pk to root finding of E ∈ (Z[x])[y] modulo the bi-generated ideal 〈pk, ϕak〉 for

some a < e. In Section 7.1, we give some useful tools to work with these bi-generated ideals.

Section 7.3 proves our main Theorems- 7.0.1 and 7.0.2. Section 7.3.1 shows how to find

(and count) roots of E in simpler case of k = 3. In rest of Section 7.3 we generalize the idea

used for k = 3 to find (and count) roots of E for k = 4. Finally, we conclude in Section 7.5.

91

7.1 Preliminaries

Let R[x] be the ring of polynomials over R = Z/〈pk〉. The following lemma about zero divisors

in R[x] will be helpful.

Lemma 7.1.1. A polynomial f ∈ R[x] is a zero divisor iff f ≡ 0 mod p. Consequently, for

any polynomials f, g1, g2 ∈ R[x] and f 6≡ 0 mod p, fg1 = fg2 implies g1 = g2.

Proof. If f ≡ 0 mod p then f · pk−1 is zero, and f is a zero divisor.

For the other direction, let f 6≡ 0 mod p and assume fg = 0 for some non-zero g ∈ R[x].

Let

• i be the biggest integer such that the coefficient of xi in f is non-zero modulo p,

• and j be the biggest integer such that the coefficient of xj in g has minimum valuation

with respect to p.

Then, the coefficient of xi+j in f · g has same valuation as the coefficient of xj in g, implying

that the coefficient is nonzero. This contradicts the assumption f · g = 0.

The consequence follows because f 6≡ 0 mod p implies that f cannot be a zero divisor.

We can make the following observations about quotient ideals and bi-generated ideals.

Claim 7.1.2 (Cancellation). Suppose I is an ideal of ring R and a, b, c are three elements in

R. By definition of quotient ideals, ca ≡ cb mod I iff a ≡ b mod I : 〈c〉.

Claim 7.1.3. Let p be a prime and ϕ ∈ (Z/〈pk〉)[x] be such that ϕ 6≡ 0 mod p. Given an

ideal I := 〈p`, ϕm〉 of Z[x],

1. I : 〈pi〉 = 〈p`−i, ϕm〉, for i ≤ `, and

2. I : 〈ϕj〉 = 〈p`, ϕm−j〉, for j ≤ m.

Proof. We will only prove part (1), as the proof of part (2) is similar. If c ∈ 〈p`−i, ϕm〉 then

there exists c1, c2 ∈ Z[x], such that, c = c1p
`−i + c2ϕ

m. Multiplying by pi,

pic = c1p
` + c2p

iϕm ∈ I ⇒ c ∈ I : 〈pi〉.

92

To prove the reverse direction, if c ∈ I : 〈pi〉 then there exists c1, c2 ∈ Z[x], such that,

pic = c1p
` + c2ϕ

m. Since i ≤ ` and p 6 | ϕ, we know pi|c2. So, c = c1p
`−i + (c2/p

i)ϕm ⇒ c ∈

〈p`−i, ϕm〉.

Lemma 7.1.4 (Compute quotient). Given a polynomial ϕ ∈ Z[x] not divisible by p, define I

to be the ideal 〈p`, ϕm〉 of Z[x]. If g(y) ∈ (Z[x])[y] is a polynomial such that g ≡ 0 mod 〈p, ϕm〉,

then p|g mod I and g/p mod I : 〈p〉 is efficiently computable.

Proof. The equation g ≡ 0 mod 〈p, ϕm〉 implies g = pc1 +ϕmc2 for some polynomials c1, c2 ∈

Z[x][y]. Going modulo I, g ≡ pc1 mod I. Hence, p|g mod I and g/p ≡ c1 mod I : 〈p〉 (Claim

7.1.2).

If we write g in the reduced form modulo I, then the polynomial g/p can be obtained by

dividing each coefficient of g mod I by p.

7.2 Factoring to Root Finding

In this section we give a general framework to work on the problem of factoring f mod pk–

we reduce factoring f mod pk to root finding in a more general ring. This is inspired from

characteristic p fields (k = 1) where efficient factoring is shown to be equivalent to finding

roots efficiently. The reduction seems quite natural: It helps in factoring for k ≤ 4 in this

chapter and it extends further in Chapter 8 to give factoring results for constant k.

Following the preprocessing, it is enough to factor f ∈ Z[x] such that

f ≡ ϕe + p` mod pk,

where ϕ ∈ Z[x] is an irreducible polynomial modulo p. Up to multiplication by units, any

non-trivial factor h of f has the form h ≡ ϕa − py, as h mod p is a factor of f ≡ ϕe mod p,

where a < e and y is a polynomial in (Z/〈pk〉)[x].

Let us denote the ring Z[x]/〈pk, ϕak〉 by R. Also, denote the ring Z[x]/〈p, ϕak〉 by R0. We

define an auxiliary polynomial E ∈ R[y] via

E := f · (ϕa(k−1) + ϕa(k−2)(py) + · · ·+ ϕa(py)k−2 + (py)k−1).

93

Theorem 7.2.1 reduces the problem of factoring f mod pk to the problem of finding roots

of the univariate polynomial E in ring R. Thus, we convert the problem of finding factors of

f ∈ Z[x] modulo a principal ideal 〈pk〉 to root finding of a polynomial E ∈ (Z[x])[y] modulo

a bi-generated ideal 〈pk, ϕak〉.

Theorem 7.2.1 (Reduction theorem). Given a prime power pk; let f, h ∈ Z[x] satisfy f ≡

ϕe + p` mod pk and h ≡ ϕa − py mod pk, with `, y ∈ (Z/〈pk〉)[x] and a ≤ e. Then, h divides

f modulo pk if and only if

E = f · (ϕa(k−1) + ϕa(k−2)(py) + · · ·+ ϕa(py)k−2 + (py)k−1) ≡ 0 mod 〈pk, ϕak〉.

Proof. Let Q denote the ring of fractions of the ring (Z/〈pk〉)[x]. Since ϕ is not a zero divisor,

(E(y)/ϕak) ∈ Q.

We first prove the reverse direction. If E ≡ 0 mod 〈pk, ϕak〉, then (E/ϕak) is a polynomial

over (Z/〈pk〉)[x]. Multiplying h with (E/ϕak) mod pk, we write,

(ϕa − py)((f/ϕak)Σk−1
i=0 ϕ

a(k−1−i)(py)i) ≡ (f/ϕak)(ϕak − (py)k) ≡ f · ϕak/ϕak ≡ f mod pk.

The first equality comes via geometric series. Hence, h divides f modulo pk.

For the forward direction, assume that there exists some g ∈ (Z/〈pk〉)[x], such that,

f(x) ≡ h(x)g(x) mod pk. We get two factorizations of f in Q,

f = h · g and f = h · (E/ϕak).

Subtracting the first equation from the second one,

h ·
(
g − (E/ϕak)

)
= 0.

Notice that h is not a zero divisor in (Z/〈pk〉)[x] (by Lemma 7.1.1) and is thus invertible

in Q. So, E/ϕak = g in Q. Since g is in (Z/〈pk〉)[x], we deduce the equivalent divisibility

statement: E(y) ≡ 0 mod 〈pk, ϕak〉.

Following the reduction in this section, we move on to find roots of E(y), when k ≤ 4, in

the next section (Section 7.3).

94

7.3 Factoring and Lifting modulo Prime Power p4

In this section we will prove Theorems 7.0.1 and 7.0.2. We want to find (and count) all the

factors h ∈ (Z/〈pk〉)[x] of the given degree d polynomial f ∈ Z[x] modulo pk for k ≤ 4, where

f ≡ ϕe + p` mod pk and h = ϕa − py.

We also recall the definitions from Section 7.2. We have R := Z[x]/〈pk, ϕak〉 and R0 =

Z[x]/〈p, ϕak〉. For a factor h of f , define E ∈ R[y] as

E := f · (ϕa(k−1) + ϕa(k−2)(py) + · · ·+ ϕa(py)k−2 + (py)k−1).

The following two observations simplify our task of finding roots y of polynomial E(y).

(1) First, due to symmetry, it is enough to find factors h ≡ ϕa mod p with a ≤ e/2. The

assertion follows because f ≡ hg mod pk implies, at least one of the factor (say h) must be of

the form ϕa mod p for a ≤ e/2. By Lemma 7.1.1, for a fixed h ≡ ϕa − py mod pk, there is a

unique g ≡ ϕe−a − py′ mod pk such that f ≡ hg mod pk. So, to find g, it is enough to find h.

(2) Second, observe that any root y ∈ R (of E ∈ R[y]) can be seen as y = y0 + py1 +

p2y2 + · · · + pk−1yk−1, where each yi ∈ R0 for all i in {0, . . . , k − 1}. The following lemma

decreases the required precision of a root y.

Lemma 7.3.1. Let y = y0 + py1 + p2y2 + · · · + pk−1yk−1 be a root of E, where k ≥ 2 and

a ≤ e/2. Then, all elements of the set y = y0 + py1 + p2y2 + · · ·+ pk−3yk−3 + pk−2∗ are also

roots of E.

Proof. Notice that the variable y is multiplied with p in E(y), implying yk−1 is irrelevant. A

similar argument is applicable for the coefficient yk−2 in any term involving (py)i for i ≥ 2.

The only surviving term containing yk−2 is fϕa(k−2)(py). The coefficient of yk−2 in this term

is ϕa(k−2)fpk−1, it also vanishes because

ϕa(k−2)f ≡ ϕa(k−2)ϕe ≡ ϕakϕe−2a ≡ 0 mod 〈p, ϕak〉 .

Root-finding modulo a Principal Ideal. In next few sections we will see that finding

roots of E in R goes through finding roots of intermediate polynomials in R0 = Fp[x]/〈ϕak〉

(i.e, modulo a principal ideal). In the following, we give slightly modified version of Theorem

2.3.1 which says that all the roots of a polynomial g ∈ R0[y] can be efficiently described

95

in form of analogously defined representative roots. Recall Section 2.3 in Chapter 2 for the

notion of representatives, representative roots and representative pairs. A representative in

R0 looks like y := y0 +ϕy1 + · · ·+ϕiyi +ϕi+1∗, with yis seen as elements of R0/〈ϕ〉, and it is

a representative root if not all elements of y′ := y0 +ϕy1 + · · ·+ϕi−1yi−1 +ϕi∗ are the roots.

The representative pair for y is written as (v, i+ 1) where v := y0 + ϕy1 + · · ·+ ϕiyi in R0.

Theorem 7.3.2 (Modified Theorem 2.3.1). Given a bivariate g ∈ R0[y] where R0 = Z[x]/〈p, ϕi〉,

let Z ⊆ R0 be the root set of g(y). Then Z can be expressed as the disjoint union of at most

degy(g) many representative pairs (a0, i0) (a0 ∈ R0 and i0 ∈ N).

These representative pairs can be found in randomized poly(degy(g), log p, ak degϕ) time.

7.3.1 Finding All the Factors modulo pk for k < 4

In this section we partially prove Theorems 7.0.1 and 7.0.2, i.e., we efficiently find all the

factors of f mod p2 and f mod p3. Although the case of k = 2 is already solved [Săl05], the

case of k = 3 was left open in [Sir17]. The ideas in this section (for k ≤ 3) will be generalized

to solve the case k = 4.

Factoring f mod p2. The reduction theorem (Theorem 7.2.1) and Lemma 7.3.1 make

factoring mod p2 easy: They imply that any root of E is independent of coordinates y0 and

y1. So, either h = ϕa − py can not be a factor of f mod p2 or it is a factor for every value

of y ∈ R0. Substituting y = 0, we get that h ≡ ϕa − py mod p2 is a factor of f if and only

if ϕa|f modulo p2. In fact, we get a simple irreducibility criteria— f mod p2 factors if and

only if ϕ|f mod p2 (first discovered by [Săl05]).

Factoring f mod p3. Theorem 7.3.3 below solves the factoring problem modulo p3.

Theorem 7.3.3. Given f ∈ Z[x], a univariate polynomial of degree d and a prime p ∈ N,

we give (and count) all the distinct factors of f mod p3 of degree at most d in randomized

poly(d, log p) time.

Note: We will assume that the leading coefficient of f is 1. Also, we will not distinguish two

factors if they are same up to multiplication by a unit.

96

Proof of Theorem 7.3.3. By Theorem 2.2.1, a general f can be written as:

f(x) ≡
n∏
i=1

fi(x) ≡
n∏
i=1

(ϕeii + phi) mod p3, (7.1)

where fi(x) ≡ (ϕeii + phi) mod p3 with ϕi mod p3 being monic and irreducible mod p,

ei ∈ N, and hi(x) mod p3 of degree < ei deg(ϕi), for all i ∈ [n].

Using Lemma 2.2.2, it is sufficient to consider the case f ≡ ϕe + ph.

By Reduction theorem (Theorem 7.2.1) finding factors of the form ϕa − py mod p3 of

f ≡ ϕe + ph mod p3, for a ≤ e/2, is equivalent to finding all roots of the equation

E ≡ f · (ϕ2a + ϕa(py) + (py)2) ≡ 0 mod 〈p3, ϕ3a〉.

Consider R := Z[x]/〈p3, ϕ3a〉 and R0 := Z[x]/〈p, ϕ3a〉 (analogous to Section 3.2).

Using Lemma 7.3.1, we know that all solutions of the equation E ≡ 0 mod 〈p3, ϕ3a〉 will

be of the form y = y0 + p∗ ∈ R, for a y0 ∈ R0. Substituting, we get

E ≡ phϕ2a + (p2hϕa)y0 + (p2ϕe)y2
0 ≡ 0 mod 〈p3, ϕ3a〉.

Looking at this equation mod 〈p2, ϕ3a〉, we get that h ≡ 0 mod 〈p, ϕa〉 is a necessary

condition for a root y0 to exist. Define h := ϕag1 + pg2 for unique g1, g2 ∈ Fp[x], the equation

becomes

E ≡ p2g2ϕ
2a + (p2g1ϕ

2a)y0 + (p2ϕe)y2
0 ≡ 0 mod 〈p3, ϕ3a〉,

This equation is already divisible by p2 as well as ϕ2a. Using Claim 7.1.3, finding factors

of the form ϕa − py mod p3 is equivalent to finding all roots of the equation

g2 + g1y0 + ϕe−2ay2
0 ≡ 0 mod 〈p, ϕa〉 .

These roots can be obtained using one call to Root-find in randomized poly(d, log p)

time. Note that any root y0 given by Root-find is an element of Fp[x]/〈ϕa〉, implying its

degree in x is < adeg(ϕ). This yields monic factors of f mod p3 (with 0 ≤ a ≤ e/2).

For e ≥ a > e/2, we can replace a by b := e− a in the above steps. Once we get a factor

ϕb − py mod p3, we output the cofactor f/(ϕb − py) = (f/ϕak)(ϕ2a + ϕa(py) + (py)2) (which

remains monic).

97

Since Theorem 7.3.2 gives the numbers of roots from Root-find, we also get a count on

total number of factors in poly-time.

For a general f (Equation 7.1), if Ni is the number of factors of fi mod p3, then
∏n
i=1Ni

is the count on the number of distinct monic factors of f mod p3.

Let us illustrate the steps in the proof of Theorem 7.3.3 by an example.

Example 13. Let f = x4 + 18x3 + 33x2 + 54x + 9 be an integral polynomial and pick p =

3, k = 3.

We need to find factors of f ≡ x4 + 18x3 + 6x2 + 9 mod 27; since f ≡ x4 mod 3, fix

ϕ := x ∈ Z[x]. Say, we want to find quadratic factors of f mod 27, so fix a = 2.

Recall the reduction theorem (Theorem 7.2.1), (ϕa − py) is a factor of f mod p3 iff

E := f · (ϕ2a + ϕa(py) + (py)2) ≡ 0 mod 〈p3, ϕ3a〉.

⇔ (x4 + 18x3 + 6x2 + 9)[x4 + x2(3y0) + 9y2
0] ≡ 0 mod 〈27, x6〉. (y = y0 [Lemma 7.3.1])

⇔ 9x4y2
0 + 18x4y0 + 9x4 ≡ 0 mod 〈27, x6〉.

⇔ y2
0 + 2y0 + 1 ≡ 0 mod 〈3, x2〉.

⇔ (y0 + 1)2 ≡ 0 mod 〈3, x2〉.

Applying [Pan95, BLQ13] (Theorem 7.3.2) on last equation, we get exactly one represen-

tative root y0 = 2 + x∗.

Choosing y1 = 0 and y0 = 2 + 0, we have a corresponding factor (x2 − 3(2 + 0)) ≡

(x2 + 21) mod 27. The co-factor of this is (x2 + 18x+ 12), giving

f ≡ x4 + 18x3 + 6x2 + 9 ≡ (x2 + 21)(x2 + 18x+ 12) mod 27.

Remark. Observe that the core idea for p3 was to first reduce root finding of E mod 〈p3, ϕ3a〉

to root finding modulo a principal ideal 〈p, ϕa〉. It was then solved by just one application of

Theorem 7.3.2. For p3, we only needed to deal with a univariate polynomial in y0.

The approach for k = 4 is similar, though it requires several applications of Theorem

7.3.2 to go to principal ideal 〈p, ϕ4a〉 (Sec. 7.3.2). Even after that, we are required to solve a

bivariate equation modulo the principal ideal (as opposed to a univariate in the case k = 3).

98

We will fix k = 4 for the rest of Section 7.3.

7.3.2 Reduction to Root Finding modulo a Principal Ideal of Fp[x]

In this subsection, the task to find roots of E modulo the bi-generated ideal 〈p4, ϕ4a〉 of Z[x]

will be reduced to finding roots modulo the principal ideal 〈ϕ4a〉 (of Fp[x]).

Let us consider the equation E ≡ 0 mod 〈p4, ϕ4a〉. We have,

f(ϕ3a + ϕ2a(py) + ϕa(py)2 + (py)3) ≡ 0 mod 〈p4, ϕ4a〉 . (7.2)

Using Lemma 7.3.1, we can assume y = y0 + py1,

f(ϕ3a + ϕ2ap(y0 + py1) + ϕap2(y2
0 + 2py0y1) + (py0)3) ≡ 0 mod 〈p4, ϕ4a〉 . (7.3)

The idea is to first solve this equation modulo 〈p3, ϕ4a〉. Since f ≡ ϕe mod p, e ≥ 2a,

variable y1 is redundant while solving this equation modulo p3. The following lemma finds

all representative pairs (a0, i0) for y0, such that, E(a0 +ϕi0y0 + py1) ≡ 0 mod 〈p3, ϕ4a〉 for all

y0, y1 ∈ R. Alternatively, we can state this in the polynomial ring R[y0, y1]. Dividing by p3,

we will be left with an equation modulo the principal ideal 〈ϕ4a〉 (of Fp[x]).

Lemma 7.3.4 (Reduction to characteristic p). We efficiently compute a unique set S0 of all

representative pairs (a0, i0), where a0 ∈ R0 and i0 ∈ N, such that,

E((a0 + ϕi0y0) + py1) = p3E′(y0, y1) mod 〈p4, ϕ4a〉

for a polynomial E′(y0, y1) ∈ R0[y0, y1] (depending on (a0, i0)). Moreover,

1. |S0| ≤ 2 and, If our algorithm fails to find E′, then Eqn. 7.3 has no solution.

2. E′(y0, y1) =: E1(y0) + E2(y0)y1, where E1 ∈ R0[y0] is cubic in y0 and E2 ∈ R0[y0] is

linear in y0.

3. For every root y ∈ R of E there exists (a0, i0) ∈ S0 and (a1, a2) ∈ R × R, such that

y = (a0 + ϕi0a1) + pa2 and E′(a1, a2) ≡ 0 mod 〈p, ϕ4a〉.

We think of E′ as the quotient E((a0 +ϕi0y0)+py1)/p3 in the polynomial ring R0[y0, y1]; and

would work with it instead of E in the root-finding algorithm.

99

Proof. Looking at Eqn. 7.3 modulo p2,

fϕ2a(ϕa + py0) ≡ 0 mod 〈p2, ϕ4a〉.

Substituting f = ϕe + ph1, we get (ϕe + ph1)(ϕ3a + ϕ2apy0) ≡ 0 mod 〈p2, ϕ4a〉. Implying,

ph1ϕ
3a ≡ 0 mod 〈p2, ϕ4a〉. Using Claim 7.1.3 the above equation implies that,

h1 ≡ 0 mod 〈p, ϕa〉 , (7.4)

is a necessary condition for y0 to exist.

We again look at Eqn. 7.3, but modulo p3 now: f(ϕ3a + ϕ2apy0 + ϕap2y2
0) ≡ 0 mod

〈p3, ϕ4a〉.

Notice that y1 is not present because of its coefficient: p2fϕ2a ≡ 0 mod 〈p3, ϕ4a〉. Sub-

stituting f = ϕe + ph1, we get,

(ϕe + ph1)(ϕ3a + ϕ2apy0 + ϕap2y2
o) ≡ 0 mod 〈p3, ϕ4a〉.

Removing the coefficients of y0 which vanish modulo 〈p3, ϕ4a〉,

ϕe+ap2y2
0 + ϕ3aph1 + ϕ2ap2h1y0 ≡ 0 mod 〈p3, ϕ4a〉.

From Eqn. 7.4, h1 can be written as ph1,1 + ϕah1,2, so

p2
(
ϕe+ay2

0 + ϕ3ah1,2y0 + ϕ3ah1,1

)
≡ 0 mod 〈p3, ϕ4a〉.

We can divide by p2ϕ3a using Claim 7.1.3 to get an equation modulo ϕa in the ring Fp[x].

This is a quadratic equation in y0. Using Theorem 7.3.2, we find the solution set S0 with at

most two representative pairs: for (a0, i0) ∈ S0, every y ∈ a0 + ϕi0 ∗+p∗ satisfies,

E ≡ 0 mod 〈p3, ϕ4a〉 .

In other words, upon substituting y = a0 + ϕi0y0 + py1 in E(y), we get

E(a0 + ϕi0y0 + py1) ≡ p3E′(y0, y1) mod 〈p4, ϕ4a〉,

for a “bivariate” polynomial E′(y0, y1) ∈ R0[y0, y1]. This sets up the correspondence between

100

the roots of E and E′.

Substituting (a0 +ϕi0y0 +py1) in Eqn. 7.3, we notice that E′(y0, y1) has the form E1(y0)+

E2(y0)y1 for a linear E2 and a cubic E1.

Finally, this reduction is constructive, because of Lemma 7.1.4 and Theorem 7.3.2, giving

a randomized poly-time algorithm.

7.3.3 Finding Roots of a Special Bivariate E ′(y0, y1) modulo 〈p, ϕ4a〉

The final obstacle is to find roots of E′(y0, y1) modulo 〈ϕ4a〉 in Fp[x]. The polynomial

E′(y0, y1) = E1(y0) + E2(y0)y1 is special because E2 ∈ R0[y0] is linear in y0.

For a polynomial u ∈ Fp[x][y] we define valuation valϕ(u) to be the largest r such that

ϕr|u. Our strategy is to go over all possible valuations 0 ≤ r ≤ 4a and find y0, such that,

• E1(y0) has valuation at least r.

• E2(y0) has valuation exactly r.

From these y0’s, y1 can be obtained by ‘dividing’ E1(y0) by E2(y0). The lemma below

shows that this strategy captures all the solutions.

Lemma 7.3.5 (Bivariate solution). A pair (u0, u1) ∈ R0 × R0 satisfies an equation of the

form E1(y0) + E2(y0)y1 ≡ 0 mod 〈p, ϕ4a〉 if and only if valϕ(E1(u0)) ≥ valϕ(E2(u0)).

Proof. Let r be valϕ(E2(u0)), where r is in the set {0, 1, . . . , 4a}. If valϕ(E1(u0)) ≥ valϕ(E2(u0))

then set u1 ≡ −(E1(u0)/ϕr)/(E2(u0)/ϕr) mod 〈p, ϕ4a−r〉. The pair (u0, u1) satisfies the re-

quired equation. (Note: If r = 4a then we take u1 = ∗.)

Conversely, if r′ := valϕ(E1(u0)) < valϕ(E2(u0)) ≤ 4a then, for every u1,

valϕ(E1(u0) + E2(u0)u1) = r′ ⇒ E1(u0) + E2(u0)u1 6≡ 0 mod 〈p, ϕ4a〉 .

We can efficiently find all representative pairs for y0, at most three, such that E1(y0) has

valuation at least r (using Theorem 7.3.2). The next lemma shows that we can efficiently

filter all y0’s, from these representative pairs, that give valuation exactly r for E2(y0).

101

Lemma 7.3.6 (Reduce to a unit E2). Given a linear polynomial E2(y0) ∈ R0[y0] and an

r ∈ [4a−1], let (b, i) be a representative pair modulo 〈p, ϕr〉, i.e., E2(b+ϕi∗) ≡ 0 mod 〈p, ϕr〉.

Consider the quotient E′2(y0) := E2(b+ ϕiy0)/ϕr.

If E′2(y0) does not vanish identically modulo 〈p, ϕ〉, then there exists at most one θ ∈

R0/〈ϕ〉 such that E′2(θ) ≡ 0 mod 〈p, ϕ〉, and this θ can be efficiently computed.

Proof. Suppose E2(b+ϕiy0) ≡ u+vy0 ≡ 0 mod 〈p, ϕr〉. Since y0 is formal, we get valϕ(u) ≥ r

and valϕ(v) ≥ r. We consider the three cases (with respect to these valuations),

1. valϕ(u) ≥ r and valϕ(v) = r: E′2(θ) 6≡ 0 mod 〈p, ϕ〉, for all θ ∈ R0/〈ϕ〉 except θ =

(−u/ϕr)/(v/ϕr) mod 〈p, ϕ〉.

2. valϕ(u) = r and valϕ(v) > r: E′2(θ) 6≡ 0 mod 〈p, ϕ〉, for all θ ∈ R0/〈ϕ〉.

3. valϕ(u) > r and valϕ(v) > r: E′2(y0) vanishes identically modulo 〈p, ϕ〉, so this case is

ruled out by the hypothesis.

There is an efficient algorithm to find θ, if it exists; because the above proof only requires

calculating valuations which entails division operations in the ring.

Before the algorithm let us illustrate the process on Example 13.

Example 14. Consider the polynomial f from Example 13. We want to find factors of

f ≡ x4 + 18x3 + 33x2 + 54x+ 9 mod 81. Fix ϕ := x ∈ Z[x] and a = 2.

Let us apply the reduction theorem (Thm. 7.2.1): (ϕa − py) is a factor of f mod p4 iff

E := f · (ϕ3a + ϕ2a(py) + ϕa(py)2 + (py)3) ≡ 0 mod 〈p4, ϕ4a〉.

Putting the values ϕ = x, p = 3, a = 2 and substituting y = y0 + 3y1 [Lemma 7.3.1] we have,

(x4+18x3+33x2+54x+9)[x6+x43(y0+3y1)+x29(y0+3y1)2+27(y0+3y1)3] ≡ 0 mod 〈81, x8〉.

⇔ 9x4[(6x2y0 + 6x2)y1 + (3y3
0 + y2

0(x2 + 6) + y0(6x3 + 2x2 + 3) + 6x3 + x2)] ≡ 0 mod 〈81, x8〉.

Using Claim 7.1.3 to divide both sides by 9x4 we get the equation,

(6x2y0 + 6x2)y1 + 3y3
0 + y2

0(x2 + 6) + y0(6x3 + 2x2 + 3) + 6x3 + x2 ≡ 0 mod 〈9, x4〉. (7.5)

102

Reducing the last equation mod 〈3, x4〉 we have,

x2y2
0 + (2x2)y0 + x2 ≡ 0 mod 〈3, x4〉.

⇔ y2
0 + 2y0 + 1 ≡ 0 mod 〈3, x2〉.

Notice that this is the same equation as for the case of k = 3 in Example 13.

Applying [Pan95, BLQ13] (Thm. 7.3.2) on last equation, we get exactly one representative

root y0 = 2 + x∗.

We substitute y0 → 2 + xy0 in Equation 7.5 and simplify to get,

(2xy0)y1 + xy3
0 + 2y2

0 + (2x)y0 ≡ 0 mod 〈3, x2〉. (7.6)

Equation 7.6 gives us E1(y0) = xy3
0 + 2y2

0 + (2x)y0 mod 〈3, x2〉 and E2(y0) = 2xy0 mod

〈3, x2〉.

We want the values of y0’s, such that, valx(E1(y0)) is at least valx(E2(y0)). Since

valx(E2(y0)) is 1, we are forced to have y0 = 0 mod 〈3, x〉. In that case, Equation 7.6 is

identically zero, so y1 is free to take any value mod 〈3, x2〉.

Taking y1 = 0 and y0 = 2 + 0 we have the corresponding factor (x2 − 3(2 + 0)) ≡ (x2 +

75) mod 81. The co-factor of this is (x2 + 18x+ 39), giving

f ≡ x4 + 18x3 + 33x2 + 54x+ 9 ≡ (x2 + 75)(x2 + 18x+ 39) mod 81.

7.3.4 Algorithm to Find Roots of E(y)

We have all the ingredients to give the algorithm for finding roots of E(y) modulo ideal

〈p4, ϕ4a〉 of Z[x].

Input: A polynomial E ∈ R[y] defined as E := f · (ϕ3a + ϕ2a(py) + ϕa(py)2 + (py)3).

Output: A set Z ⊆ R0 and a bad set Z ′ ⊆ R0, such that, for each y0 ∈ Z − Z ′, there are

(efficiently computable) y1 ∈ R0 (Theorem 7.3.7) satisfying E(y0 + py1) ≡ 0 mod 〈p4, ϕ4a〉.

These are exactly the roots of E.

As we will show in Theorem 7.3.7 both the sets Z and Z ′ can be described by O(a) many

representatives. The representation is efficient as a ≤ d. Hence, a y0 ∈ Z − Z ′ can be picked

efficiently. We provide the correctness of Algorithm 6 in Theorem 7.3.7.

103

Algorithm 6 Finding all roots of E(y) in R

1: Given E(y0 + py1), using Lemma 7.3.4, get the set S0 of all representative pairs (a0, i0),

where a0 ∈ R0 and i0 ∈ N, such that p3|E((a0 + ϕi0y0) + py1) mod 〈p4, ϕ4a〉.

2: Initialize sets Z = {} and Z ′ = {}; seen as subsets of R0.

3: for each (a0, i0) ∈ S0 do

4: Substitute y0 7→ a0 + ϕi0y0, let E′(y0, y1) = E1(y0) + E2(y0)y1 mod 〈p, ϕ4a〉 be the

polynomial obtained from Lemma 7.3.4.

5: If E2(y0) 6≡ 0 mod 〈p, ϕ〉 then find (at most one) θ ∈ R0/〈ϕ〉 such that E2(θ) ≡

0 mod 〈p, ϕ〉. Update Z ← Z ∪ (a0 + ϕi0∗) and Z ′ ← Z ′ ∪ (a0 + ϕi0(θ + ϕ∗)).
6: for each possible valuation r ∈ [4a] do

7: Initialize sets Zr = {} and Z
′
r = {}.

8: Call Root-Find(E1, ϕr) to get a set S1 of representative pairs (a1, i1) where

a1 ∈ R0 and i1 ∈ N such that E1(a1 + ϕi1y0) ≡ 0 mod 〈p, ϕr〉.
9: for each (a1, i1) ∈ S1 do

10: Analogously consider E′2(y0) := E2(a1 + ϕi1y0) mod 〈p, ϕ4a〉.

11: Call Root-Find(E′2, ϕr) to get a representative pair (a2, i2) (∵ E′2 is linear),

where a2 ∈ R0 and i2 ∈ N such that E′2(a2 + ϕi2y0) ≡ 0 mod 〈p, ϕr〉.
12: if r = 4a then

13: Update Zr ← Zr ∪ (a1 + ϕi1(a2 + ϕi2∗)) and Z
′
r ← Z

′
r ∪ {}.

14: else if E′2(a2 + ϕi2y0) 6≡ 0 mod 〈p, ϕr+1〉 then

15: Get a θ ∈ R0/〈ϕ〉 (Lemma 7.3.6), if it exists, such that E′2(a2 + ϕi2(θ +

ϕy0)) ≡ 0 mod 〈p, ϕr+1〉. Update Z
′
r ← Z ′r ∪ (a1 + ϕi1(a2 + ϕi2(θ + ϕ∗))).

16: Update Zr ← Zr ∪ (a1 + ϕi1(a2 + ϕi2∗)).

17: Update Z ← Z ∪ (a0 + ϕi0Zr) and Z ′ ← Z ′ ∪ (a0 + ϕi0Z
′
r).

18: Return Z and Z ′.

Theorem 7.3.7. The output of Algorithm 6 (the set Z − Z ′) contains exactly those y0 ∈ R0

for which there exist some y1 ∈ R0, such that, y = y0 + py1 is a root of E in R. We can

compute the set of y1 corresponding to a given y0 ∈ Z − Z ′ in poly(deg f, log p) time.

104

Thus, we efficiently describe (and exactly count) the roots y = y0 + py1 + p2y2 in R of E,

where y0, y1 ∈ R0 are as above and y2 can assume any value from R.

Proof. The algorithm intends to output roots y of equation E ≡ f ·(ϕ3a+ϕ2a(py)+ϕa(py)2 +

(py)3) ≡ 0 mod 〈p4, ϕ4a〉, where y = y0 + py1 + p2y2 with y0, y1 ∈ R0 and y2 ∈ R. From

Lemma 7.3.1, any value of y2 in Fp makes y a root, and we encode this by substituting the

symbol ∗ for y2.

Using Lemma 7.3.4, Algorithm 6 partially fixes y0 from the set S0 and reduces the problem

to finding roots of an E′(y0, y1) mod 〈p, ϕ4a〉. In other words, if we can find all roots (y0, y1)

of E′(y0, y1) mod 〈p, ϕ4a〉, then we can find (and count) all roots of E(y) mod 〈p4, ϕ4a〉. This

is accomplished by Step 1. From Lemma 7.3.4, |S0| ≤ 2, so loop at Step 3 runs only for a

constant number of times.

Using Lemma 7.3.4, E′(y0, y1) ≡ E1(y0) + E2(y0)y1 mod 〈p, ϕ4a〉 for a cubic polynomial

E1 ∈ R0[y0] and a linear polynomial E2 ∈ R0[y0].

We find all solutions of E′(y0, y1) by going over all possible valuations of E2(y0) with

respect to ϕ. The case of valuation 0 is handled in Step 5 and valuation 4a is handled in Step

12. For the remaining valuations r ∈ [4a − 1], Lemma 7.3.5 shows that it is enough to find

(z0, z1) ∈ R0 ×R0 such that ϕr|E1(z0) and ϕr||E2(z0).

Notice that the number of valuations is bounded by 4a = O(deg f). At Step 6, the algo-

rithm runs through the possible values of the valuation r of E2(y0) ∈ R0[y0] and subsequent

computation finds all representative roots b+ϕi∗ efficiently (using Theorem 7.3.2), such that,

E1(b+ ϕiy0) ≡ E2(b+ ϕiy0) ≡ 0 mod 〈p, ϕr〉 .

The representative root b + ϕi∗ is denoted by a1 + ϕi1(a2 + ϕi2∗) in Steps 13 and 16 of

Algorithm 6.

Finally, we need to filter out those y0’s for which E2(b + ϕiy0) ≡ 0 mod 〈p, ϕr+1〉. This

can be done efficiently using Lemma 7.3.6, where we get a unique θ ∈ R0/〈ϕ〉 for which,

E2(b+ ϕi(θ + ϕy0)) ≡ 0 mod 〈p, ϕr+1〉.

We store partial roots in two sets Zr and Z ′r, where Z ′r contains the bad values filtered

105

out by Lemma 7.3.6 as b+ ϕi(θ + ϕ∗) and Zr contains all possible roots b+ ϕi∗. So, the set

Zr −Z ′r contains exactly those elements z0 for which there exists z1 ∈ R0, such that, the pair

(z0, z1) is a root of E′(y0, y1) mod 〈p, ϕ4a〉.

Note that size of each set S1 obtained at Step 9 is bounded by three using Theorem 7.3.2

(E1 is at most a cubic in y0). Again using Theorem 7.3.2, we get at most one pair (a2, i2) at

Step 11 for some a2 ∈ R0 and i2 ∈ N (E′2 is linear in y0).

Now, for a fixed z0 ∈ Zr − Z ′r we can calculate all z1’s by the equation

z1 ≡ z̃1 := −(C(y0)/L(y0)) mod 〈p, ϕ4a−r〉.

Here C(y0) := E1(z0)/ϕr mod 〈p, ϕ4a−r〉 and L(y0) := E2(z0)/ϕr mod 〈p, ϕ4a−r〉. So, z1 ∈ R0

comes from the set z1 ∈ z̃1 + ϕ4a−r∗. This can be done in poly(deg f, log p) time.

Finally, the sets Z = a0 + ϕi0Zr and Z ′ = a0 + ϕi0Z ′r, for (a0, i0) ∈ S0 and corresponding

valid r ∈ {0, . . . , 4a − 1}, returned by Algorithm 6, describe the y0 for the roots of E(y0 +

py1) mod 〈p4, ϕ4a〉. The number of representatives in each of these sets is O(a), since |S0| ≤ 2

and sizes of Zr and Z ′r are only constant.

Since we can efficiently describe these y0’s and corresponding y1’s, and we know their

precision, we can count all roots y = y0 + py1 + p2∗ ⊆ R of E(y) mod 〈p4, ϕ4a〉.

7.3.5 Proof of Main Results

We have all the ingredients available to prove our main results.

Proof of Theorem 7.0.1. We prove that given an arbitrary univariate f ∈ Z[x] and a prime

p, a non-trivial factor of f modulo p4 can be obtained in randomized poly(deg f, log p) time

(or the irreducibility of f mod p4 gets certified).

If f ≡ f1f2 mod p, where f1, f2 are two polynomials coprime in Fp[x], then we can effi-

ciently lift this factorization to the ring (Z/〈p4〉)[x], using Hensel lemma 2.2.2, to get non-

trivial factors of f mod p4.

For the remaining case, f ≡ ϕe mod p for an irreducible polynomial ϕ(x) modulo p. The

question of factoring f mod p4 then reduces to root finding of a polynomial E(y) mod 〈p4, ϕ4a〉

by Reduction theorem (Theorem 7.2.1). Using Theorem 7.3.7, we get all such roots and hence

106

a non-trivial factor of f mod p4 is found. If there are no roots y ∈ R of E, for all a ≤ e/2,

then the polynomial f is irreducible (by symmetry, if there is a factor for a > e/2 then there

is a factor for a ≤ e/2).

Proof of Theorem 7.0.2. We are given a univariate f ∈ Z[x] of degree d and a prime p, such

that, f mod p is a power of an irreducible polynomial ϕ(x). So, f is of the form ϕ(x)e +

ph(x) mod p4, for an integer e ∈ N and a polynomial h ∈ (Z/〈p4〉)[x] of degree ≤ d (also,

degϕe ≤ d). By unique factorization over the ring Fp[x], if g̃ is a factor of f mod p then,

g̃ ≡ ṽϕa mod p for a unit ṽ ∈ Fp.

First, we show that it is enough to find all the lifts of g̃, such that, g̃ ≡ ϕa mod p for an

a ≤ e. If g̃ ≡ ṽϕa mod p, then any lift has the form g(x) ≡ v(x)(ϕa − py) mod p4 for a unit

v(x) ∈ (ṽ + p∗) ⊆ (Z/〈p4〉)[x]. Any such g(x) maps uniquely to a g1(x) := ṽ−1g(x) mod p4,

which is a lift of ϕa mod p. So, it is enough to find all the lifts of ϕa mod p.

We know that any lift g ∈ (Z/〈p4〉)[x] of g̃(x), which is a factor of f , must be of the form

ϕa − py mod p4 for a polynomial y ∈ (Z/〈p4〉)[x]. By Reduction theorem (Theorem 7.2.1),

we know that finding such a factor is equivalent to solving for y in the equation E(y) ≡

0 mod 〈p4, ϕ4a〉. By Theorem 7.3.7, we can find all such roots y in randomized poly(d, log p)

time, for a ≤ e/2.

If a > e/2 then we replace a by b := e − a, as b ≤ e/2, and solve the equation E(y) ≡

0 mod 〈p4, ϕ4b〉 using Theorem 7.3.7. This time the factor corresponding to y will be, g ≡

f/(ϕb − py) ≡ E(y)/ϕ4b mod p4, using Reduction theorem (Theorem 7.2.1).

The number of lifts of g̃(x) which divide f mod p4 is the count of y’s that appear above.

This is efficiently computable via Algorithm 6.

7.4 Barriers to extension modulo higher powers pk

The reader may wonder about polynomial factoring when k is greater than 4. In this section

we will discuss the issues in applying our techniques to factor f(x) mod p5.

Given f ≡ ϕe mod p, finding one of its factor ϕa − py mod p5, for a ≤ e/2 and y ∈

107

(Z/〈p5〉)[x], is reduced to solving the equation

E := f · (ϕ4a + ϕ3a(py) + ϕ2a(py)2 + ϕa(py)3 + (py)4) ≡ 0 mod 〈p5, ϕ5a〉 (7.7)

By Lemma 7.3.1, the roots of E mod 〈p5, ϕ5a〉 are of the form y = y0 + py1 + p2y2 + p3∗

in R, where y0, y1, y2 ∈ R0 need to be found.

First issue. The first hurdle comes when we try to reduce root-finding modulo the bi-

generated ideal 〈p5, ϕ5a〉 ⊆ Z[x] to root-finding modulo the principal ideal 〈ϕ5a〉 ⊆ Fp[x]. In

the case k = 4, Lemma 7.3.4 guarantees that we need to solve at most two related equations of

the form E′(y0, y1) ≡ 0 mod 〈p, ϕ4a〉 to find exactly the roots of E mod 〈p4, ϕ4a〉. Below, for

k = 5, we show that we have exponentially many candidates for E′(y0, y1, y2) ∈ R0[y0, y1, y2]

and it is not clear if there is any compact efficient representation for them.

Putting y = y0 + py1 + p2y2 in Eqn. 7.7 we get,

E(y) =: E1(y0) + E2(y0)y1 + E3(y0)y2 + (fϕ2ap4)y2
1 ≡ 0 mod 〈p5, ϕ5a〉, (7.8)

where E1(y0) := fϕ4a+fϕ3apy0 +fϕ2ap2y2
0 +fϕap3y3

0 +fp4y4
0 is a quartic in R[y0], E2(y0) :=

fϕ3ap2 + fϕ2a2p3y0 + fϕa3p4y2
0 is a quadratic in R[y0] and E3(y0) := fϕ3ap3 + fϕ2a2p4y0 is

linear in R[y0].

To divide Eqn. 7.8 by p3, we go mod 〈p3, ϕ5a〉 obtaining

E(y) ≡ E1(y0) ≡ fϕ4a + fϕ3apy0 + fϕ2ap2y2
0 ≡ 0 mod 〈p3, ϕ5a〉,

a univariate quadratic equation which requires the whole machinery used in the case k = 3.

We get this simplified equation since E3(y0) ≡ 0 mod 〈p3, ϕ5a〉 and E2(y0) ≡ fϕ3ap2 ≡

ϕe−2aϕ2a+3ap2 ≡ 0 mod 〈p3, ϕ5a〉.

But, to really reduce Eqn. 7.8 to a system modulo the principal ideal 〈ϕ5a〉 ⊆ Fp[x], we

need to divide it by p4. So, we go mod 〈p4, ϕ5a〉:

E(y) ≡ E
′
1(y0) + E

′
2(y0)y1 ≡ 0 mod 〈p4, ϕ5a〉

where E
′
1(y0) ≡ E1(y0) mod 〈p4, ϕ5a〉 is a cubic in R[y0] and E

′
2(y0) ≡ E2(y0) mod 〈p4, ϕ5a〉

is linear in R[y0]. This requires us to solve a special bivariate equation which requires the

108

machinery used in the case k = 4.

Now, the problem reduces to computing a solution pair (y0, y1) ∈ (R0)2 of this bivariate

equation. We can apply the idea used in Algorithm 6 to get all valid y0 efficiently, but

since y1 is a function of y0, we need to compute exponentially many y1’s. So, there seem to

be exponentially many candidates for E′(y0, y1, y2), that behaves like E(y)/p4 and lives in

(Fp[x]/〈ϕ5a〉)[y0, y1, y2]. At this point, we are forced to compute all these E′s, as we do not

know which one will lead us to a solution of Eqn. 7.8.

Second issue. Even if we resolve the first issue and get a valid E′, we are left with a

trivariate equation to be solved mod 〈p, ϕ5a〉 (Eqn. 7.8 after shifting y0 and y1 then dividing

by p4). We could do this when k was 4, because we could easily write y1 as a function of y0.

Though, it is unclear how to solve this trivariate equation now as it is nonlinear in both y0

and y1.

For k > 5 the difficulty will only increase because of the recursive nature of Eqn. 7.7 with

more and more unknowns (with higher degrees).

7.5 Conclusion

The study of [vzGH98, vzGH96] sheds some light on the behaviour of the factoring problem

for integral polynomials modulo prime powers. It shows that for “large” k the problem is

similar to the factorization over p-adic fields (already solved efficiently by [CG00]). But, for

“small” k the problem seems hard to solve in polynomial time. We do not even know a

practical algorithm.

This motivated us to study the case of constant k, with the hope that this will help us

invent new tools. In this direction, we made significant progress by giving a unified method to

factor f mod pk for k ≤ 4. We also refined Hensel lifting for k ≤ 4, by giving all possible lifts

of a factor of f mod p, in the classically hard case of f mod p being a power of an irreducible.

We gave a general framework (for any k) to work on, by reducing factoring in a big ring

to root-finding in a smaller ring. In the next chapter, we will further extend this reduction

to get more general factoring algorithm.

Chapter 8

Low Degree Factoring via Solving

System of Polynomials

Efficiently factoring a univariate polynomial f ∈ Z[x] modulo a prime power pk is a major

open problem, when k is constant. Chapter 7 established that factoring f mod pk is efficient,

when k ≤ 4. In this chapter we present the first general factoring algorithm which is efficient

for constant k but with one restriction– the degree of the factors we find is constant. In

particular, if f is a constant degree univariate polynomial then we can factor it efficiently.

We achieve this by extending the reduction given in Chapter 7 to get a new reduction which

is efficient when k is constant. Essentially in the constant k regime, finding a constant

degree factor of f mod pk is reduced to finding a common zero of a system of constant-variate

polynomials of constant degree modulo pk. We then use the method of ideals to efficiently

solve a system of n-variate polynomial equations over a Galois ring of characteristic pk when

n+ k is constant.

8.1 Our Results

In the constant k regime, we efficiently compute a constant-degree factor of f(x) mod pk

thereby giving the first randomized polynomial time algorithm to factor a fixed degree uni-

variate polynomial into irreducibles.

109

110

Theorem 8.1.1 (Factoring). Given a univariate polynomial f ∈ Z[x] and a prime-power pk,

in binary, with k fixed. We can find a constant-degree factor g of f mod pk in randomized

poly(deg(f), log p)-time; or decide that none exists.

The difficult case in factoring is when f ≡ ϕe mod p for a ϕ ∈ Z[x] which is irreducible

mod p. We call e to be the ramification-degree of f . Our proof method provides factors of

constant ramification degree which are more general factors.

Corollary 8.1.2 (Low ramification factors). Given f ∈ Z[x] and prime-power pk, with k

constant. We can find a factor g of f mod pk in randomized poly(deg(f), log p)-time, where

the ramification-degree of g is at most a given constant; or decide that no such factor exists.

The brute-force approach takes time pΩ(kδ); which is exponential even for fixed k and fixed

ramification-degree δ. Our low degree factoring result is achieved by solving Search Hilbert’s

nullstellensatz SHN over Galois rings when k is constant.

Theorem 8.1.3 (SHNpk). Given a system of n-variate polynomials f1, . . . , fm ∈ Z[z,x]/〈pk, ϕ(z)〉

of degrees at most d, for a prime p; and an irreducible polynomial ϕ(z) ∈ Fp[z] defining the

Galois ring G := Z[z]/〈pk, ϕ(z)〉. We can find a common root of the system in G, in random-

ized poly(dcnk ,m,deg(ϕ) log p)-time; where cnk ≤ (nk)O((nk)2).

Theorem 8.1.3 is efficient when n + k is constant. Recall that even if k = 1, decision

version of SHN is NP-hard for unbounded n.

8.2 Finding Low Degree Factors modulo Small Prime Powers

In this section we will prove Theorem 8.1.1 and Corollary 8.1.2 i.e, we show how to efficiently

find a ‘low’ ramification-degree factor of f(x) mod pk in randomized polynomial time. We

achieve this via first reducing the problem, in Sections 8.2.1 and 8.2.2, to finding a common

zero of a system of multivariate polynomial equations over a Galois ring of characteristic pk.

Assume the input f ∈ Z[x] to be monic mod pk (leading coefficient 1) as we can always

remove the factors, which are units in the ring (Z/〈pk〉)[x], by division. Also assume f ≡

ϕ(x)e + p · h(x) mod pk (i.e, f ≡ ϕe mod p), where ϕ ∈ Z[x] is an irreducible polynomial

111

over Fp. Otherwise, using coprime factorization mod p, we can efficiently find a non-trivial

factor of f mod pk using Hensel’s Lemma 2.2.2. Let b := deg(ϕ), with deg(f) = b · e and

deg(h) < deg(f).

In the previous chapter, finding a ramification-degree δ factor is reduced to finding a root

of an E(y) ∈ Z[x, y] modulo a bi-generated ideal 〈pk, ϕ(x)`〉 where degy(E) < k and ` = δ · k.

In Section 8.2.1, we will focus on this root-finding job and reduce this to root finding modulo

a simpler ideal 〈pk, ϕ(z), (x− z)`〉. Then in Section 8.2.2, we further reduce this problem to

solving a system of multivariate polynomial equations modulo 〈pk, ϕ(z)〉 (namely, over the

Galois ring).

8.2.1 Factoring over the Galois Ring

We have f = ϕe + ph and prime power pk. Consider the Galois ring G := Z[z]/〈pk, ϕ(z)〉

where z ∈ G be a root of the polynomial ϕ(x). Denote the roots of ϕ(x) in G by zi with

z0 := z for i ∈ {0, . . . , b − 1} (recall b = deg(ϕ)). Then, we know that zi ≡ zp
i

mod p for all

i ∈ {0, . . . , b− 1}. Let us denote the simpler Galois ring Z/〈pk〉 by G0.

By Lemma 2.2.2, f in G factors as f =
∏b−1
i=0 fi, where fi(x) = (x − zi)e + phi(x) in G.

In particular, f0 = (x − z)e + ph0(x). We now use Proposition 2 to prove the following two

lemmas, for connecting ramified factors of f in G0[x] to ramified factors of fi’s in G[x].

Notation: We often denote u(x, z) ∈ G[x] by u(z) to highlight the relevant parameter ‘z’.

Lemma 8.2.1. If (ϕδ − py) | f(x) mod pk, for y ∈ G0[x], then for some u(x, z) ∈ G[x],

((x− zi)δ − pu(zi)) | fi(x) mod 〈pk, ϕ(z)〉, for each i ∈ {0, . . . , b− 1}.

Proof. Let g := ϕδ − py. Then g | f in G0[x] and so in G[x]. Now (x − z)δ is a factor of

g mod p, as g ≡ ϕδ mod p, and so there is an u ∈ G[x] such that ((x− z)δ − pu(z)) is a factor

of g (Hensel Lemma 2.2.2); thus factor of f (since g | f) in G[x]. Applying Proposition 2, we

see that gi := ((x− zi)δ − pu(zi)) is a factor of f , for each i ∈ {0, . . . , b− 1}. Now, gi divides

only fi mod p (by Hensel Lemma 2.2.2); and this finishes the proof.

Lemma 8.2.2. If there exists u ∈ G[x] s.t. ((x− z)δ − pu(z)) | f(x) mod 〈pk, ϕ(z)〉 then we

can compute a y ∈ G0[x] such that (ϕδ − py) | f(x) mod pk.

112

Proof. Let g0 := (x− z)δ − pu(z), and gi := (x− zi)δ − pu(zi), for all i ∈ [b− 1]. By applying

automorphisms ψi (Proposition 2) on g0, for i ∈ [b− 1], we can easily compute all other gi’s.

Also, by applying automorphisms ψi, for i ∈ [b− 1], we see that each gi divides f(x) in G[x]

(since ψi keeps G0 fixed and f ∈ G0[x]).

Now define g(x, z) :=
∏b−1
i=0 gi in G[x]. We see that all gi’s are coprime, since they are

coprime over the field G/〈p〉 (i.e, (x−zi)δ is co-prime to (x−zj)δ for i 6= j). Hence, g(x, z) | f

in G[x].

Applying map ψ1 on g(x, z) we see that g(x, z) remains unchanged over G; as gi’s permute

among each other. But ψ1 keeps G0, and only G0, fixed (Proposition 2); hence g ∈ G0[x] of

degree δ · b. So, we can rewrite g as g =: ϕδ − py, for a y ∈ G0[x].

The following extension of Reduction Theorem 7.2.1, from G0 to the Galois ring G, is

evident.

Theorem 8.2.3 (Extended Reduction). We have ((x − zi)δ − pu(zi)) | fi(x) mod 〈pk, ϕ(z)〉

iff E(u) ≡ 0 mod 〈pk, ϕ(z), (x− zi)`〉, for all i ∈ {0, . . . , b− 1}; where ` := δ · k and E(u) :=

fi(x)[(x− zi)δ(k−1) + (x− zi)δ(k−2)(pu) + . . .+ (pu)k−1].

Thus we now focus on finding a root of E(u) in the ring G[x]/〈(x− z)`〉.

8.2.2 Reduction to Root Finding in Galois Rings

In this section we show that finding a root of polynomial E(u), in the ring G[x]/〈(x − z)`〉,

is equivalent to solving a system of ` polynomial equations in ` variables of degree same as

degy(E) ≤ k − 1 over Galois ring G. We achieve this by simply eliminating the variable x.

Theorem 8.2.4 (Reduction to HN). Given E(u) ∈ (Z[z, x])[u] and the ring G[x]/〈(x− z)`〉

where G = Z[z]/〈pk, ϕ(z)〉 as before. For new variable tuple u = (u0, . . . , u`−1) define a

polynomial Enew(u) ∈ (Z[z, x])[u] as Enew(u) := E(u0 + (x− z)u1 + · · ·+ (x− z)`−1u`−1).

Let F(u) := {E0, . . . , E`−1} be a system of polynomial equations, where Ei(u) ∈ (Z[z])[u]

with degz(Ei) < deg(ϕ(z)) and degu(Ei) < k, such that

Enew(u) ≡ E0(u) + E1(u) · (x− z) + · · ·+ E`−1(u) · (x− z)`−1 mod 〈pk, ϕ(z), (x− z)`〉.

113

Then for a ∈ G`, Enew(a) ≡ 0 mod 〈pk, ϕ(z), (x− z)`〉 iff F(a) ≡ 0 mod 〈pk, ϕ(z)〉.

Proof. Following the definition of Enew(u), we can rewrite Enew(u), for some polynomials

Ei(u) ∈ (Z[z])[u] as

Enew(u) = E0(u) + E1(u)(x− z) + · · ·+ E`−1(u)(x− z)`−1 .

Now, Enew(a) ≡ 0 mod 〈pk, ϕ(z), (x− z)`〉

⇐⇒ Enew(a) =: tx(x− z)`, for some tx ∈ G[x] .

⇐⇒ E0(a) + · · ·+ (x− z)`−1E`−1(a) = tx(x− z)` .

Since degree wrt x of LHS is at most `− 1, so (x− z)` can not divide it over G. So Ei(a)

vanishes in G, for each i ∈ {0, . . . , `− 1}. In other words, a is G-root of the system F(u).

Now we prove the other direction. Given that, Ei(a) ≡ 0 mod 〈pk, ϕ(z)〉, for each i ∈

{0, . . . , `− 1}. We easily deduce: Enew(a) ≡ 0 mod 〈pk, ϕ(z), (x− z)`〉 .

Moreover, this reduction is efficient when the parameter k is fixed; because degu(E) < k

and so Enew has at most
(
`+k
`

)
≤ (`+ k)k monomials.

8.2.3 Algorithm and Proofs

Input: Given f ∈ Z[x] and a prime-power pk such that f ≡ ϕe mod p, where ϕ ∈ Z[x] is

irreducible mod p; and deg(f) = b · e, where b := deg(ϕ).

Output: A ramification-degree-δ factor g(x) of f(x) mod pk.

Algorithm 7 Factoring f(x) mod pk

1: procedure Factor(f(x), pk)

2: Let g = ϕδ − p · y, where y = y(x) is an unknown such that g | f mod pk.

3: Consider Galois ring G := Z[z]/〈pk, ϕ(z)〉, where ϕ(x) splits completely and z is a

G-root of ϕ(x). (Other roots are conjugates of z, by Proposition 2.)

4: Factorize ϕ(x) over G/〈p〉 into b linear (coprime) factors using Theorem 2.2.1 and lift

to G using Hensel’s lifting to obtain a coprime factorization f =:
∏b−1
i=0 fi.

5: Over G, let g =:
∏b−1
i=0 gi be a coprime factorizations, such that gi | fi for all i (Lemma

8.2.1). Fix j ∈ {0, . . . , b− 1} and consider gj =: (x− z)δ − pu.

114

6: Using Theorem 8.2.3 reduce to root-finding question of E(u) ≡ 0 mod 〈pk, ϕ(z), (x −

z)`〉, where E(u) := fj · [(x− z)δ(k−1) + (x− z)δ(k−2)(pu) + · · ·+ (pu)k−1].

7: Substituting u→ u0 + (x− z)u1 + · · ·+ (x− z)`−1u`−1, compute E0(u), . . . , E`−1(u) ∈

G[u] such that

E(u) =: E0 + (x− z)E1 + · · ·+ (x− z)`−1E`−1 mod 〈pk, ϕ(z), (x− z)`〉.

8: Find a G-root (a0, . . . , a`−1) of the system F := {E0, . . . , E`−1} using Algorithm 9.

9: if no solution exists then return {}, i.e. no such factor g exists.

10: u := a0 + (x− z)a1 + · · ·+ (x− z)`−1a`−1 is a solution of E(u) mod 〈pk, ϕ(z), (x− z)`〉

(from Theorem 8.2.4). This gives us the factor gj = (x− z)δ − pu (Theorem 8.2.3).

11: Using G-automorphisms (Lemma 8.2.2 & Step 4), we can compute g = ϕδ − py from

gj .

12: return g

Remark 1. One can ask for a simpler Nullstellensatz approach: Why do we not reduce root-

finding of E(u) mod 〈pk, ϕ(z), (x − z)`〉 to directly solving a system of equations modulo p,

instead of modulo pk? For e.g., by further substituting ui → ui,0 +pui,1 + . . .+pk−1ui,k−1, for

each i ∈ {0, . . . , `− 1}, ui,j’s in Fp?

The issue is that we need to divide functions of ui,j’s by p; and this only makes sense

when we think of ui,j’s as p-adic.

Now we prove Theorem 8.1.1 in a way that already subsumes Corollary 8.1.2.

Proof of Theorem 8.1.1. We have f(x) = ϕ(x)e + ph(x) and prime-power is pk. A factor g

of f mod pk has the form g = ϕδ − py (ramification-degree δ) where we want to compute

y ∈ G0[x] such that deg(y) < δ deg(ϕ); to keep g monic.

Now over G, f and g have coprime factorizations as f =
∏b−1
j=0 fj and

∏b−1
j=0 gj . By

Lemma 8.2.1 if g | f mod pk then gj | fj over G, for all j. For a fixed i ∈ {0, . . . , b − 1}, let

fi =: (x− z)e + phi(x, z) and gi =: (x− z)δ − pu(x, z) (where u is unknown). Using Lemmas

8.2.1 and 8.2.2, it is sufficient to find unknown gi. Computing factorizations of f and ϕ (using

Hensel lifting 2.2.2) and getting g from gi (Lemma 8.2.2) takes time poly(deg(f), k log p).

115

Using Theorem 8.2.3, finding gi is reduced to finding a root, of E(u) := fi · [(x−z)δ(k−1) +

(x− z)δ(k−2)(pu) + · · ·+ (pu)k−1], in G[x]/〈(x− z)`〉, where ` := δk. Computing E(u) takes

time poly(deg(f), `, log p).

By Theorem 8.2.4, finding a root of E(u) in G[x]/〈(x− z)`〉 is reduced to finding G-root

of a system of `-variate ` polynomial equations F := {E0(u), . . . , E`−1(u)} of degree at most

k−1. Using Theorem 8.1.3, we get a solution of F in G. This immediately gives us a root u of

E(u) mod 〈pk, ϕ(z), (x−z)`〉; thus we find the factor gi = (x−z)δ−pu. The time complexity is

dominated by time taken to find a solution of F ; which is poly(deg(F)(`k)O((`k)2)
, log p,deg(f)).

Since deg(F) < k and ` = δk, so the total time taken is poly(k(δk2)O((δk2)2)
, log p,deg(f)).

Since δ + k is constant, the time complexity becomes poly(deg(f), log p).

8.3 Solving System of Polynomial Equations over Galois Rings

We are given a system of n-variate polynomials F := {f1(x), . . . , fm(x)} where fi(x) ∈ Ĝ[x];

Ĝ ∼= Zp[z]/〈ϕ(z)〉 is an unramified p-adic extension of Zp (ϕ ∈ Zp[z] is a monic univariate

which is irreducible modulo p). We want to find a common root of F in G := Ĝ/〈pk〉 for given

prime power pk. Note that G is a Galois ring and Ĝ is its Zp-lift. Also G/〈p〉 is equivalent to

a finite field Fq ∼= Z[z]/〈p, ϕ(z)〉 where q = pb and b := deg(ϕ).

This thesis contributes in developing the ideas and algorithms (Algorithm 9 and 8) for root

finding of F mod pk while giving proofs of only some important lemmas and theorems. Rest

of the proofs are only sketched and the ideas behind them explained. Remaining part of the

proofs have been developed in Chakrabarti’s master’s thesis [Cha22]. So we will occasionally

refer the reader to [Cha22] and the original paper [CDS22].

The section organisation is as follows: First in Section 8.3.1 we give some notations and

preliminary results to be used in later sections. Then in Section 8.3.2 we give the outline

and set the agenda for forthcoming sections. Section 8.3.4 gives the main algorithm for the

problem while the Section 8.3.3 gives a supporting ‘decomposition’ algorithm to be used as a

subroutine in the main algorithm. Finally in Section 8.3.5 we prove our main Theorem 8.1.3

and give its complexity.

116

8.3.1 Notations and Preliminaries

For an n-tuple a = (a1, . . . , an) and b = (b1, . . . , bn) in Fn, we have the following notations:

• ca + db = (ca1 + db1, . . . , can + dbn) for scalars c, d ∈ F,

• |a| = Σiai and a! = a1! · · · an!, where a ∈ Zn.

Definition 8.3.1 (Taylor expansion/series). For a polynomial f(x) of degree d over any field,

we can express it as

f(a + x) =
∞∑
`=0

∑
|i|=`

∂xif(a)

i!
·
n∏
j=1

x
ij
j

 , (8.1)

where ∂xif := ∂|i|f

∂x
i1
1 ...∂x

in
n

is an order-|i| partial derivative.

A root r of a polynomial f(x) ∈ F[x] is called singular or non-simple if all the first-order

derivatives f ′(x) (i.e., ∂f
∂xj

for all j ∈ [n]) vanish at r, otherwise it is called a simple or a

non-singular root.

A polynomial h ∈ F[x] which does not factor over its defining field F is simply called an

irreducible polynomial. An irreducible polynomial h ∈ F[x] is called absolutely irreducible if it

remains irreducible over algebraic closure F̄ otherwise it is called relatively irreducible. This

notion is particularly distinguished when the polynomial has more than one variable. An

irreducible univariate polynomial of degree more than one is always relatively irreducible as it

must factor over the algebraic closure of the defining field. This notion of irreducibility also

extends to polynomial ideals.

Lemma 8.3.2 (Folklore). If h ∈ F[x] is an irreducible polynomial and one of its zero is

non-singular then h must be absolutely irreducible. In other words, all the zeros of a relatively

irreducible polynomial are singular i.e., if h(a) = 0 then h′(a) = 0 where h′(x) is any non-zero

first order derivative.

The following lemma tells that an absolutely irreducible polynomial has a lot of roots.

Theorem 8.3.3 (Number of roots [Sch74]). An absolutely irreducible polynomial f(x) in n

variables of degree d has number of roots in the range, qn−1± ((d−1)(d−2)qn−1.5 +6d2qn−2),

over a big enough finite field Fq (namely, q > ω(n3d5)).

117

Following Lemma gives further properties of absolutely irreducible polynomials.

Lemma 8.3.4 (Hensel lifting). An absolutely irreducible polynomial f(x) in n variables of

degree d has at most O(d2 · qn−2) singular roots over a big enough finite field Fq i.e., almost

all the roots are non-singular. Further, each non-singular root can be efficiently lifted to G.

Proof sketch. We will only sketch the proof (omitting minute details). Following the definition

of singular roots we can see that they are exactly the common roots of f and f ′ (any non-zero

first order derivative). The algebraic set V := VFq(〈f, f ′〉) has dimension at most n − 2

as f is irreducible so it has no common factor with f ′ (deg(f ′) ≤ d − 1). V may not be

irreducible but it can have at most deg(f) · deg(f ′) < d2 absolutely irreducible components

of dimension n− 2 ([HW99, Lemma 2.4]) where each such component have O(qn−2) rational

points (Theorem 8.3.3).

Further, Taylor expansion of f(a + px), for a non-singular root a, contains only linear

terms when divided by p and reduced modulo p as at least one first order derivative is non-

zero (by the definition of non-singular roots). Linear multivariate polynomials are always

absolutely irreducible and so they have a lot of non-singular roots. Pick any such root at

random and repeat the process on g(x) := f(a + px)/p to get a lift of a over Zp.

Decomposition Algorithm [HW99]. We will heavily utilise an algorithm (and related

theorems) due to [HW99, Section 3] which extracts all the irreducible components of an

algebraic set described by a given polynomial system.

The algorithm takes as input a set of multivariate polynomials f1, . . . , fm ∈ F[x1, . . . , xn]

each of total degree bounded by d. The algorithm outputs each irreducible component of

the algebraic set VF(〈f1, . . . , fm〉) in the form of a birationally equivalent hypersurface. It is

a classical result in algebraic geometry that an irreducible algebraic set W of dimension r is

birationally equivalent to a hypersurface H := VF(〈h〉) where h is an irreducible polynomial

in r + 1 variables. Precisely, for each r ≤ n and for each r-dimensional component W of

VF(〈f1, . . . , fm〉) the algorithm outputs a polynomial h ∈ F[z0, z1, . . . , zr] such that H :=

VF(〈h〉) is birationally isomorphic to W. The algorithm also returns the birational morphism

ψ2 : W→ H and its inverse ψ1 : H→ W.

118

Following Theroem 8.3.5 ([HW99, Theorem 2.6]) gives the complexity of the decompo-

sition algorithm. The complexity bounds hold true over any field F where a randomized

polynomial time algorithm exists for polynomial factorization e.g., finite fields and p-adic

fields. The theorem also assumes that the size of the field |F| ≥ dcn
2

for some constant c.

These assumptions are without loss of generality in our case as we work over finite field and

p-adic field and smaller field size will make our main theorems work by brute force within the

given time complexity.

Theorem 8.3.5 (Simplified [HW99, Theorem 2.6]). Given a system of polynomials f1, . . . , fm ∈

F[x1, . . . , xn] of total degree bounded by d. Then the decomposition algorithm [HW99, Section

3.3] will construct a birational hypersurface H for each irreducible component W of VF(〈f1, . . . , fm〉)

in mO(1)dO(n2) field operations. Furthermore, the total degree of H as well as polynomials ap-

pearing in rational functions ψ1 and ψ2 is upper bounded by dO(n).

Gröbner Basis. We require some concepts of Gröbner basis in our algorithm to find

‘special’ lifts to Ĝ (in Lemma 8.3.7). Modulo multivariate polynomial ideals, the remainder

on division is not always unique. Thus, we modify the ideal by adding some more generators,

depending on a given ordering of variables, such that the remainder modulo the ideal is

unique.

For a given ideal I, the S-polynomial of two polynomials g1, g2 in I is defined as

S(g1, g2) =
lcm(LM(g1),LM(g2))

LT(g1)
· g1 −

lcm(LM(g1),LM(g2))

LT(g2)
· g2 , (8.2)

where LM denotes the leading monomial and LT denotes the leading term.

Buchberger [Buc65] gave the famous algorithm to compute the (reduced) Gröbner basis;

by considering every pair of current generators of the ideal and iteratively adding their S-

polynomials; until the S-polynomials are zero. More properties of Gröbner basis, and their

complexity, can be found in [CLO13].

8.3.2 The Outline

A standard way to find a root modulo pk is to first find a root in the base field i.e., modulo

p and then try lifting it gradually to higher powers of p. As discussed in Chapter 1, even

119

a single bivariate polynomial can have q many zeros modulo p. So it becomes unclear how

to efficiently pick a root modulo p, out of exponentially many (in log q), such that it lifts to

modulo pk as there seems to be no particular structure behind this. For example (x− y)2 + p

has no zero modulo p2 i.e., no zero modulo p lifts to modulo p2. While in another example

(x− y)2 + px, the only zero (0, 0) lifts to modulo p2 out of p many zeros modulo p. Thus the

idea of picking a random root modulo p and try lifting it will not work.

We use our method of ideals to solve the problem similar to the problem of univariate root

counting in Part I. In other words, the method gives a set of special ideals, over Zp, in nk

variables (like split ideals for root count) which collectively contain all the roots of F mod pk.

We call these ideals ‘absolute’-ideals as these are prime ideals and absolutely irreducible when

reduced modulo p. The absolute irreducibility of the ideals helps in two ways: (1) Zeroset of

an absolutely irreducible ideal has a ‘lot’ of points and so randomly picking a point modulo p

hits to one of its zero and, (2) almost all the points of an absolutely irreducible zeroset modulo

p are non-singular points which facilitates Hensel lifting to lift a randomly picked point to G.

This gives a randomized method to efficiently pick a zero of F mod pk from absolute-ideals.

The algorithm we present has similar outline as for univariate root counting but the

implementation details differ quite much and pose a lot of problems to tackle. Our framework

previously helped in derandomization for univariate root counting and now it is helping in

efficient random sampling.

8.3.3 Decomposition into Ideals with ‘Local Properties’

Ideally, we want Ĝ ideals Î such that its Fq-version I has only non-singular roots. But

this is not always possible even if I is absolutely irreducible. For example the absolutely

irreducible polynomial x2 − y3 over any Fq has a singular root (0, 0) as both the first order

derivatives vanish at (0, 0). Algorithm 8 approaches the problem by decomposing the Fq-

ideal I into a set Sabs of absolutely irreducible ideals such that every zero in VFq(I) appears

as a non-singular zero of some C ∈ Sabs while the zeroset VFq(I) remains unchanged, i.e,

VFq(I) =
⋃

C∈Sabs VFq(C). There is a blow-up in the number of newly produced ideals C

which is only polynomial when n (and k) is constant (Lemma 8.3.8, Section 8.3.5).

120

Input: A radical ideal I ⊆ Fq[y1, . . . , yn].

Output: A set Sabs of absolutely irreducible ideals C, such that V(I) =
⋃

C∈Sabs V(C).

Algorithm 8 Decomposing I into absolutely irreducible components over Fq.
1: procedure Abs Decomp(I)

2: Define Sabs := {} and Sirr := {}.

3: Decompose I into irreducible components over Fq using Theorem 8.3.5 ([HW99]), and

store them in Sirr.
4: while Sirr 6= ∅ do

5: C← pop(Sirr). /* Remove C from Sirr*/

6: if dim(V(C)) = 0 then

7: Compute V(C) using [HW99] and for each a ∈ V(C), update Sabs ← Sabs ∪

{〈y − a〉}.
8: else

9: if C is absolutely irreducible then

10: Sabs ← Sabs ∪ {C}

11: Let dim(V(C)) =: r. Using Theorem 8.3.5 compute a birationally equivalent

hypersurface H := VFq(h(`1, . . . , `r, Y)) and the rational maps ψ1 : H → V(C)

and ψ2 : V(C)→ H. (`1, . . . , `r, Y are linear forms in y; also see Figure 8.1.)

12: Compute C1 := Rad(C + 〈h∗〉), where h∗ is pullback of a first-order partial-

derivative h′ 6= 0.

13: Compute C2 := Rad(C+ 〈e∗〉), where e∗ is the pullback of e, which is a product

of the denominators that appear– in rational functions ψ1 =: (ψ1,1, . . . , ψ1,n),

or in the localization done in Lemma 8.3.7.

14: Decompose the ideals C1, C2 into irreducible components over Fq using Theorem

8.3.5, and push these components into Sirr.

15: return Sabs

There is a disclaimer though. The decomposition by the Algorithm 8 is not same as the

traditional decomposition (as in Theorem 8.3.5). The zero set of one component C could be

contained in the zero set of a different component C′. Conversely a component C′ could be

121

contained in a component C. For above example I = 〈x2 − y3〉 the Algorithm 8 may produce

two absolutely irreducible ideals C = 〈x, y〉 and C′ = 〈x2 − y3〉 where the only singular root

(0, 0) of I is captured as a non-singular root of C. But VFq(C) ⊆ VFq(C
′) and C′ ⊆ C.

Two varieties are birationally equivalent if and only if their function field are isomorphic.

A birational equivalence relation between two varieties is not an isomorphism but informally

saying, it connects most of the points of the two sides. It also preserves the important

properties such as dimension and absolute irreducibility.

Let us understand steps 12 and 13 of Algorithm 8. The algorithm follows the ideas of

[HW99] although in a slightly different way. A singular root of h is contained in its derivative

h′. And so the pullback h∗ of h′ given by our birational map captures the corresponding

points of C. Hence, adding 〈h∗〉 to C produces an ideal C1, of lesser dimension, which has only

the singular roots of C.

As birational maps do not map all the points (of VFq(C) to H) we also need to extract out

these points. Fortunately, these points are not much and are captured as roots of polynomial

e (product of the denominator polynomials in the rational function ψ1). So the variety of

pullback polynomial e∗ i.e., VFq(e
∗) contains such points of VFq(C). Thus C2 gives that ideal

of lesser dimension. Note that at every iteration of the while loop, an ideal is removed from

Sirr and a finite number of ideals of lesser dimension are added (decomposed C1, C2). So

eventually Algorithm 8 terminates.

Following lemma summarizes and gives properties of the decomposition algorithm. The

Lemma 8.3.6 and its proof also serves the purpose of describing the Algorithm 8.

Lemma 8.3.6 (Decomposition Properties). Let I be the input and the Set Sabs be the output

of Algorithm 8. Then,

(1) VFq(I) =
⋃

C∈Sabs VFq(C). However, I ⊆
⋂

C∈Sabs C.

(2) Each component C ∈ Sabs returned by Algorithm 8 is absolutely irreducible.

(3) If f = 0 mod I then f = 0 mod C for all C ∈ Sabs.

(4) If a ∈ VFq(I) then ∃C ∈ Sabs such that a ∈ VFq(C) and a is a non-singular root of C.

Proof. Part (2) of the lemma easily follows by looking at Steps 9 and 10. An ideal C is added

to Sabs only at Step-10 after being checked to be absolutely irreducible at Step-9.

122

Proof of Part (1): The proof goes via maintaining the following invariant at every stage

of the while loop (define S := Sabs ∪ Sirr): I ⊆
⋂

C∈S C and V(I) =
⋃

C∈S V(C).

At Step-3, we have Sabs = {} and so S = Sirr. I is decomposed using Theorem 8.3.5 so

we have: I =
⋂

C∈S and V(I) =
⋃

C∈S V(C). For simplicity, we write I = C ∩ D where C is an

irreducible component and D is intersection of all other irreducible components.

At the first iteration of the while loop: when C is absolutely irreducible, C is added to Sabs

while C1 = C + 〈h∗〉 and C2 = C + 〈e∗〉 are added to Sirr. So the intersection C ∩ D becomes

C∩C1∩C2∩D. Since, C ⊆ C1 and C ⊆ C2 we have C = C∩C1∩C2 and so C∩D = C∩C1∩C2∩D.

Thus I =
⋂

C∈S C and V(I) =
⋃

C∈S V(C).

When C is relatively irreducible, C is removed from Sirr while C1 = C+〈h∗〉 and C2 = C+〈e∗〉

are added to Sirr. So the intersection C ∩ D becomes C1 ∩ C2 ∩ D. Since, C ⊆ C1 ∩ C2 we have

C ∩ D ⊆ C1 ∩ C2 ∩ D. Thus I ⊆
⋂

C∈S C and V(I) ⊇
⋃

C∈S V(C).

Now, V(h∗) captures almost all the singular points of V(C) since it is pullback polynomial

of h′ which is the first order derivative of h where V(h) = H is birationally equivalent to V(C)

(recall the definition of singular points). However, V(h∗) misses some singular points of V(C)

where the map ψ1 : H → V(C) fails. This is because ψ1 is a rational function and at some

points its denominators vanish. Since polynomial e captures those denominators, the missing

points are captures in V(e∗). Thus V(C1) ∪ V(C2) = V(C) (since V(C) has only singular

points). Thus V(I) =
⋃

C∈S V(C). Similarly the process repeats for every iteration of while

loop and invariant is maintained. In the end Sirr = {} and so S = Sabs; proving Part (1).

Part (3) follows from Part (1) as if f ∈ I then f ∈
⋂

C∈Sabs C therefore f ∈ C for all

C ∈ Sabs.

Proof of Part (4): a root a of I is either a singular or a non-singular root of some irreducible

component C of I (at Step-3, Theorem 8.3.5). If a is a non-singular root of C then we are

done as in this case C must be absolutely irreducible (birational to an absolutely irreducible

polynomial; see Lemma 8.3.2) and added to Sabs at Step-10.

If a is a singular root of C then C can be absolutely irreducible or relatively irreducible. In

any case, all the singular points of C (and hence a) are captured, at Steps 12 and 13, either in

C1 = C+ 〈h∗〉 or in C2 = C+ 〈e∗〉 (those missed by h∗ as the map ψ1 : H→ V(C) is not defined

123

on V(e)) as discussed before in the proof of Part (1). The dimensions of C1 and C2 are less

than the dimension of C and so a is now a root of lesser dimension irreducible components

(after decomposition of C1 and C2 at Step-14). Either a is now a non-singular root and we

are done or the process repeats till the end and 〈y − a〉 is added to Sabs at Step-7 (as the

dimension keeps decreasing).

Lemma 8.3.6 will be helpful in proving and sketching the correctness of Algorithm 9 in

next section. For example, Algorithm 9 will perform reduction by suitable lift Ĉ of the ideal

C returned by the decomposition Algorithm 8. There Lemma 8.3.6 will be useful in showing

that every root of I lifts through some C (to Ĉ) and the shifted polynomial reduced modulo

Ĉ must be a multiple of p.

8.3.4 Algorithm for getting Roots into ‘Absolute’ Ideals

We now give our algorithm which takes a system F of polynomials over Galois ring G and

returns a list of absolute ideals with strong lifting property which contains all the roots of F

in G. After formally presenting the algorithm, we provide the explanation and proof sketch

for correctness of the algorithm throughout the section.

Input: The input consists of a system of n-variate polynomials {f1(x), . . . , fm(x) | fj(x) ∈

Ĝ[y0, . . .y`−1][x] } with the required exponent k, and an ideal Î = Î`−1 ⊆ Ĝ[y0, . . .y`−1];

where p is prime and ϕ(z) is an Fp-irreducible polynomial. We also maintain the ideal tree

T and keep updating it along the algorithm.

Output: The algorithm outputs a list L of (absolutely irreducible) ideals, collectively

containing the lift of the common roots of the system fj(x) ≡ 0 mod 〈pk〉+ Î, for j ∈ [m].

Initialization: We initialize the ideal as Î := 〈0〉, ` := 0, and the required exponent as

k. A system of polynomials F := {F1(x), . . . , Fm(x)} where Fj(x) ∈ Ĝ[x]. We pass F to the

algorithm so it starts with SHNpk(F1, . . . , Fm, k, 〈0〉).

Algorithm 9 Algorithm to solve a system of polynomial equations over a Galois ring.

1: procedure SHNpk(f1, . . . , fm, k, Î, T)

2: if Zeroset VFq(Î + 〈p〉) = ∅ then return {}.

3: if k ≤ 0 then return {Î}.

124

4: I← Rad(〈f1(y`), . . . , fm(y`)〉+ Î + 〈p〉), for (new) virtual root y` := (y`,1, . . . , y`,n).

5: S ← Abs Decomp(I); absolutely irreducible ideals as computed by Algorithm 8.

6: L ← {}

7: for each C ∈ S do

8: if C ∩ Fq[y0, . . . ,y`−1] = I ∩ Fq[y0, . . . ,y`−1] then

9: Find the special lift Ĉ of C to Ĝ by computing Gröbner basis and lifting, using

Lemma 8.3.7. /*Ĉ is prime; reduced Gröbner basis w.r.t. y0 < . . . < yk−1.*/

10: Add Ĉ as a child of the current node to T (also add other related information

C, H, Ĥ and respective birational maps from Lemma 8.3.7).

11: For j ∈ [m], compute f̃j(x) := p−1fj(y` + px) mod Ĉ, over Ĝ[y0, . . .y`][x].

12: L ← L ∪ SHNpk(f̃1, . . . , f̃m, k − 1, Ĉ, T). /*Maintain the recursion-tree T .*/

13: else /*Backtrack & repeat steps*/

14: Find min s ≤ `− 1 s.t. C← C ∩ Fq[y0, . . . ,ys]) I ∩ Fq[y0, . . . ,ys].

15: Find special lift Ĉ of C over Ĝ using Lemma 8.3.7. /* update T as before*/

16: For all j ∈ [m], compute f̃j(x) := p−s−1Fj(y0 + · · ·+ psys + ps+1x) mod Ĉ.

17: L ← L ∪ SHNpk(f̃1, . . . , f̃m, k + `− 1− s, Ĉ, T). /*Maintain T as before.*/

18: return L. /*Also, return the recursion-tree T whose leaves are ideals in L.*/

Description of Algorithm 9:

The outline of the algorithm is very similar to the algorithm for univariate root counting

as both these follow the method of ideals. Basically, as was the case with the split ideals, we

construct ideals which at any intermediate stage partially represent the roots of the system

F(x) and in the end every ideal Î in the returned list L follows the equation

F(y0 + · · ·+ pk−1yk−1) ≡ pαF ′ mod Î

such that α ≥ k. Thus for any root (â0, . . . , âk−1) of Î,

F(â0 + · · ·+ pk−1âk−1) ≡ 0 mod pk.

125

We are forming the ideals by adding fj(y`) mod p into I and then ‘lifting’ the ideal to the

p-adic Î over Ĝ. Our requirement is that all the roots of I should lift to a root of Î which is

our next precision absolute ideal. Half the job is done by the decomposition algorithm which

breaks I into many absolutely irreducible ideals C and making sure that every root of I must

be a ‘simple root’ (those which lift, Lemma 8.3.6) of some such C. But the task still remains

to take a suitable lift Ĉ of C and guarantee the lifting of ‘simple roots’. Following lemma

achieves this using Gröbner basis and birational equivalence.

Lemma 8.3.7 (Connection of points via hypersurfaces [Cha22]). Given an Fq-irreducible

ideal C (resp. its birational equivalent hypersurface H), we can lift it to a prime Ĝ-ideal Ĉ

(resp. its birational equivalent hypersurface Ĥ), such that their morphism diagram commutes

(Figure 8.1).

In particular, for a non-singular Fq-root of H (thus a root of C), we can find a Ĝ-root of

Ĥ; which gives a root of Ĉ. This sets up the ‘connection’ between roots of C and Ĉ.

The basic idea in the proof of Lemma 8.3.7 is: Given Fq-irreducible ideal C, compute the

reduced Gröbner basis of C, using the block order y0 < . . . < yk−1; and simply see it as

a p-adic ideal Ĉ. This is a Ĝ-irreducible ideal, which is the required special lift of C. (Its

localized version B−1Ĉ has a triangular Gröbner basis; where B is a transcendence basis of

variables.) The proof closely follows Figure 8.1; and proves its commutativity. We provide

the proof of Lemma 8.3.7 below.

Proof. We have a prime ideal C given by generators in Fq[y1, . . . , yN]. Let r > 0 be the

dimension of the variety of C. By one of the definitions of dimension, there is a subset

B =: {`1 < . . . < `r} of least possible variables in y, such that the function field Fq(C) is

a finite extension over the transcendental field Fq(B). So, we consider its defining maximal

ideal B−1C; and compute its reduced Gröbner basis (using Buchberger’s algorithm [Buc65]);

with the graded lexicographical ordering y1 < . . . < yN and variables B localized. Let B′ :=

y \B =: {`r+1 < . . . < `N} be the remaining variables.

Triangular form. The localization B−1C is a zero-dimensional prime ideal (= maximal

ideal). Thus, B−1C has exactly N − r generators, the i-th one (r < i ≤ N) corresponding

126

to a monic minpoly (over Fq(B)) for the variable `i in B′ (in particular, having the leading-

monomial an `i-power). Thus, the Gröbner basis GB(B−1C) is in a special form, that we call

the triangular form in B′ over B.

p-adic lift. Compute the reduced Gröbner basis GB(C) too, and divide each generator

by its leading coefficient (in F∗q) to make the polynomials monic; store them in reduced form

where the coefficients are in {0, . . . , p− 1}. Define the p-adic lift Ĉ, of C to Ĝ, by considering

the trivial integral embedding of each generator of C. By Gröbner basis properties and the

special generators, this special lift Ĉ is a prime Ĝ-ideal.

Doing the same thing to GB(B−1C), it is easy to deduce: the Ĝ-ideal thus obtained, called

B−1Ĉ, is a maximal ideal with a triangular (& reduced) Gröbner basis.

Fq-map. By construction, Fq(B)[B′]/C is a field, denoted R, of finite degree over R0 :=

Fq(B). We can compute a hypersurface H that is birationally equivalent to the variety of C

using Theorem 8.3.5 ([HW99]). A standard algebraic way to compute it, is to pick a random

linear form `0; assume q to be ‘large’ enough for random sampling. Let h(Y) be the minpoly

of the primitive element `0 ∈ R over the subfield R0. We can store a representation of h

in Fq[B][Y] such that it gives an R0-isomorphism ψ1 between the fields, R = R0[B′]/C ∼=

S := R0[Y]/〈h〉 ; mapping `0 7→ Y , and other `i (i > r) to its implied image.

p-adic map. Take any p-adic lift ĥ of h; clearly ĥ ∈ Ĝ(B)[Y]. By definition, ĥ(`0) ∈

C = Ĉ + 〈p〉. Since `0 is a separable Fq-root of ĥ, we can Hensel lift it to a Ĝ-root `′0 ∈

Ĝ(B)[B′] =: R′0[B′] such that ĥ(`′0) ∈ Ĉ. So, mapping Y 7→ `′0 gives a R′0-homomorphism

ψ̂2 : S′ := R′0[Y]/〈ĥ〉 −→ R′ = R′0[B′]/Ĉ; which is a map between integral domains. Moreover,

it remains a nontrivial homomorphism if we localize the base ring from Zp to Qp; making it

a map between fields. Thus, ψ̂2 is an injective R′0-homomorphism.

Now we know: all the four rings in Figure 8.1 are domains (& two are fields). So, in case

ψ̂2 is not an isomorphism, it is injective and non-surjective. Let v0 ∈ R′ be an element that is

out of the image, but we know that some lift v0 + pv1 is in the image of ψ̂2 (by traversing the

commutative diagram). Similarly, we have that some lift v1 + pv2, of v1, is in the image of

ψ̂2. Combining these two, we know: v0 − p2v2 is in the image of ψ̂2. Doing this ad infinitum,

we get v0 in the image of ψ̂2; contradicting its choice. We conclude: ψ̂2 is an isomorphism,

127

with the inverse map being (say) ψ̂1.

Ĝ(`1, . . . , `r)[`r+1, . . . , `N]/Ĉ Ĝ(`1, . . . , `r)[Y]/〈ĥ〉

Fq(`1, . . . , `r)[`r+1, . . . , `N]/C Fq(`1, . . . , `r)[Y]/〈h〉

ψ̂2

ψ1

ψ2

mod pmod p

Figure 8.1: Commutative Diagram

In the above diagram let us start with a non-singular Fq-root a of H := V(h). With

high probability, it will keep the relevant polynomials in `1, . . . , `r nonzero mod p; thus it

would be consistent with the localization. It has ‘pullback’ via ψ1, giving a root of C. By the

separability of the Fq-root, a lifts to a root â of Ĥ := V(ĥ) (Lemma 8.3.4); from up there it

has ‘pullback’ via ψ̂1, giving a Ĝ-root of Ĉ too. This connects V(C) with V(Ĉ).

Lemma 8.3.7 tackles the issue of taking a suitable lift Ĉ to guarantee that all the simple

roots of C has a lift in Ĉ as well as an efficient way to find a lift via birational maps. But

there are more issues to tackle, during the process of decomposition, which arise due to the

loss of information when we go modulo p. There is no point in taking suitable lift of the ideal

C to Ĉ, using Lemma 8.3.7, if Ĉ does not have the reminiscences of the previous ideal through

which the parent ideal Î originated. This is the reason we do the test at Step-8 of C vs I till

the variable y`−1 (one less precision than C and I). y` lift does not matter because it will be

a new lift so the reduced polynomial (Step-11) will adjust accordingly with the new lift (also

think of ideals as triangular with variable ordering y0 < · · · < y`−1)

We handle this issue using the idea of backtracking. Roughly, when we take suitable lift of

C in the proof of Lemma 8.3.7 we look the Gröbner basis in form of triangular batches– the

lowest in variables y0, the next one in y0,y1 and so on. Also these generators are monic. So we

basically check at what level the basis change (corruption) has happened via the comparison

C ∩ Fq[y0, . . . ,y`−1] = I ∩ Fq[y0, . . . ,y`−1]. Say the corruption has happened at level ys. If

s = `− 1 then there is no corruption and we move on to take suitable lift of C. Otherwise we

128

have to discard all the generators involving ys+1, . . . ,y`−1.

Invariant. In the recursion tree T either a node is created when moving from Î`−1 to Î` at

Step-12 and k decreases or backtracking happens at Step-17 and Îs is redefined for s < ` but

the dim(V(Îs)) reduces. Thus redefinition of Îs happens at most n times in a path. This

bounds the maximum path length ≤ k + kn in the tree.

Now we will see that the set of ideals returned by the algorithm contains all and only the

roots of the given system of polynomials in form of their non-singular roots.

Following Proposition 4 is the easy direction which shows that for any root (â0, . . . , âk−1)

of any Î ∈ L, F(â0 + · · · + pk−1âk−1) ≡ 0 mod pk. Basically, as said before the objective of

the Algorithm 9 is to produce ideals Î such that F(y0 + · · · + pk−1yk−1) ≡ pαF ′ mod Î for

α ≥ k. Thus modulo pk, any zero of Î gives a zero of F . This is the idea; the proof details

are given in [Cha22].

Proposition 4 (Root in L −→ Root of F [Cha22]). Given a root of a leaf in L (using T and

Lemma 8.3.9), we can find a common G-root of the system F of polynomials fj, for j ∈ [m].

The converse Proposition 5 is little bit involved and we prove it here. We show that every

G-root of the system F has its p-adic lift present in some ideal of L.

Proposition 5 (Root of F −→ Root in L). If the system of polynomials F has a root

(a0 + pa1 + · · · + pk−1ak−1) in G, then there is a leaf ideal Îk−1 ∈ L which has a root

(â0, . . . , âk−1) such that a0 + pa1 + · · ·+ pk−1ak−1 ≡ â0 + pâ1 + · · ·+ pk−1âk−1 mod pk.

Proof. Let us assume that the system of polynomials has a G-root, given by a := (a0 + pa1 +

· · ·+ pk−1ak−1), with ai’s effectively ‘in’ Fq. We use a technique, similar to that in the proof

of Proposition 4, to inductively show that a root up to precision ` digits gives a p-adic root

of the ideal grown for `-steps (possibly with backtrackings). We use the same notation as of

Proposition 4 for f
(`)
j , Î`.

For the base case of induction, let us consider the root a0 of f1(y0), . . . , fm(y0) over

Fq. Now, each of these equations were added to the ideal Î0, on which we performed the

decomposition algorithm to find components Ĉ’s. Since, a0 is a root of Î0 + 〈p〉, it must also

be a root of some Ĉ + 〈p〉; let us fix this ideal Ĉ. Now, by definition (Algorithm 8 & Lemma

129

8.3.7), Ĉ is prime; and absolutely irreducible modp. If a0 is a non-singular Fq-root of Ĥ (=

hypersurface birationally equivalent to Ĉ), then it has a lift, say â0, using Hensel’s lifting

(Lemma 8.3.4). Thus, we get a corresponding Ĝ-root of Ĉ ∈ T . On the other hand, if a0

is a singular root, or a root whose preimage does not exist in the hypersurface, then it will

be present in some ideal of lesser dimension (eg. in another branch of recursion-tree T). So,

Algorithm 8 will locate a0 as a non-singular root of some other absolutely irreducible ideal of

dimension ≥ 0. Thus, we always get a corresponding Ĝ-root of some ideal, say D̂, in T .

Now, for our induction hypothesis, assume that the root of the system modulo p`, (a0 +

· · ·+p`−1a`−1), gives a p-adic root, (â0, . . . , â`−1), of some Ĉ which is an absolutely irreducible

component of Î`−1 such that

t−1∑
i=0

piai ≡
t−1∑
i=0

piâi mod pt, for t ≤ ` . (8.3)

Let us consider the induction step. Consider f
(`)
j (y`) = fj(y0+. . .+p`−1y`−1+p`y`) mod Ĉ,

where Ĉ is the component where the p-adic root (â0, . . . , â`−1) can be found. After substi-

tuting the first ` variables by (â0, . . . , â`−1), f
(`)
j (y`) has a root, say â`, modulo p`+1; simply

because— fj(a0 + . . . + p`−1a`−1 + p`x) has the root a` modulo p`+1, and by the induction

hypothesis (esp. Equation 8.3). Like we did in the base case, we can consider two broad cases:

â` is a non-singular Fq-root, or it is a singular root (or a root whose preimage does not exist in

the birationally equivalent hypersurface of Lemma 8.3.7). In the first case, we find a suitably

lifted root in Ĉ ∈ T itself. While in the second case, we find a suitably lifted root in some

lower-dimensional D̂ ∈ T (though with the same {Î0, . . . , Î`−1}). Thus, in all cases we ensure

that

â0 + . . .+ p`−1â`−1 + p`â` ≡ (a0 + . . .+ p`a`) mod p`+1,

for the lifted Ĝ-root of some ideal Î` (which gets defined in Step 9 of Algorithm 9, possibly

after many backtrackings); finishing the induction step.

Thus, with ` = k−1, we deduce: a is represented as a Ĝ-root of some ideal Îk−1 in L.

130

8.3.5 Correctness and Root Finding

A major component of the time complexity of the algorithm is the size of the virtual tree

created which is doubly exponential in nk as shown in the following lemma. Thus it subsumes

all other times taken at other steps of the algorithm as well as time taken to fetch a root from

the list of ideals returned by the algorithm. Also it is clear then that if n+k is constant then

the algorithm is efficient.

Lemma 8.3.8 (Size of tree). The total number of leaves L of the recursion-tree T is at most

d(nk)O((nk)2)

. Indeed, the size of T and the degree of any ideal in T are bounded by d(nk)O((nk)2)

.

Proof. We build tree T by first passing an ideal I0, in n variables, in Algorithm 8 with

generators of degree at most d0 := d. The set of absolutely irreducible ideals returned by

Algorithm 8 forms the branches in the first level of T . Each of these ideals (branches) at

level-1, say I1, of degree d1 (now in 2n variables) recurse in Algorithm 8, and produce more

branches (ideals) at level-2. This process continues till (k − 1)-th level.

The analysis of producing branches from an ideal at level (`− 1) to level ` is the same as

that of [HW99]. This will allow us to use their estimates for number of branches and degree

of new generators produced [HW99, Lem.2.7].

Similar to [HW99], we first decompose ideal I`−1 in n` variables at Step 3 (Algorithm

8). However, we add h∗ and e∗ in the ideal at Steps 12-13 and then iterate. The idea of

Step 12 is same as in [HW99] to capture the singular points of V(I) in separate absolutely

irreducible ideals by adding h∗ to the ideal. In [HW99], it was shown that the dimension of

variety reduces when we add h∗.

When we add e∗, we make the ‘free’ variables `1, . . . , `r in the hypersurface (in Lemma

8.3.7) to satisfy an equation e(`1, . . . , `r) = 0. Therefore, the transcendence degree reduces by

1, and it can reduce at most dimension-many times. So, complexity wise Step 13 is subsumed

in Step 12 as degree of h∗ and e∗ have similar bound [HW99, Lem.2.7, Thm.2.6].

Applying analysis of [HW99] on ideal I0 at level-0, the number of branches (ideals) pro-

duced are dn
O(n)

0 and the degree of generators at most dn
O(n)

0 =: d1 at level-1. Each such branch

(ideal) further produces (at level-2) d
(2n)O(2n)

1 new branches with degree at most d
(2n)O(2n)

1 . By

131

induction, the generator-set size, and degree, at level-nk (i.e. the leaves) is ≤ d(nk)O((nk)2)
.

Extracting a Root: Algorithm 9 returns the set of ideals L (the leaves of tree T). If L is

not empty then the ideals are either points (only one root) or other absolutely irreducible ideals

modulo p. We are required to extract roots from these ideals to get a solution of F modulo

pk. The task is trivial for point ideals. Otherwise we use the extra information contained in

T i.e, for an ideal Î and corresponding I we utilize the corresponding hypersurfaces Ĥ and H

and the respective birational maps. Pick a random point of H which should be a simple point

with high probability (H is absolutely irreducible) and lift it to a point of Ĥ. Then, using the

inverse birational map we get the corresponding point of Î which gives a zero of F mod pk

This is the rough idea, the ideas with more details are summarized in the following lemma

from [Cha22].

Lemma 8.3.9 (Extracting roots [Cha22]). Given Ĝ-ideal Îk−1 in a leaf of the tree T , we can

find a generic common Ĝ-root (if one exists) of the preceding ideals {Î` | `}.

Now we have all the ingredients to prove our main theorem. Recall, the theorem statement

implies that when n+ k is constant, our method to solve the system of polynomial equations

is efficient.

Proof of Theorem 8.1.3. As proved in Propositions 5 & 4, Algorithm 9 (using Algorithms 8

and Lemma 8.3.9) correctly returns a root (via an absolutely irreducible ideal), if and only if

one exists.

Tree T built by Algorithm 9 has size D := d(nk)O((nk)2)
and each of the ideal in T has

at most nk variables with degree at most D (Lemma 8.3.8). At each step, we perform

arithmetic with the reduced Gröbner basis of the ideal, which has polynomials of degree ≤ D

and ≤ nk variables, and requires poly(D)-time Ĝ arithmetic [Dub90]. After these arithmetic

operations are performed, we check for an Fq-root of the ideals using [HW99], which takes

randomized poly(m,D(nk)O(nk)

, log q) time. Thus, the net time complexity is randomized

poly(m, dcnk , log pb), where cnk ≤ (nk)O((nk)2) and q = pb with b = deg(ϕ).

However, the algorithm uses [HW99] as a blackbox, which requires the additional condition

that q = pb > dcnk . If this condition is not satisfied, i.e. q is small, then we can determin-

132

istically find a root using exhaustive search of qnk ≤ dcnk·nk many iterations. This case has

the time complexity as deterministic poly(m, dc
′
nk , log pb), where c′nk ≤ cnk ·nk ≤ (nk)O((nk)2).

This proves Theorem 8.1.3 in all cases.

8.4 Summary

In this chapter, we dealt with the problem of finding a common root of a system of polynomial

equations over Galois rings. We extend the results of [HW99] to find roots of a system of

equations from Galois fields to Galois rings. This is achieved using our framework– the method

of ideals. Essentially, we gave efficient construction of a set of ‘absolute’ ideals encoding all the

roots of given system and utilize the “algebraic niceness” of these ideals to randomly retrieve

a root of the system. The outline is similar to as was with ‘split’ ideals for univariate root

counting. A major difference with the split ideals is that absolute ideals, although collectively

contain all the zeros of the system, they do not give exact count on the number of zeros of

the system but only provide an upper bound.

We also make progress towards finding factors of univariate polynomials in prime-power

rings. The problem has been of interest since the time of Hensel [Hen18] who gave a method

to lift (coprime) factors to modulo any prime-powers. It is easier to factorize in fields, as seen

before, but factorization modulo small prime powers has been elusive to computer scientists;

owing to the fact that these rings are not integral domains and there can be exponentially

many factors. This difficulty has been explained in [CL01, Sir17, vzGH96, vzGH98]. Giving

first general progress towards small k, we generalize the algorithm in Chapter 7 ([DMS21])

to find factors of small ramification-degree modulo pk.

Chapter 9

Conclusion and Open Problems

In this thesis, we studied some fundamental computational problems related to finding or

counting roots and factors of polynomials over integers modulo prime powers or more generally

Galois rings. These problems are:

• Efficiently factoring a univariate polynomial,

• Efficiently counting roots of a univariate polynomial and computing p-adic Igusa’s local

zeta function which encodes the root-count and,

• Efficiently solving a system of ‘constant’-variate polynomial system.

All these problems are solved, completely or partially, by reducing them to root find-

ing/counting of a different set of polynomials. A common hurdle in all these problems is

that at intermediate stages the access to roots are prohibited. This is either due to the

requirement of deterministic algorithm or the roots are too many to be handled efficiently.

Moreover, known tools like Hensel lifting help only in special cases. For this purpose, we

develop a common framework of polynomial ideals where ideals ‘compactly’ represent all the

roots, in an efficient way, without giving individual access to them. Later, using special

algebraic-geometric properties of these ideals we retrieve the required information about the

roots.

133

134

Polynomial Factoring

We look for an efficient ‘randomized’ algorithm to factor a univariate integral polynomial

f(x) modulo a prime power pk. The problem was solved for ‘large’ k via extended Hensel

lemma but was open for ‘constant’ k, in particular for k = 3. We gave a unified method to

factor f in random polynomial-time for k ≤ 4. The problem is still open for k ≥ 5. However,

if degree of f is assumed to be constant then we achieve the original objective of giving a

random polynomial-time algorithm for constant k. In fact, our result assumes the degree of

the desired factor to be constant while f can have any degree. We leave it open to factor (and

to test irreducibility of) f mod pk for k = 5, and beyond, in randomized polynomial-time.

Root Counting and Igusa Zeta Function

We presented the first efficient deterministic algorithm to count the number of basic-irreducible

factors modulo a prime-power. Restricting it to degree-one irreducibles, we get a determin-

istic polynomial-time algorithm to count the roots. This is achieved by storing and refining

the precision of the roots virtually using split ideals.

Many interesting questions still remain to be tackled. For p-adic fields, there is only a

randomized method to count the number of irreducible factors. Analogously, the question of

counting irreducible factors modulo a prime-power also remains open; no efficient method is

known even in the randomized setting. The ramified roots seem to elude practical methods.

On the other hand, the problem of actually finding an irreducible factor (respectively a root)

deterministically, seems much harder; it subsumes the analogous classic problem in prime

characteristic.

We presented the first complete solution to the problem of computing Igusa’s local zeta

function for any given integral univariate polynomial and a prime p. We also found an

explicit closed-form expression for Nk(f) (root count of f mod pk) and efficiently computed

the explicit parameters involved therein. As a corollary, we get a deterministic algorithm to

count roots (with multiplicity) in p-adic rings (respectively formal power-series ring). The

following important open questions need to be addressed:

(1) A natural question to study is whether we could generalize our method to compute

135

Igusa’s local zeta function for n-variate integral polynomials (say, n = 2?). Note that for

growing n this problem is at least #P-hard.

(2) A related problem is of counting roots of n-variate polynomials modulo prime power

pk. We know an efficient quantum algorithm modulo p for n = 2 due to Kedlaya. Kedlaya

further asks, if we can reduce the problem of counting points mod pk to counting points mod

p for fixed k and n = 2.

Solving a System of Multivariate Polynomial Equations

Finding a common zero of a system of multivariate polynomials over a Galois field is a

fundamental problem and has efficient randomized algorithm known, due to Huang and Wong,

when number of variables n is constant. For unbounded number of variables the decision

version of problem is NP-hard. We studied the more general problem of finding a common

solution over a Galois ring (of characteristic pk) and gave the first randomized polynomial

time algorithm for n+ k constant. This leaves the following question open.

Solve a system of n-variate integral polynomials modulo pk, for fixed n but arbitrary k

(respectively over the p-adic integers Zp) in randomized polynomial time.

Bibliography

[AB01] Noga Alon and Richard Beigel. Lower bounds for approximations by low degree
polynomials over Zm. In Proceedings 16th Annual IEEE Conference on Compu-
tational Complexity, pages 184–187. IEEE, 2001. 2

[AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via
chinese remaindering. Journal of the ACM (JACM), 50(4):429–443, 2003. 2

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of
mathematics, pages 781–793, 2004. 2

[BBR94] David A Barrington, Richard Beigel, and Steven Rudich. Representing boolean
functions as polynomials modulo composite numbers. Computational Complexity,
4(4):367–382, 1994. 2

[BDT21] Charles Bouillaguet, Claire Delaplace, and Monika Trimoska. A simple determin-
istic algorithm for systems of quadratic polynomials over F2. Cryptology ePrint
Archive, 2021. 6

[Ber67] Elwyn R Berlekamp. Factoring polynomials over finite fields. Bell System Tech-
nical Journal, 46(8):1853–1859, 1967. 3, 19

[BFSS13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenle-
hauer. On the complexity of solving quadratic boolean systems. Journal of
Complexity, 29(1):53–75, 2013. 6

[BGL06] Nayantara Bhatnagar, Parikshit Gopalan, and Richard J Lipton. Symmetric poly-
nomials over Zm and simultaneous communication protocols. Journal of Com-
puter and System Sciences, 72(2):252–285, 2006. 2

[Bha97] Manjul Bhargava. P-orderings and polynomial functions on arbitrary subsets of
dedekind rings. Journal fur die Reine und Angewandte Mathematik, 490:101–128,
1997. 5

[BKW19] Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving systems of poly-
nomial equations over GF(2) by a parity-counting self-reduction. In 46th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. 6

[BLQ13] Jérémy Berthomieu, Grégoire Lecerf, and Guillaume Quintin. Polynomial root
finding over local rings and application to error correcting codes. Applicable

137

138

Algebra in Engineering, Communication and Computing, 24(6):413–443, 2013.
https://link.springer.com/article/10.1007/s00200-013-0200-5. 5, 6, 11, 14, 15, 22,
24, 25, 29, 63, 97, 102

[Bro87] W Dale Brownawell. Bounds for the degrees in the Nullstellensatz. Annals of
Mathematics, 126(3):577–591, 1987. 6

[BS86] Zenon Ivanovich Borevich and Igor Rostislavovich Shafarevich. Number theory,
volume 20 of Pure and Applied Mathematics. Academic Press, New York NY,
1986. 4

[Buc65] Bruno Buchberger. Ein algorithmus zum auffinden der basiselemente des restk-
lassenringes nach einem nulldimensionalen polynomideal. PhD thesis, Universität
Innsbruck, 1965. 118, 125

[CDS22] Sayak Chakrabarti, Ashish Dwivedi, and Nitin Saxena. Solving polynomial sys-
tems over non-fields and applications to modular polynomial factoring. Submitted,
2022. xv, 115

[CG00] David G Cantor and Daniel M Gordon. Factoring polynomials over p-adic
fields. In International Algorithmic Number Theory Symposium, pages 185–208.
Springer, 2000. 4, 5, 108

[CGRW18] Qi Cheng, Shuhong Gao, J Maurice Rojas, and Daqing Wan. Counting
roots of polynomials over prime power rings. In Thirteenth Algorithmic Num-
ber Theory Symposium, ANTS-XIII. Mathematical Sciences Publishers, 2018.
arXiv:1711.01355. 5, 12

[Cha22] Sayak Chakrabarti. Multivariate polynomials modulo prime powers: their roots,
zeta-function and applications. Master’s thesis, Indian Institute of Technol-
ogy Kanpur, 2022. https://www.cse.iitk.ac.in/users/nitin/theses/chakrabarti-
2022.pdf. xv, 115, 125, 128, 131

[Chi87] AL Chistov. Efficient factorization of polynomials over local fields. Dokl. Akad.
Nauk SSSR, 293(5):1073–1077, 1987. 4, 5

[Chi94] AL Chistov. Algorithm of polynomial complexity for factoring polynomials over
local fields. Journal of mathematical sciences, 70(4):1912–1933, 1994. 4, 5

[CL01] Howard Cheng and George Labahn. Computing All Factorizations in ZN [x]. In
Proceedings of the International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC’01, pages 64–71, 2001. 4, 14, 132

[CLO13] David Cox, John Little, and Donal OShea. Ideals, varieties, and algorithms:
an introduction to computational algebraic geometry and commutative algebra.
Springer Science & Business Media, 2013. 6, 30, 118

[Con03] J Brian Conrey. The riemann hypothesis. Notices of the AMS, 50(3):341–353,
2003. 8

139

[CP56] M Chojnacka-Pniewska. Sur les congruences aux racines données. In Annales
Polonici Mathematici, volume 3, pages 9–12. Instytut Matematyczny Polskiej
Akademii Nauk, 1956. 5

[CS23] Sayak Chakrabarti and Nitin Saxena. An effective description of the roots of
multivariates mod pk and the related Igusa’s local zeta function. Proceedings of
the International Symposium on Symbolic and Algebraic Computation, ISSAC,
2023. https://www.cse.iitk.ac.in/users/nitin/papers/IZF-issac23.pdf. 5, 9

[CZ81] David G Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials
over finite fields. Mathematics of Computation, pages 587–592, 1981. 3, 19

[Del74] Pierre Deligne. La conjecture de Weil. I. Publications Mathématiques de l’Institut
des Hautes Études Scientifiques, 43(1):273–307, 1974. 8

[DH01] Jan Denef and Kathleen Hoornaert. Newton polyhedra and Igusa’s local zeta
function. Journal of number Theory, 89(1):31–64, 2001. 5

[Din21a] Itai Dinur. Cryptanalytic applications of the polynomial method for solving mul-
tivariate equation systems over GF(2). In Advances in Cryptology–EUROCRYPT
2021: 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings,
Part I, pages 374–403, 2021. 6

[Din21b] Itai Dinur. Improved algorithms for solving polynomial systems over GF(2) by
multiple parity-counting. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2550–2564. SIAM, 2021. 6

[DM97] Bruce Dearden and Jerry Metzger. Roots of polynomials modulo prime powers.
European Journal of Combinatorics, 18(6):601–606, 1997. 5

[DMS19] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. Counting Basic-Irreducible
Factors Mod pk in Deterministic Poly-Time and p-Adic Applications. In Amir
Shpilka, editor, 34th Computational Complexity Conference (CCC 2019), volume
137 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–
15:29, 2019. xv, 85

[DMS21] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. Efficiently factoring polynomials
modulo p4. Journal of Symbolic Computation, 104:805 – 823, 2021. Preliminary
version appeared in The 44th ACM International Symposium on Symbolic and
Algebraic Computation (ISSAC) 2019. xv, 79, 132

[DS20] Ashish Dwivedi and Nitin Saxena. Computing Igusa’s local zeta function of uni-
variates in deterministic polynomial-time. 14th Algorithmic Number Theory Sym-
posium (ANTS XIV), Open Book Series, 4(1):197–214, 2020. xv, 5, 73

[Dub90] Thomas W Dubé. The structure of polynomial ideals and gröbner bases. SIAM
Journal on Computing, 19(4):750–773, 1990. 131

[Dwi17] Ashish Dwivedi. On the complexity of Hilbert’s Nullstellensatz over positive
characteristic. Master’s thesis, Indian Institute of Technology Kanpur, 2017. 6

140

[EK90] Andrzej Ehrenfeucht and Marek Karpinski. The computational complexity of (xor,
and)-counting problems. International Computer Science Inst., 1990. 6, 9

[FS15] Michael A Forbes and Amir Shpilka. Complexity theory column 88: Challenges
in polynomial factorization. ACM SIGACT News, 46(4):32–49, 2015. 3

[GGL08] Parikshit Gopalan, Venkatesan Guruswami, and Richard J Lipton. Algorithms for
modular counting of roots of multivariate polynomials. Algorithmica, 50(4):479–
496, 2008. 6

[GNP12] Jordi Guàrdia, Enric Nart, and Sebastian Pauli. Single-factor lifting and fac-
torization of polynomials over local fields. J. Symb. Comput., 47(11):1318–1346,
November 2012. 4

[Gop06] Parikshit Gopalan. Computing with polynomials over composites. PhD thesis,
2006. 2

[Gop14] Parikshit Gopalan. Constructing Ramsey graphs from boolean function represen-
tations. Combinatorica, 34(2):173–206, 2014. 2

[Gre66] Marvin J Greenberg. Rational points in henselian discrete valuation rings. Pub-
lications Mathématiques de l’IHÉS, 31:59–64, 1966. 85

[Gro64] Alexander Grothendieck. Formule de Lefschetz et rationalité des fonctions L.
Séminaire Bourbaki, 9:41–55, 1964. 8

[Gro00] Vince Grolmusz. Superpolynomial size set-systems with restricted intersections
mod 6 and explicit ramsey graphs. Combinatorica, 20(1):71–86, 2000. 2

[GS20] Abhibhav Garg and Nitin Saxena. Special-case algorithms for blackbox radical
membership, Nullstellensatz and transcendence degree. In Proceedings of the 45th
International Symposium on Symbolic and Algebraic Computation, pages 186–193,
2020. 6

[Hen18] Kurt Hensel. Eine neue theorie der algebraischen zahlen. Mathematische
Zeitschrift, 2(3):433–452, Sep 1918. 3, 19, 132

[HKC+94] A Roger Hammons, P Vijay Kumar, A Robert Calderbank, Neil JA Sloane, and
Patrick Solé. The Z4-linearity of kerdock, preparata, goethals, and related codes.
IEEE Transactions on Information Theory, 40(2):301–319, 1994. 6

[HW99] M-D Huang and Y-C Wong. Solvability of systems of polynomial congruences
modulo a large prime. computational complexity, 8(3):227–257, 1999. Prelimi-
nary version appeared in The IEEE 54th Annual Symposium on Foundations of
Computer Science (FOCS) 1996. 6, 13, 117, 118, 120, 121, 126, 130, 131, 132

[Igu74] Jun-Ichi Igusa. Complex powers and asymptotic expansions. I. Functions of cer-
tain types. Journal für die reine und angewandte Mathematik, 268:110–130, 1974.
8

[Igu75] Jun-Ichi Igusa. Complex powers and asymptotic expansions. II. Journal für die
reine und angewandte Mathematik, 278:307–321, 1975. 8

141

[Igu00] Jun-Ichi Igusa. An introduction to the theory of local zeta functions, volume 14
of AMS/IP Studies in Advanced Mathematics. American Mathematical Society,
Providence, RI; International Press, Cambridge, MA, 2000. 9

[IR78] Jun-Ichi Igusa and S Raghavan. Lectures on forms of higher degree, volume 59.
Springer Berlin-Heidelberg-New York, 1978. 8

[Kal92] Erich Kaltofen. Polynomial factorization 1987–1991. In Latin American Sympo-
sium on Theoretical Informatics, pages 294–313. Springer, 1992. 3

[Kay05] Neeraj Kayal. Solvability of a system of bivariate polynomial equations over a
finite field. In International Colloquium on Automata, Languages, and Program-
ming, pages 551–562. Springer, 2005. 6

[Kli97] Adam Klivans. Factoring polynomials modulo composites. Technical report,
Carnegie-Mellon Univ, Pittsburgh PA, Dept of CS, 1997. 14

[Kob77] Neal Koblitz. P-adic numbers. In p-adic Numbers, p-adic Analysis, and Zeta-
Functions, pages 1–20. Springer, 1977. 18

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar
Signature Schemes. In Jacques Stern, editor, Advances in Cryptology — EURO-
CRYPT ’99, pages 206–222, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.
6

[KRRZ20] Leann Kopp, Natalie Randall, J Maurice Rojas, and Yuyu Zhu. Randomized
polynomial-time root counting in prime power rings. Mathematics of Computa-
tion, 89(321):373–385, 2020. 14

[KU11] Kiran S Kedlaya and Christopher Umans. Fast polynomial factorization and
modular composition. SIAM Journal on Computing, 40(6):1767–1802, 2011. 3,
19

[Lau04] Alan GB Lauder. Counting solutions to equations in many variables over finite
fields. Foundations of Computational Mathematics, 4(3):221–267, 2004. 5

[LN94] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their appli-
cations. Cambridge university press, 1994. 3, 21, 76

[LPT+17] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, Ryan Williams, and
Huacheng Yu. Beating brute force for systems of polynomial equations over finite
fields. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2190–2202. SIAM, 2017. 6

[Mau01] Davesh Maulik. Root sets of polynomials modulo prime powers. Journal of
Combinatorial Theory, Series A, 93(1):125–140, 2001. 5

[McD74] Bernard R McDonald. Finite Rings with Identity. Monographs and Textbooks in
Pure and Applied Mathematics. Marcel Dekker, Inc, 28:409–424, 1974. 21

[NZM13] Ivan Niven, Herbert S Zuckerman, and Hugh L Montgomery. An Introduction to
The Theory of Numbers. John Wiley & Sons INC., U.K., 2013. 3

142

[Pan95] Peter N Panayi. Computation of Leopoldt’s P-adic regulator. PhD thesis, Uni-
versity of East Anglia, 1995. 22, 24, 25, 97, 102

[Pat96] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polyno-
mials (IP): Two New Families of Asymmetric Algorithms. In Ueli Maurer, editor,
Advances in Cryptology — EUROCRYPT ’96, pages 33–48, Berlin, Heidelberg,
1996. Springer Berlin Heidelberg. 6

[Rie59] Bernhard Riemann. Über die Anzahl der Primzahlen unter einer gegebenen
Grosse. Ges. Math. Werke und Wissenschaftlicher Nachlaß, 2:145–155, 1859.
8

[RRZ21] Caleb Robelle, J Maurice Rojas, and Yuyu Zhu. Sub-linear point counting for vari-
able separated curves over prime power rings. arXiv preprint arXiv:2102.01626,
2021. 13

[Săl05] Ana Sălăgean. Factoring polynomials over Z4 and over certain galois rings. Finite
fields and their applications, 11(1):56–70, 2005. 5, 14, 95

[Sch74] Wolfgang M Schmidt. A lower bound for the number of solutions of equations
over finite fields. Journal of Number Theory, 6(6):448–480, 1974. 116

[Sha93] Adi Shamir. On the generation of multivariate polynomials which are hard to
factor. In Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, pages 796–804. ACM, 1993. 2

[Sho09] Victor Shoup. A computational introduction to number theory and algebra. Cam-
bridge university press, 2009. 37

[Sie55] Wac law Sierpiński. Remarques sur les racines d’une congruence. Annales Polonici
Mathematici, 1(1):89–90, 1955. 5

[Sir17] Carlo Sircana. Factorization of polynomials over Z/(pn). In Proceedings of the
2017 ACM on International Symposium on Symbolic and Algebraic Computation,
pages 405–412. ACM, 2017. 5, 14, 95, 132

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction
bound. Journal of complexity, 13(1):180–193, 1997. 3

[Tit86] Edward Charles Titchmarsh. The Theory of the Riemann Zeta Function. Oxford
Science Publishers, 1986. 8

[TMB98] Gabor Tardos and David A Mix Barrington. A lower bound on the mod 6 degree
of the OR function. Computational Complexity, 7(2):99–108, 1998. 2

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 3rd edition, 2013. 76, 77

[vzGH96] Joachim von zur Gathen and Silke Hartlieb. Factorization of polynomials modulo
small prime powers. Technical report, Paderborn Univ, 1996. 4, 14, 108, 132

143

[vzGH98] Joachim von zur Gathen and Silke Hartlieb. Factoring modular polynomials.
Journal of Symbolic Computation, 26(5):583–606, 1998. (Conference version in
ISSAC’96). 2, 4, 14, 108, 132

[vzGP01] Joachim von zur Gathen and Daniel Panario. Factoring polynomials over finite
fields: A survey. Journal of Symbolic Computation, 31(1-2):3–17, 2001. 3, 65, 66

[Wei48] André Weil. Variétés abéliennes et courbes algébriques. Paris: Hermann, 1948. 8

[Wei49] André Weil. Numbers of solutions of equations in finite fields. Bull. Amer. Math.
Soc, 55(5):497–508, 1949. 8

[Wei64] André Weil. Sur certains groupes d’opérateurs unitaires. Acta mathematica,
111(143-211):14, 1964. 8

[Wei65] André Weil. Sur la formule de Siegel dans la théorie des groupes classiques. Acta
mathematica, 113:1–87, 1965. 8

[Zas69] Hans Zassenhaus. On hensel factorization, I. Journal of Number Theory, 1(3):291–
311, 1969. 19

[ZG03] WA Zuniga-Galindo. Computing Igusa’s local zeta functions of univariate poly-
nomials, and linear feedback shift registers. Journal of Integer Sequences, 6(2):3,
2003. 5, 9, 12

[Zhu20] Yuyu Zhu. Trees, point counting beyond fields, and root separation. PhD thesis,
Texas A&M University, 2020. 5, 13

	Acknowledgements
	List of Publications
	List of Figures
	Introduction
	Polynomials over Composites
	Univariate Factoring and Root Counting
	Multivariate System of Equations
	Computing p-adic Zeta Function
	Our Contribution
	Derandomization via Ideals and Applications
	Random Sampling via Ideals

	Thesis Organization

	Preliminaries
	Basic Notations and Definitions
	Some Useful Results
	Factoring and Lifting
	Properties of Galois rings: Ring analogues of Finite Fields

	Randomized Root Finding modulo Prime Powers
	Representatives and Representative Roots
	Root Finding modulo Prime Powers

	I Derandomization via Ideals and Applications
	Introducing Split Ideals
	Notations and Definitions
	Split Ideals: Structure and Properties
	Reduction and Division modulo a Triangular Ideal
	Testing for Zerodivisors and GCD Computation

	Derandomizing Univariate Root Counting modulo Prime Powers
	Counting All the Roots of f(x) modulo Prime Power pk
	Algorithm to Implicitly Partition the Root-Set
	Correctness of the Algorithm
	Time Complexity Analysis: Introducing the Roots-Tree RT

	Summary

	Counting Unramified Factors modulo Prime Powers
	Counting Factors with Strong Irreducibility
	Reduction to Root Counting in G(pk,b)
	Counting Roots in G(pk, b)

	Discussions

	Computing Igusa's Local Zeta Function and p-adic Applications
	Preliminaries
	Some Definitions and Notations related to f

	Interplay of Zp-Roots and (Z/"426830A pk"526930B)-Roots
	Representative Roots versus Neighborhoods
	Formula for Nk(f)
	Computing Poincaré Series
	Summary

	II Random Sampling via Ideals
	Reduction of Factoring to Root Finding and Factoring modulo p4
	Preliminaries
	Factoring to Root Finding
	Factoring and Lifting modulo Prime Power p4
	Finding All the Factors modulo pk for k<4
	Reduction to Root Finding modulo a Principal Ideal of Fp[x]
	Finding Roots of a Special Bivariate E'(y0,y1) modulo "426830A p, 4a "526930B
	Algorithm to Find Roots of E(y)
	Proof of Main Results

	Barriers to extension modulo higher powers pk
	Conclusion

	Low Degree Factoring via Solving System of Polynomials
	Our Results
	Finding Low Degree Factors modulo Small Prime Powers
	Factoring over the Galois Ring
	Reduction to Root Finding in Galois Rings
	Algorithm and Proofs

	Solving System of Polynomial Equations over Galois Rings
	Notations and Preliminaries
	The Outline
	Decomposition into Ideals with `Local Properties'
	Algorithm for getting Roots into `Absolute' Ideals
	Correctness and Root Finding

	Summary

	Conclusion and Open Problems
	Bibliography

