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SYNOPSIS

The area of Algebraic Complexity Theory deals with various problems related to poly-

nomials and their respective computational complexity. In this thesis, we work on two

fundamental problems in this area — Polynomial Factoring and Polynomial Identity Test-

ing (PIT). These problems have well-known connections to each other and to other im-

portant computational problems. Both the problems admit polynomial-time randomized

algorithms, while efficient deterministic algorithms are yet to be found. However, these

problems have been derandomized for various restricted polynomial classes which often

rely on crucial structural observations. In this work, we prove some new structural results

and show how they lead to efficient factoring and identity testing algorithms for certain

polynomial classes.

Sparse Factoring: Given an input polynomial f ∈ F[x1, . . . , xn], the complete factor-

ization of f is a representation of f as fe1
1 · f

e2
2 · . . . · f

ek
k , where f1, . . . , fk are co-prime

irreducible polynomials and e1, . . . , ek are positive integers. Sparsity of a polynomial f is

defined as the number of monomials with non-zero coefficients in f . A list of these mono-

mials along with their non-zero coefficients is called the sparse representation of f . We call

f a sparse polynomial if its sparsity is a small number, typically bounded by poly(n). In

sparse factoring, the input polynomial is provided in the sparse representation and one is

asked to factor the given polynomial and output its irreducible factors, also in the sparse

representation. In general, sparse polynomials are known to have dense factors. Therefore,

the class of sparse polynomials with constant individual degrees is studied, which is widely

believed to be closed under factors.
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The key combinatorial object studied for factor-sparsity is the Newton polytope. In

this work, we introduce a new notion of min-entropy for a set of vectors. We prove that

for a Newton polytope with a ‘low’ min-entropy vertex set, all the integral points inside

the polytope will also have low min-entropy. We use this structural result to bound the

total number of integral points in the Newton polytope of a symmetric polynomial. This

eventually leads to a polynomial-sized upper bound on the sparsity of the factors of a

symmetric, sparse polynomial with bounded individual degree. This in turn yields an

efficient deterministic factoring algorithm for such polynomials.

We also study other variants of this problem. For a polynomial f which factors as

f = g · h, we call g a co-factor of h and vice-versa. We prove a new sparsity bound

for the co-factor of some multilinear factor of a sparse polynomial. We also study a

decision problem — which we call exact power testing — in which we design an efficient

deterministic algorithm to test whether a given sparse polynomial f is an exact power of

some other polynomial g, i.e. test whether f = ge, for some positive constant e.

Polynomial Identity Testing: Given an input polynomial f , the Polynomial Identity

Testing (PIT) problem asks to determine if f is an identically zero polynomial. In general,

the input polynomial f is given as an algebraic circuit. There are two flavors here —

whitebox and blackbox PIT. In whitebox PIT, one is allowed to look inside the circuit,

whereas in blackbox setting, the input is provided in the form of a blackbox which can only

be evaluated at field points. Despite the general problem being still open, various restricted

classes have been solved and gradually stronger models are introduced and attacked. In

this work, we study PIT for two different classes — sum of ROABPs (read-once oblivious

algebraic branching programs) and Σ[2]ΠΣΠ[ind-deg d] circuits.

PIT for ROABPs has been extensively studied and quasi-polynomial time blackbox

algorithms are known for this class. However, PIT for sum of ROABPs is a much tougher

problem as there are explicit polynomials that can be expressed as sum of just two ROABPs

but require exponential size when expressed as a single ROABP. In this work, we give a new

reduction from PIT of sum of ROABPs to PIT of a single ROABP, which improves over
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the previous known reduction in the log-variate setting (when the number of variables

is logarithmic to the size of input). More generally, we extend our reduction to the

border class of sum of ROABPs. We also show a poly-time blackbox PIT for a single

log-variate ROABP of constant width. Combined with our reduction, we get a poly-time

blackbox PIT for sum of constant-many, log-variate, constant-width ROABPs. The PIT

for single ROABP here is a consequence of the new structural result that we prove — an

ROABP computing a homogeneous polynomial can be syntactically homogenized in the

same width. The standard homogenization tricks incur a blow-up in width, which is fatal

in the constant-width regime.

The depth-4 ΣΠΣΠ circuits are widely studied due to the famous depth-4 and depth-3

chasm results, which show that it is sufficient to solve PIT for these classes in order to

get non-trivial PIT for general circuits. Not surprisingly therefore, depth-4 circuits are

difficult to solve and various restricted subclasses are studied, for example restricting the

top and bottom fan-ins to constants. In this work, we study the Σ[2]ΠΣΠ[ind-deg d] class,

for which the PIT question effectively asks whether
∏r

i=1 fi =
∏m

j=1 gj , where every fi and

gj is a sparse polynomial of constant individual degree d. In the whitebox setting, this

problem reduces to the sparse factoring problem as one can simply factor every polynomial

in LHS and RHS and compare each irreducible factor. Even then, it will require quasi-

polynomial time, which is the best known time-complexity for sparse factoring. Moreover,

this idea does not work in the blackbox setting. In this work, we develop a new method

which does not depend on solving sparse factoring and yet it yields a poly-time blackbox

PIT. This is achieved via a structural result that links the subresultant of two polynomials

with their gcd and resultant of their co-prime parts.
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Chapter 1

Introduction

Computational complexity theory is a branch of theoretical computer science that aims

to classify various computational problems according to their inherent complexity. The

complexity of the problem is measured by the amount of resources required to solve them

in a well defined mathematical model. The traditional model is the well known Turing

machine model, in which time and space are the two main resources. The celebrated

P vs NP problem can be considered the driving force for this area. As this problem

continues to be elusive, various other computational models have been studied in the quest

of proving hardness of explicit problems in these models. Communication complexity,

quantum computing, circuit complexity etc. are now independent yet connected areas of

research based on different computational models.

Another sub-area is that of randomized algorithms, which is modeled using the prob-

abilistic Turing machine, that has an additional resource of randomness. Here the most

important class is BPP, which represents the class of problems having efficient random-

ized algorithms. BPP acts as the randomized equivalent of class P. This leads to the

following philosophical question: Is randomness necessary? or formally is P = BPP? It

is widely believed to be true. In other words, it is believed that any randomized algo-

rithm can be converted into a deterministic algorithm with only a polynomial blow-up in

its time-complexity. This is called derandomization. Many problems have been deran-

domized, for example the famous primality testing algorithm of [AKS04]. Yet there are

1
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many interesting problems that admit efficient randomized algorithms but for which no

efficient deterministic algorithms are known. We study two such fundamental problems

in this thesis: Polynomial Factorization and Polynomial Identity Testing (PIT). Given a

polynomial f ∈ F[x1, . . . , xn], multivariate polynomial factorization asks to output all its

irreducible factors, while PIT asks to determine if f is identically zero. The form in which

the input polynomial f is provided is significant in the complexity of these problems.

This thesis will focus on the model of sparse polynomials for factoring. Sparsity of

a polynomial f ∈ F[x1, . . . , xn] is defined as the number of monomials with non-zero

coefficients in f . A polynomial is called s-sparse if it has at most s-many terms. Degree of a

monomial is the sum of degrees of the variables in it. Degree (total-degree) of a polynomial

is the maximum degree of any monomial in it. Individual degree of a polynomial is the

maximum degree of any variable in the polynomial. Note that sparsity for an n-variate,

individual degree d polynomial can be exponentially high – at most (d+1)n. While for the

class of sparse polynomials it is low, typically poly(n). For PIT in this thesis, we study

the models of depth four circuits and ROABPs (read-once oblivious algebraic branching

programs). We define these along with other algebraic models in the section below.

It turns out that both these fundamental problems are connected to each other. It is

easy to show that PIT reduces to factorization. Observe that the polynomial x2 + y · f

factorizes if and only if f = 0. The other direction is non-trivial and shown in [KSS14].

They showed that the problem of derandomizing multivariate polynomial factoring reduces

to derandomizing PIT, for general algebraic circuits (assuming deterministic univariate

factoring). Showing this equivalence for other models was left as an open problem by the

authors. The classes which admit an efficient deterministic PIT algorithm are particularly

interesting because if we show the equivalence for these classes, we also derandomize

factoring for them. Sparse polynomials is one such natural class, for which we do have

poly-time deterministic PIT algorithms [KS01] but poly-time factoring is open.
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1.1 Algebraic models of computation

Polynomials are best studied using algebraic models of computation. The area of algebraic

complexity theory analyzes polynomials in terms of their complexity and studies related

computational problems such as factoring or PIT. Below, we define various algebraic mod-

els for computation of a polynomial. For details, we refer the reader to the excellent survey

of [SY10].

1.1.1 Algebraic circuits

An algebraic circuit is a directed acyclic graph where computation is done bottom-up, with

input leaves at the bottom and a single output node at top. The leaves are labeled with

variables or field constants while rest of the nodes are either addition or multiplication

nodes. The directed edges u→ v are labeled with field constants, which get multiplied to

the polynomial computed at node u before feeding it to node v. The in-degree of a node

is called its fan-in and out-degree is called fan-out. Size of the circuit is simply size of the

directed graph. Depth of the circuit is length of the longest path from a leaf to the output

node. Degree of the circuit is maximum degree of a polynomial computed at any node in

the circuit. The much more general class of poly(n)-sized and poly(n) degree algebraic

circuits is called VP, which is considered the algebraic analog of complexity class P. The

class VNP is considered the algebraic analog of complexity class NP. It is the class of

polynomials which can be expressed as an exponential sum of a projection of a VP circuit

family. Like the P vs NP question in the classical model, here the main aim is to prove

VP ̸= VNP. An algebraic circuit where fan-out of every node is one is called an algebraic

formula. The class of polynomial sized formulas is called VF.

Algebraic circuits can be assumed to be layered with alternating layer of + and ×

nodes, with the root node to be addition gate. A size-s depth-2 ΣΠ circuit computes a

sum of s-many monomials. Thus, depth-2 circuits compute the class of sparse polynomials.

A depth-3
∑∏∑

circuit computes polynomials of the form f =
∑k

i=1

∏di
j=1 ℓij , where

each ℓij is a linear polynomial. A sub-model of depth-3 circuits called diagonal depth-3



4

x 1 y 2

+ +

+
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+

−1

Figure 1.1: A circuit computing the polynomial x2 + y + 1.

circuits
∑∧∑

, computes polynomials of the form f =
∑k

i=1 ℓ
di
i , where each ℓi is a linear

polynomial.

A depth-4 circuit is of the form
∑∏∑∏

. Thus, a size-s circuit in this class com-

putes polynomials of the form f =
∑k

i=1

∏di
j=1 fij , where each fij is an s-sparse poly-

nomial. In this thesis, we also consider a sub-model of depth-4 circuits, which we call

Σ[k]ΠΣΠ[ind-deg d]. Here, k, d are considered constants and each fij is a sparse polynomial

of individual degree d.

1.1.2 ABPs

An algebraic branching program (ABP) is a layered directed graph with a unique source

vertex s and sink vertex t. The ABP of depth-d has d + 1 layers– V0, V1, . . . , Vd, where

first layer V0 =: {s}, and last layer Vd =: {t}. The directed edges go from Vi to Vi+1, for

0 ≤ i ≤ d − 1 and are labeled with linear polynomials from F[x]. The weight of a path p

is W (p) :=
∏

e∈pW (e), where W (e) denotes the weight (or label) of an edge. The final

polynomial f(x) computed by the ABP is then simply the sum of weight of all paths from

source to sink: f(x) :=
∑

path p :s⇝tW (p). The length of the ABP is the number of layers

from s to t. The ABP has width w, if for 0 ≤ i ≤ d, |Vi| ≤ w. Size of the ABP is its graph

size, which is product of its length and width. VBP is the class of all polynomial-sized

ABPs.
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Figure 1.2: ABP of width 2, depth 3 computing f = x2x3.

ABP also has an alternate algebraic representation in terms of matrix product. Let

the set of vertices in ith-layer Vi be Vi =: {vi,j | j ∈ [w]}. Then, f(x) =
∏d

i=1Di, where

D1 ∈ F1×w[x], Di ∈ Fw×w[x] (for 2 ≤ i ≤ d− 1), and Dd ∈ Fw×1[x] such that the entries

are:

D1(j) := W (s, v1,j) , for j ∈ [w]

Di(j, k) = W (vi−1,j , vi,k) , for j, k ∈ [w] and 2 ≤ i ≤ d− 1

Dd(k) = W (vd−1,k, t) , for k ∈ [w] .

By default W (u, v) := 0, if there is no edge (u, v) in the ABP. For the ABP in Figure 1.2,

the matrix product representation is:

[
x1 + x2 −x3

]x1 x1

0 x2


 1

−1


[
1 −1

]x1 + x2 0

0 x3


x1 x1

0 x2


 1

−1


1.1.3 ROABPs

An ABP is called read-once oblivious ABP (ROABP) if each variable appears in only

one layer and instead of linear polynomials, edge weights are univariate polynomials. So,

ROABP has length equal to the number of variables n. The variable order (xπ(1), . . . , xπ(n))

of ROABP is the order of variables as they appear in edge weights between the layers i−1
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Figure 1.3: ROABP computing f = (x1 + y1)(x2 + y2) · · · (xn + yn).

to i in the ROABP, where i ranges from 1 to n. Size of the ROABP is the sum of its graph

size and the individual degrees (of the univariate edge-labels). The three size parameters

here are width, degree and number of variables.

In the matrix product form, ROABP D(x) =
∏n

i=1Di, where D1 ∈ F1×w[xπ(1)], Di ∈

Fw×w[xπ(i)] for 2 ≤ i ≤ n−1, and Dn ∈ Fw×1[xπ(n)]. One can also view Di as a univariate

polynomial with coefficients coming from w-dimensional vectors or w × w matrices. For

ROABP D(x), D≤i denotes the sub product
∏i

j=1Dj , and D>i denotes
∏n

j=i+1Dj .

1.2 Sparse polynomial factorization

Polynomial factorization is an important problem with interesting connections to circuit

lower bounds [KI04], list decoding [Sud97, GS98] and cryptography [CR88]. It admits an

efficient randomized algorithm [Kal89, KT90] when the input is given in the form of an

algebraic circuit. See [Kal03, vzG06, vzGG13, Sud98] for a detailed exposition.

In sparse polynomial factorization, we give a sparse polynomial as input and ask out-

put factors also in the sparse representation. This problem was first studied in [vzGK85],

where a randomized algorithm for the same was provided. The time complexity of their

algorithm was polynomial in the sparsity of factors and exponential in the number of fac-

tors. Naturally, [vzGK85] raised the question of proving better sparsity bounds for factors

of sparse polynomials. Note that the time-complexity of factoring algorithm will be lower

bounded by the sparsity of factors, just to write the output factors in sparse representation
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alone. Unfortunately, sparse polynomials can have dense factors. For characteristic zero

fields, Example 1.2.1 gives an s-sparse polynomial which has a factor of sparsity slog d,

where d is the individual degree.

Example 1.2.1 ([vzGK85]). Consider the following polynomial f with individual degree

d, which factorizes as f = gh, where

f =
n∏

i=1

(xdi − 1) , g =
n∏

i=1

(1 + xi + . . .+ xd−1
i ) , h =

n∏
i=1

(xi − 1) .

For finite fields, the situation is even worse. Here, Example 1.2.2 gives an s-sparse poly-

nomial with a factor of sd sparsity.

Example 1.2.2 ([BSV20]). Over finite fields we have the following polynomial which

has a higher exponential blowup in factor-sparsity. Consider the following polynomial

f ∈ Fp[x1, . . . , xn] with individual degree p, for some prime p and let 0 < d < p. We have

f = gh, where

f = xp1 + xp2 + . . .+ xpn = (x1 + x2 + . . .+ xn)
p ,

g = (x1 + x2 + . . .+ xn)
d ,

h = (x1 + x2 + . . .+ xn)
p−d .

These examples give the best known lower bounds on sparsity of factors. The best known

factor-sparsity upper bound for an s-sparse polynomial is sO(d2 logn) due to [BSV20]. It

is conjectured that the true bound depends only on d in the exponent and does not have

this log n dependence.

Conjecture 1.2.3. Let f be an s-sparse polynomial with individual degree d and g be

a factor of f . Then, sparsity of g is upper bounded by sµ(d), where µ : N → N is any

function.

Therefore, researchers study the sparse factoring problem in the setting where indi-

vidual degree d is considered constant. Even designing factoring algorithms for sparse

polynomials of individual degree one or two required non-trivial insights. An efficient

deterministic algorithm for factorization of sparse multilinear polynomials (d = 1) was



8

provided in [SV10]. This result was further generalized to sparse polynomials that fac-

torize into multilinear factors in [Vol15]. The model of sparse multiquadratic polynomials

(d = 2) was solved in [Vol17].

In Chapter 3, we make progress towards this conjecture by proving an sO(d2 log d) factor-

sparsity bound for the class of s-sparse symmetric polynomials. Symmetric polynomials

is a natural class which is studied extensively in both computer science and mathematics.

Many multivariate polynomials f ∈ F[x1, . . . , xn] are constructed by ‘boosting’ a univariate

polynomial a(X) by product or addition as shown below:

f =

n∏
i=1

a(xi) or f =

(
n∑

i=1

a(xi)

)d

for some d ≥ 1.

Such polynomials are actually symmetric by construction. We note that the famous ex-

amples (Example 1.2.1 and Example 1.2.2) fall under this category. Besides symmetric

polynomials, we also prove polynomial-sized sparsity bounds for another class of polyno-

mials, which we call low min-entropy polynomials (See Definition 2.2.1).

Given an input f in a particular representation, the Factor Closure problem asks for

the best bound on size of factors in the same representation. The foundational work of

[Kal86, Kal87, Kal89] showed that if f is a size-s, degree-poly(n) algebraic circuit, then

its factors also have poly(s, n)-sized algebraic circuits, i.e. VP is closed under factoring.

[DSS18] proved factor closure for the classes of VF, VBP, VNP with a quasi-polynomial

blowup in size, and gave analogous whitebox algorithms (see Section 1.1 for definitions

of these classes). VNP was shown to be properly closed under factoring (with only poly

blowup in size) in [CKS19]. Recently, [ST21b] showed that size-s ABPs have factors of

size poly(s), thus proving factor closure for VBP class. For algebraic formulas, [Oli16]

showed that if f is computed by a depth-∆, size-s algebraic formula, then its factors can

be computed by depth-(∆+ 5) and size poly(s) formulas, provided that individual degree

of f is constant. Observe that sparse polynomials can also be seen as depth-2 algebraic

formulas, thus [Oli16] showed that factors of bounded individual degree sparse polynomials

can be computed by depth-7 formulas. However, [BSV20] showed that these factors can

be computed in depth-2 itself with a quasi-polynomial blowup in size. We show that if f
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is also symmetric, then the factors can even be computed in depth-2 efficiently, with only

a polynomial blowup in size.

The work of [BSV20] also gives a deterministic factorization algorithm for sparse poly-

nomials with constant individual degree which runs in sO(logn) time. With our new poly(s)-

sparsity bound, we use their algorithm to get a deterministic poly(s)-time factorization

algorithm for symmetric, s-sparse polynomials and also for low min-entropy polynomials,

in the bounded individual degree regime.

1.3 Polynomial Identity Testing

Polynomial Identity Testing (PIT) is the problem of testing whether a given multivariate

polynomial is identically zero or not. The input polynomial to be tested is usually given

in a compact representation – like an algebraic circuit or an algebraic branching program

(ABP). The PIT algorithm is said to be efficient if its time complexity is polynomial in

the input size of algebraic circuit resp. ABP. There are two main types of PIT algorithms–

blackbox or whitebox. A blackbox PIT algorithm tests the zeroness of input polynomial

using only evaluations of circuit, resp. ABP, over field points. However, a whitebox al-

gorithm is allowed additional access to look inside the circuit or ABP. The set of points

H over which a blackbox PIT algorithm evaluates is also commonly known as a hitting-

set. PIT admits a simple yet efficient randomized blackbox algorithm due to Polynomial

Identity Lemma [Sch80, Zip79, DL77, Ore22]. The primary focus of research in PIT is to

derandomize it and get a poly-time deterministic blackbox algorithm. The problem of PIT

also has interesting connections with circuit lower bounds [HS80, KI04, Agr05, AGS19],

geometric complexity theory [Mul12b, Mul12a] and many other well known problems like

matching [MVV87, FGT17], primality testing [AKS04] and polynomial factoring [KSS14].

Refer to [SY10, Sax09, Sax14, Sap16] for detailed surveys on PIT and lower bounds.

The first PIT model we study in this thesis is a sub-class of depth-4 algebraic cir-

cuits. The depth-4 ΣΠΣΠ circuit class is extremely important in the context of the PIT

problem, as it is known that a polynomial-time black-box PIT for this class implies a
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quasi-polynomial-time black-box PIT for general VP circuits [AV08, AGS19]. For a long

time, no PIT algorithm better than the trivial dO(n) time algorithm was known for this

class, until the recent breakthrough lower bound result of [LST22], which also gives a sub-

exponential time PIT algorithm. Various restricted versions of depth-4 circuits are studied

to get close to polynomial-time PIT algorithms. For example, [PS21] give a polynomial-

time PIT algorithm for Σ[3]ΠΣΠ[2] circuits, where the top fan-in is 3 and the bottom

fan-in is 2. Recently, [DDS21] gave a quasi-polynomial-time PIT for Σ[k]ΠΣΠ[d] circuits,

where the top fan-in k and bottom fan-in d are allowed to be any fixed constants. In this

model, the restriction on bottom fan-in implies that the bottom ΣΠ computes polynomials

of total degree at most d. We give polynomial-time PIT algorithm for Σ[2]ΠΣΠ[ind-deg d]

model, where the top fan-in is 2 and the bottom ΣΠ computes polynomials with individual

degree at most d. We note that the individual degree restriction is much weaker than the

total degree restriction. Indeed, even for the case of individual degree bounded by 1 (i.e.

multilinear polynomials) the total degree can still be Ω(n)! [SV18] gave a polynomial-time

PIT algorithm for the class of multilinear Σ[k]ΠΣΠ circuits, with constant top fan-in k,

where every gate in the circuit computes a multilinear polynomial. Yet, even a white-box

polynomial-time PIT for general Σ[2]ΠΣΠ circuits is still open.

In [vzGK85], another problem was posed alongside the sparse factorization problem, in

the hope that it might be easier. This problem is referred to as testing sparse factorization.

Given m + 1 sparse polynomials f, g1, . . . , gm, it asks to test whether f = g1 · . . . · gm.

The work of [SSS13] gives a polynomial-time algorithm for this problem, in the special

case where every gi is a sum of univariate polynomials. [Vol17] gives a polynomial-time

algorithm when f (and therefore every gi) has constant individual degree and each gi is an

irreducible polynomial. Our PIT result for Σ[2]ΠΣΠ[ind-deg d] is connected to this problem.

We give a polynomial-time algorithm to test whether
∏r

i=1 fi =
∏m

j=1 gj , where each fi, gj

is a sparse polynomial with constant individual degree. Note that now LHS is also a

product of polynomials. Moreover, there is no restriction placed on gj-s except that they

have bounded individual degree.

The second PIT model that we study in this thesis is that of read-once oblivious
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ABPs (ROABPs), defined earlier. In the whitebox regime, ROABP has a well known

poly-time PIT algorithm [RS05]. However, in the blackbox regime, we only have quasi-

poly-time PIT algorithms [FS13b, AGKS15] and no known poly-time algorithms. Thus,

one can also ask for blackbox PIT of ROABPs with restriction on the width parameter.

In [GKS17] they address this question and give a poly-time graybox (known variable

order) PIT for constant width ROABPs. The constant width setting can be considered

a necessary stepping stone before solving PIT for general width ROABPs. The sum

of ROABPs is another interesting model for PIT. For a constant number of ROABPs,

[GKST17] give the first poly-time whitebox, and only a quasi-poly time blackbox PIT

algorithm. One can then ask for poly-time blackbox PIT for sum of ROABPs under the

restriction of constant width. This problem is also open. What if we also restrict the

number of variables? It is a nontrivial model as the degree remains arbitrary. This brings

us to the question of poly-time blackbox PIT for sum of constantly-many, constant-width,

log-variate ROABPs. We give a positive answer for this question in this thesis. We show

that blackbox PIT for sum of constantly-many, log-variate constant-width ROABPs is in

polynomial time.

1.4 Contribution of this thesis

In what follows, let F be any arbitrary field, finite or otherwise.

1.4.1 Sparse factoring results

We prove the following structural result in sparse factoring: A symmetric sparse polyno-

mial of constant individual degree has sparse factors.

Theorem (Theorem 3.3.3). Let f ∈ F[x1, . . . , xn] be an s-sparse, symmetric polynomial

with individual degree d. Then, every factor of f has its sparsity bounded by sO(d2 log d).

For constant d, the above bound is poly(s). Previous best sparsity upper bound for factors

of f was sO(d2 logn) due to [BSV20], which is super polynomial even for constant d. Our
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result shows a positive evidence for Conjecture 1.2.3, and it suggests that general factor-

sparsity bound should be independent of this log n dependence. We can also work with a

general (possibly non-symmetric) f and get the same sparsity bound for any symmetric

factor of f (if it exists). See Theorem 3.3.1.

Given a polynomial f , the complete factorization of f is a representation of f as

fe1
1 fe2

2 · · · f
ek
k , where f1, . . . , fk are co-prime, irreducible polynomials and e1, . . . , ek are

positive integers. Let cF(d) denote the best known time complexity for factoring a uni-

variate polynomial of degree d over the field F. For F = Q, cF(d) ≤ poly(d, t) where t is

the maximum bit-complexity of the coefficients of f [LLL82]. For a finite field F = Fpℓ ,

cF(d) ≤ poly(ℓ · p, d) [Ber67, CZ81]. We get the following sparse factoring algorithm as a

direct corollary of our factor-sparsity bound above.

Corollary (Corollary 3.4.2). Let f ∈ F[x1, . . . , xn] be an s-sparse, symmetric polynomial

with individual degree d. Then, there is a deterministic algorithm that computes the com-

plete factorization of f in at most poly(sd
7 log d · nd2 · cF(d2))-time.

Throughout this thesis, we get the same results if we replace symmetric polynomials with

a more general class of polynomials, which we call symmetric-support polynomials. We

can identify the support of polynomial f , with the subset supp(f) ⊆ {0, 1, . . . , d}n, as the

set of exponent vectors corresponding to each monomial in f . We call f ∈ F[x1, . . . , xn]

a symmetric-support polynomial if for each monomial xe11 · · ·xenn ∈ supp(f), we also have

that x
eσ(1)

1 · · ·xeσ(n)
n ∈ supp(f) for every permutation σ ∈ Sn. For eg., f = x21x2x3 +

2x1x
2
2x3 − x1x2x

2
3 is a symmetric-support polynomial that is not symmetric. While f =

x21x2x3 + x1x
2
2x3 is not symmetric-support.

We introduce the notion of min-entropy as follows. We say that an n-dimensional

vector v is of δ-min-entropy if (n − δ) of its coordinates have the same value, where we

consider minimum δ across all distinct elements in v. We call a set of vectors A, a δ-

min-entropy set, if every vector in A has min-entropy ≤ δ. We call f a δ-min-entropy

polynomial, if supp(f) is of δ-min-entropy. For eg., f = x1x2x
3
3x

5
4+2x21x

4
2x

6
3x

6
4+3x71x

9
2x

8
3x

9
4

is a 2-min-entropy polynomial (also, 3-min-entropy but not 1-min-entropy). Moreover, it

is not symmetric. For δ-min-entropy polynomials, we get poly(n) factor-sparsity bound
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below, when d, δ are constants.

Theorem (Theorem 3.3.4). Let f ∈ F[x1, . . . , xn] be a δ-min-entropy polynomial with

individual degree d such that d, δ are constants. Then, every factor of f has its sparsity

bounded by (nd)O(dδ).

We get the following factoring algorithm as a direct corollary of the sparsity bound above.

When δ and d are constants, we get a poly(n, cF(d))-time algorithm.

Corollary (Corollary 3.4.3). Let f ∈ F[x1, . . . , xn] be a δ-min-entropy polynomial with

individual degree d. Then, there is a deterministic algorithm that computes the complete

factorization of f in at most poly((nd)d
4δ · cF(d2))-time.

All the factor-sparsity results mentioned above crucially rely on our structure theorem

stated below. It shows that if we have a δ-min-entropy set of exponent vectors, then the

integral-points in its convex hull, have min-entropy at most O(dδ). Trivially, such a thing

is false for Z-linear-span (resp. Q-linear-span) of vertices. Yet, surprisingly, a convex-span

(CS) preserves the low min-entropy of its vertices!

Theorem (Theorem 3.1.4). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy set, then CS(V )∩

Zn is a (2dδ)-min-entropy set.

Exact power testing. Our next result pertains to exact powers of polynomials. A

polynomial f ∈ F[x1, x2, . . . , xn] is an exact power if there exists (another) polynomial g ∈

F[x1, x2, . . . , xn] and e ∈ N such that f = ge. We note that despite the rich structure, the

best known sparsity bound for exact roots of s-sparse polynomials is the general sparsity

bound of size sO(d2 logn) by [BSV20]. Hence, one can use the factorization algorithm of

[BSV20] to test if a given sparse polynomial is an exact power, in quasi-polynomial time.

Here we solve the decision version of this problem in polynomial time. We provide a

polynomial-time algorithm for exact-power testing that does not rely on this sparsity

bound. Moreover our algorithm does not reduce to univariate factorization and we give a

polynomial-time algorithm in the bit-complexity of field elements. Thus, for finite fields we

only get poly(log |F|) dependence instead of poly(|F|) bottleneck in univariate factoring.



14

Theorem (Theorem 4.1.7). There is a deterministic algorithm that given a sparse poly-

nomial f ∈ F[x1, x2, . . . , xn] of individual degree d as an input, decides whether f = ge for

some polynomial g ∈ F[x1, x2, . . . , xn] and e ∈ N, in time poly(sd
2
, n).

The above algorithm is poly-time for constant d. We note that sd/2 is a lower bound on

the sparsity of exact roots. Consider a modification of Example 1.2.2 with f = (x1 +

. . . + xn)
p+1 = g2, where g = (x1 + . . . + xn)

(p+1)/2 over the finite field Fp. Here f is

O(n2)-sparse while g is nΩ(p)-sparse.

Co-factor sparsity bound. Given two polynomials f, h ∈ F[x1, x2, . . . , xn] such that

f = gh, g is called a quotient polynomial or a co-factor of h. We study the problem of

multilinear co-factor sparsity: suppose f is s-sparse and h is multilinear. How sparse/dense

can g be? We remark that any (even non-constructive) efficient upper bound on the

sparsity of g allows us to compute g efficiently by interpolating the ratio f/h using a

reconstruction algorithm for sparse polynomials (e.g. [KS01]) and verifying the result. In

literature, we encounter a decision version of this problem called divisibility testing. It gives

two multivariate polynomials f and h and asks to decide whether h divides f . [For15] gives

a quasi-polynomial time algorithm when f is sparse and h is a constant degree polynomial

(and hence also sparse). Here, we consider f, h that have any constant individual degree.

That is, we relax the constant total degree restriction on h to much weaker constant

individual degree restriction, and put a constant individual degree restriction for f . [Vol17]

gives a polynomial-time algorithm for divisibility testing for such f, h. Here, we consider

a multilinear h (which can have degree Ω(n)) and solve the ‘search’ version of the problem

itself, i.e. we actually compute f/h in quasi-polynomial time, when f is sparse with

constant individual degree and h is a multilinear factor of f .

Theorem (Corollary 5.2.16). Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and

individual degree at most d such that f = gh. Suppose, in addition, that h is a multilinear

polynomial. Then the sparsity of g is bounded by sO(d log s).

We beat the general sparsity bound of sO(d2 logn) by [BSV20] when s = poly(n). The

motivation to study this problem is two-fold: first of all, a multilinear factor of an s-sparse
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polynomial (of any degree) is itself s-sparse (see Lemma 5.2.14). This suggests more

structure for multilinear co-factors we could potentially exploit. Second, a polynomial-

size sparsity bound on multilinear co-factors g (even when the individual degree of g is

d = 2) would imply a polynomial-size sparsity bound for (all factors of) polynomials with

individual degree d = 3. We note that the multicubic (d = 3) case is the first instance

where we do not have a polynomial-size factor-sparsity bound yet. Indeed, multilinear

co-factors can be seen as the “bottle-neck” for this case (Lemma 5.1.1).

Our main contribution here is to identify a combinatorial property – the length of the

shortest unique projection – that governs the bound on the sparsity of multilinear co-

factors. We say that a polynomial h ∈ F[x1, x2, . . . , xn] has a unique projection of length k

if there exist k variables xi1 , xi2 , . . . , xik and k corresponding exponents e1, e2, . . . , ek such

that h has a unique monomial that contains the pattern xe1i1 x
e2
i2
·. . .·xekik (see Definition 5.2.1

for details). We show the following structural result: the shortest unique projection for

an s-sparse polynomial has length at most log s. This result is free of any restriction on

individual degree.

Lemma (Lemma 5.2.5). Let h ∈ F[x1, . . . , xn] be an s-sparse polynomial. Then h has a

unique projection of length at most log s+ 1.

This gives the factor of log s in our sparsity bound for multilinear co-factors. How-

ever, more generally we derive sparsity bound wrt length of the multilinear polynomial as

follows.

Theorem (Theorem 5.2.15). Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and

individual degree at most d such that f = gh. Suppose, in addition, that h is a multilinear

polynomial with a unique projection of length k. Then the sparsity of g is bounded by

sO(dk).

Example 1.2.2 has h with a unique projection of length 1. Consider g with d = p − 1.

Using our result above, we derive a sparsity bound of nO(p) for g. Since f is n-sparse, this

shows the tightness of our sparsity bound for g. We can also extend these sparsity bounds

Pranav Bisht
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to the case of a co-factor of a power of a multilinear polynomial. See Theorem 5.2.19 for

the formal statement.

1.4.2 PIT results

PIT for Σ[2]ΠΣΠ[ind-deg d] circuits. Our first result here is an efficient (deterministic)

identity testing algorithm for the class of Σ[2]ΠΣΠ[ind-deg d] circuits, a circuit C of size s in

this class computes a polynomial of the form:

C =
r∏

i=1

gi +
m∏
j=1

hj

where each polynomial (gi and hj) is an s-sparse polynomial with individual degree at

most d (for some fixed d). Note, though, that r and m, and hence the total degree of C,

can be arbitrary (i.e. polynomially) large. In particular, the polynomial computed by C

may not itself be sparse.

Observe that the identity testing problem for this circuit class reduces to polynomial

factorization of sparse polynomials with bounded individual degree. Therefore, by invoking

the factorization algorithm of [BSV20], we can get a quasi-polynomial-time algorithm. Our

result gives a polynomial-time algorithm for this model without depending on this factor-

sparsity bound. In addition, our algorithm operates in the black-box setting, whereas the

described factorization-based algorithm is a white-box algorithm.

Theorem (Theorem 7.3.9). There exists a deterministic algorithm that given a black-box

access to a Σ[2]ΠΣΠ[ind-deg d] circuit C of size s determines if C ≡ 0, in time poly((sd)d
3
, n).

For constant d, the above PIT algorithm is polynomial-time. In [vzGK85], another

problem was posed alongside the sparse factorization problem. This problem is referred

to as testing sparse factorization. Given m+1 sparse polynomials f, g1, . . . , gm, it asks to

test whether f = g1 · . . . · gm. The work of [SSS13] gives a polynomial-time algorithm for

this problem, in the special case where every gi is a sum of univariate polynomials. [Vol17]

gives a polynomial-time algorithm when f (and therefore every gi) has constant individual

degree and each gi is an irreducible polynomial. Our PIT result is connected to this



17

problem. Here, we give a polynomial-time algorithm to test (even in blackbox) whether∏r
i=1 fi =

∏m
j=1 gj , where each fi, gj is a sparse polynomial with constant individual

degree. Note that now LHS is also a product of polynomials. Moreover, there is no

restriction placed on gj-s except that they have bounded individual degree.

Our algorithm relies on a structural result stated below. It links the gcd of two poly-

nomials, their subresultant and the resultant of their coprime parts - in the multivariate

setting. See Section 6.3 for the formal definitions.

Theorem (Theorem 7.2.1). Let A,B ∈ F[x1, x2, . . . , xn] be two polynomials such that

A = f · g and B = h · g and let xi be a variable. Then

Sxi(d,A,B) = g · Resxi(f, h) · lcxi(g)
m′+n′−1

here m = degxi
(A), n = degxi

(B), d = degxi
(g), m′ = degxi

(f) = m − d and n′ =

degxi
(h) = n− d. In addition:

• Resxi(f, h) is the resultant of f and h w.r.t the variable xi.

• lcxi(g) is the leading coefficient of g when written as a polynomial in xi

• And finally, Sxi(d,A,B) is the d-th subresultant of A and B.

To put the result in context, consider two univariate polynomials A,B ∈ F[x]. A

classical result in the Theory of Resultants (see e.g. [GCL92, vzGG13, CLO15]) states

that:

There exist a non-zero field element α ∈ F such that S(j, A,B) = α · gcd(A,B),

when j = deg(gcd(A,B)). In the multivariate setting one can always regard multivariate

polynomials as polynomials in a single variable with coefficients being rational functions

in the remaining variables. Yet, in this case α is no longer a mere ’field element’ as it can

now be an arbitrary rational function in the remaining variables! From that perspective,

the above theorem can be seen as explicitly expressing α as a polynomial (and not even a

rational function) in the remaining variables. We believe that this explicit relation could

be of interest in its own right. To elaborate on this, let us write the polynomials A and
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B, in the statement of theorem above, as A = (uf) · (g/u) and B = (uh) · (g/u), where

u is a rational function that does not depend on xi. Observe that the introduction of u

does not affect the degrees of xi. We obtain the following invariant:

Sxi(d,A,B) =
g

u
· Resxi(uf, uh) · lcxi

(g
u

)m′+n′−1

=
g

u
· Resxi(f, h) · um

′+n′ · lcxi(g)
m′+n′−1

um′+n′−1
= g · Resxi(f, h) · lcxi(g)

m′+n′−1.

PIT for sum of ROABPs Our next PIT result is for sum of ROABPs. We show a

reduction from designing a blackbox PIT algorithm for sum of ROABPs to designing a

blackbox PIT algorithm for a single ROABP.

Theorem (Theorem 8.3.7). Let T (r, n, d) be the time complexity of a blackbox PIT algo-

rithm for a single ROABP of width r and degree d in n variables over any field F. Then,

blackbox PIT for sum of c-many ROABPs, each of width r and degree d in n variables,

can be solved in time T ′(r, n, d, c) =
(
2n · T (2cr3c , n, d)

)O(c)
over F.

This reduction is poly-time when number of ROABPs, c is constant and number of vari-

ables is logarithmic in the input size, that is n = O(log(rd)). Thus, in the log-variate

setting, if we have a poly-time blackbox PIT for a single ROABP, then we show a poly-

time blackbox PIT for sum of c ROABPs. Though, sum of even two ROABPs is provably

harder than a single ROABP (see Fact 8.1.1), we still get an efficient PIT for sum of

ROABPs.

Corollary (Corollary 8.3.8). Let P be a set of n-variate polynomials, computed by a sum

of c-many ROABPs, each of width r and degree d. Then, blackbox PIT for P can be solved

in poly(dc, rnc3
c
) time.

If c, r = O(1) and n = O(log d), then input size is O(d) and the stated time-complexity is

poly(d). The trivial time complexity for blackbox PIT of P is dn = dO(log d). [GKST17]

gave a blackbox PIT algorithm for sum of c ROABPs in (ndr)O(c2c log(ndr)) time. It is super-

polynomial time, even under the restrictions of constant-c, constant-width and log-variate.

[GKS17] gave a blackbox PIT algorithm for a single ROABP in O(ndrlogn) time. It is
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poly-time for constant width without the log-variate restriction. However, their algorithm

assumes the knowledge of variable order. Moreover, it works only for fields of characteristic

either zero or larger than ndrlogn. Our algorithm is efficient in the log-variate setting, does

not require knowledge of variable order and works for all fields.

For some k ∈ N, let f1(x), f2(x), . . . , fk(x) be any k polynomials in F[x1, . . . , xn].

We call
∑k

i=1 fi(x), a deg-preserving sum, if for f(x) =
∑k

i=1 fi(x), we have deg(f) =

maxi deg(fi). In the previous PIT algorithm number of ROABPs c, is assumed to be

constant to get efficient blackbox PIT. We could allow an arbitrary c, if the sum is deg-

preserving. In other words, with the additional restriction of a deg-preserving sum, we

bring down the double exponential dependence on c to polynomial dependence on c in the

theorem below.

Theorem (Theorem 8.2.9). Let P be a set of n-variate polynomials computed by a degree-

preserving sum of c ROABPs, each of width r and degree d. Then, blackbox PIT for P

can be solved in poly(d, c · rn) time.

If r = O(1) and n = O(log d), then the stated time complexity is poly(cd)– polynomial in

the input-size. Consider the class of polynomials which can be computed by a sum of c

ROABPs, where each ROABP computes a homogeneous polynomial. In Section 8.2, we

show that such a sum can be expressed as a deg-preserving sum. Thus, we get a blackbox

PIT for this class in the same time. If we could get a poly(d, crn) time PIT in the above

theorem without the deg-preserving sum restriction, then we get poly-time PIT for the

model of
∑∧∑

circuits (See Lemma 6.4.5).

All the PIT algorithms above rely on efficient PIT for a single log-variate ROABP of

constant width. We indeed prove one in Lemma 8.2.8. This PIT in turn relies on our

structural result which shows that an ROABP computing a homogeneous polynomial can

be syntactically homogenized in exactly the same width. See Section 8.2.1 for definition

of syntactic homogeneity.

Theorem (Theorem 8.2.4). Let f(x) ∈ F[x] be a degree d homogeneous polynomial com-

puted by an ROABP C(x) of width w in the variable order (y1, . . . , yn). Then, f also has
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a syntactically homogeneous ROABP D(x) =
∏n

i=1Di(yi) of optimal width r ≤ w in the

same variable order. Moreover, ∀i ∈ [n], each entry in Di(yi) is merely a monomial in yi.

If we use [AGKS15]’s blackbox PIT algorithm for single ROABP in our PIT reduction,

we get another efficient PIT for sum of ROABPs as a corollary below.

Corollary (Corollary 8.3.9). Let P be a set of n-variate polynomials, over a field F,

computed by a sum of c-many ROABPs, each of width r and degree d. Also, the variable

order of each ROABP is unknown. Then, blackbox PIT for P can be solved in poly(2cn ·

nc logn, dc logn, r3
c logn) time.

For c = O(1) and n = O(log(rd)), the stated time complexity is (rd)O(log log(rd)). Thus, in

the log-variate setting, we give a more efficient PIT than the result of [GKST17], which

only yields a poly(rd)O(log(rd)) time algorithm, even with n = O(log(rd)).

PIT for border of sum of ROABPs. Let C be an algebraic class over field F, like arith-

metic circuit or ABP or ROABP. An approximation closure or border of class C, denoted

as C is defined as follows: a family (fn) is in C if there are polynomials fn,1, . . . , fn,t ∈ F[x]

such that the family (gn) defined by

gn(x, ϵ) := fn(x) + ϵfn,1(x) + ϵ2fn,2(x) + . . .+ ϵtfn,t(x)

is in C over the field F(ϵ), where t is called the error degree. Here ϵ is a new indeterminate

and limϵ→0 gn(x, ϵ) = fn(x). In other words, fn is approximated by a polynomial gn which

has a circuit in class C over F(ϵ). Although the circuit C ∈ C computing gn might involve

internal computations with ϵ in the denominator but the final output does not and is a

polynomial over F[ϵ][x]. Border classes can be more complicated because the degree of

ϵ involved can be super-polynomial. So, poly-time PIT algorithms for border classes are

rare. Even though single ROABPs are known to be closed under border (see Lemma 6.5.1),

it is not the case with sum of ROABPs. Below, we give a reduction from blackbox PIT

for the border class of sum of c ROABPs to blackbox PIT for a single ROABP.

Theorem (Theorem 8.4.1). Let T (r, n, d) be the time complexity of a blackbox PIT algo-

rithm for a single ROABP of width r in n variables and degree d over any field F. Then

Pranav Bisht
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blackbox PIT for border of sum of c ROABPs, each of width r and degree d in n variables,

can be solved in time
(
2n · T (2cr3c , n, d)

)O(c)
over F.

This reduction yields PIT algorithms for the border class of sum of ROABPs analogous

to Corollary 8.3.8 and Corollary 8.3.9 above.

1.5 Organization of the thesis

We divide this thesis into two parts. Part-I deals with sparse polynomial factorization and

Part-II deals with PIT results. Both the parts have their own preliminaries covered in

chapters 2 & 6 respectively. Part-I covers Chapters 3,4 & 5 while Part-II covers Chapters

7 & 8. We discuss the sparsity bound for sparse, symmetric polynomials in Chapter 3.

Chapter 4 deals with the exact power testing and Chapter 5 deals with sparsity bounds

for cofactors of multilinear polynomials. In PIT, we start with PIT for Σ[2]ΠΣΠ[ind-deg d]

circuits in Chapter 7 and then move on to sum of ROABPs in Chapter 8. Each chapter

ends with a discussion, where we also mention future directions for the problem discussed

there. Finally, we conclude this thesis in Chapter 9.





Part I

Sparse Polynomial Factorization
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Chapter 2

Factoring Preliminaries

2.1 Notations

We use shorthand [n] for the set {1, 2, . . . , n}. We denote a vector v = (v1, . . . , vn) in

short by v (as a column vector). We will use the terms vector or point interchangeably.

We denote the n-fold Cartesian product of a set H by Hn. We will use log x for log2 x

and lnx for loge x. We use the := symbol for defining things. We will sometimes use

F[x] as short for F[x1, . . . , xn]. The finite symmetric group on n elements, which contains

all the permutations of n elements, is denoted by Sn. For a vector v and a permutation

σ ∈ Sn, we denote σ-permutation of v by σ ◦v := (vσ(1), . . . , vσ(n)). We call a set of points

symmetric, if for each point v in it, σ ◦ v is also in the set, for every permutation σ ∈ Sn.

We often use the short-hand wrt to mean “with respect to”.

Let f ∈ F[x] be an n-variate polynomial. Individual degree of a variable xi, denoted by

degxi
(f) is defined as the maximum degree of that variable in f , while individual degree of

a polynomial is the maximum among all the individual degrees, maxi∈[n] degxi
(f). We will

use xe to denote the monomial xe11 xe22 · · ·xenn . We define coeff(xe)(f) as the coefficient of

monomial xe in polynomial f . We define support of f as supp(f) = {e | coeff(xe)(f) ̸= 0}.

Let us denote sparsity of f as ∥f∥, which is the same as |supp(f)|.

For a set I ⊆ [n], we use xI to denote the set of variables {xi | i ∈ I} and x[n]\I to

denote the set of remaining variables. We use the symbol f |xI=0I to denote the polynomial

25

Pranav Bisht



26

resulting from substituting 0 at all the xI variables in f . For two polynomials g, h, we use

the symbol gcd(g, h) to denote their greatest common divisor.

2.2 Definitions

Polytopes: For a finite set of points v1, . . . ,vk ∈ Rn, their convex combination is defined

as an R-linear combination of the points: α1v1 + . . . + αkvk, such that αi ≥ 0 for each

i ∈ [k] and
∑k

i=1 αi = 1. We define convex-span (or convex hull) CS(v1, . . . ,vk) as the

set of all possible convex combinations of vi, i ∈ [k]. A set P ⊆ Rn is called a (bounded)

polytope if there is a finite set of points v1, . . . ,vk such that P = CS(v1, . . . ,vk). A

point a ∈ P is called a vertex of P if it cannot be written as a = αu + (1 − α)v for any

u,v ∈ P \ {a} and α ∈ [0, 1]. It is equivalent to saying that vertices are corner points of a

polytope P which cannot be expressed as convex combination of any other set of points in

P . We use V (P ) to denote the set of vertices of P . It is easy to verify that for a polytope

P , P = CS(V (P )). Moreover, if P = CS(v1, . . . ,vk) then V (P ) ⊆ {v1, . . . ,vk}.

Minkowski sum of two polytopes A,B ∈ Rn is defined as the following set of points

A + B = {a + b | a ∈ A,b ∈ B} . A basic fact is that Minkowski sum of two polytopes

is itself a polytope. The vertices of Minkowski sum have some very useful properties. It

is known that every vertex of A+ B can be expressed uniquely as a sum u+ v, where u

is a vertex of A and v is a vertex of B. Additionally, one can show that |V (A + B)| ≥

max{|V (A)|, |V (B)|} (See [BSV20, Prop. 3.2] or [DdO14, Cor. 3.13]). We refer the readers

to [Zie12, Sch00] for a detailed discussion on polytopes.

For a polynomial f ∈ F[x1, . . . , xn], the Newton polytope of f is defined as Pf :=

CS(supp(f)). In this work, we crucially exploit its integral-points P ′
f := Pf ∩ Zn. We

denote the vertex set V (Pf ) by Vf . We also note that Vf ⊆ supp(f) ⊆ {0, . . . , d}n (integral-

points).

Hyperplanes and Halfspaces: A hyperplane is the generalization of a line in higher

dimensions. A hyperplane H is defined as H := {y ∈ Rn | a⊺y = b}, for some vector

a ∈ Rn \ {0} and a number b ∈ R. The hyperplane divides the space into two parts
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a⊺y ≥ b and a⊺y ≤ b. These are called halfspaces.

Min-entropy:

Definition 2.2.1 (δ-min-entropy). A vector v ∈ {0, 1, . . . , d}n has δ-min-entropy if a

single value c ∈ {0, . . . , d} appears in exactly (n − δ) coordinates of v. We consider

the c appearing with maximum frequency in v and hence the smallest δ. In coding theory

language, a δ-min-entropy vector has Hamming distance δ from a constant vector (c, . . . , c)

for some c ∈ {0, 1, . . . , d}. We also extend this definition of min-entropy to sets and

polynomials. We call A ⊆ {0, 1, . . . , d}n a δ-min-entropy set, if for every vector v ∈ A, v

has min-entropy ≤ δ. We call f a δ-min-entropy polynomial, if its support set supp(f) is

a δ-min-entropy set.

Example 2.2.2. The polynomial f = xd1 + xd2 + . . .+ xdn has 1-min-entropy as

supp(f) =





d

0

...

0


,



0

d

...

0


, . . . ,



0

0

...

d




,

where each vector in it has element 0 occurring with frequency (n− 1).

Example 2.2.3. Let us now consider a polynomial of high min-entropy. The polynomial

f = x1 · · ·xn/3 + xn/3+1 · · ·xn, has min-entropy n/3. To clarify the notation, we can also

call f to be of (n/3 + 1)-min-entropy but we cannot call it (< n/3)-min-entropy vector.

2.2.1 Content and Primitive parts

We use the short-hand UFD to denote a unique factorization domain. For polynomials

over UFDs and more generally over their field of fractions, we define content and primitive

parts as follows.

Definition 2.2.4 (Chapter 6 [vzGG13]). Let R be a unique factorization domain and K

be its field of fractions. Let g ∈ K[y] be a polynomial over K such that g =
∑m

i=0(gi/b) ·

yi ∈ K[y], where b ∈ R is the common denominator. The content of g is defined as
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cont(g) = gcd(g0, . . . , gm)/b. We define primitive part of g as pp(g) = g/cont(g). Observe

that cont(g) ∈ K, while pp(g) ∈ R[y].

Example 2.2.5. For R = Z andK = Q, consider g = 3y+9/2 ∈ Q[y]. Then g = (6y+9)/2

and cont(g) = gcd(6, 9)/2 = 3/2 ∈ Q. And pp(g) = g/cont(g) = 2y + 3 ∈ Z[y].

Example 2.2.6. Let us now consider a bi-variate example. Let R = F[x] and K = F(x).

Consider g = (x2 − 1) · y + (x − 1)/(x + 1) ∈ F(x)[y]. Then, cont(g) = gcd((x2 − 1)(x +

1), (x− 1))/(x+ 1) = (x− 1)/(x+ 1) ∈ F(x). And pp(g) = (x+ 1)2 · y + 1 ∈ F[x][y].

We use the above definitions to prove the following lemma which will be useful to us later

on.

Lemma 2.2.7. Let R be a unique factorization domain and K be its field of fractions.

Let f ∈ R[y] and g ∈ K[y] such that f = ge. Then, g ∈ R[y].

Proof. By definitions of content and primitive parts in Definition 2.2.4, we know that

cont(g) ∈ K, while pp(g) ∈ R[y] for g = cont(g) · pp(g).

Gauss’s Lemma states that the product of two primitive polynomials is also primitive.

From this, one can derive that for two polynomials g, h ∈ K[y], cont(gh) = cont(g)·cont(h)

and pp(gh) = pp(g) ·pp(h). In particular, cont(ge) = cont(g)e and pp(ge) = pp(g)e. Since

f = ge, we get that

cont(f) = cont(g)e. (2.1)

Since f ∈ R[y], we know that cont(f) ∈ R by definition. We will now use this to prove

that cont(g) ∈ R also. This will suffice to prove that g = cont(g) ·pp(g) ∈ R[y]. Note that

we can write cont(g) in the simplest form as cont(g) = a
b , where a, b ∈ R and gcd(a, b) = 1.

Let d := cont(f) ∈ R. Using (2.1), we get that d =
(
a
b

)e
= ae

be . Now, let p be an irreducible

factor of b in R. Since d ∈ R, p must divide the numerator ae. If p divides ae, then p

must divide a also. This contradicts with the fact that gcd(a, b) = 1. This means, that

the denominator b must be one and hence, cont(g) ∈ R. Thus, g ∈ R[y].
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2.2.2 Multivariate Reversal operation

Let f ∈ F[x1, . . . , xn]. For some i ∈ [n], let xi be a variable in the support of f . Let

f =
∑d

j=0 fj · x
j
i such that ∀j, fj is a polynomial in rest of the variables and fd ̸≡ 0. The

leading coefficient of f wrt xi is defined as lcxi(f) := fd. Polynomial f is called monic wrt

variable xi, if lcxi(f) = 1.

Definition 2.2.8 (Reverse Monic, Reverse Pseudo-Monic). We say that a polynomial f ∈

F[x1, . . . , xn] is reverse monic if there exists a variable xi ∈ supp(f) such that f |xi=0 = 1.

If we know the variable beforehand, we say that f is xi-reverse monic. We can extend this

definition to a set of variables xI , for some arbitrary I ⊆ [n]. We say that f is I-reverse

monic, if f |xI=0I = 1. We say that f is reverse pseudo-monic, xi-reverse pseudo-monic,

I-reverse pseudo-monic respectively, when instead of 1 the result of setting variables to 0

is a non-zero field element or a single monomial.

In other words, the constant term of a reverse monic polynomial is 1, when regarded as

a polynomial in the remaining variables. The following are immediate connections between

some of the previously defined concepts.

Observation 2.2.9. Let h ∈ F[x1, x2, . . . , xn] be a polynomial, i ∈ [n] and I ⊆ [n]. Then:

• supp(h|xi=0) = {e ∈ supp(h) | ei = 0}.

• h is I-reverse pseudo-monic if and only if |supp(h|xI=0I )| = 1.

The following transformation will be useful later on to convert specific polynomials

into I-reverse pseudo-monic polynomials. It is a generalization of the standard reversal

operation for univariate polynomials.

Definition 2.2.10 (Reversal Transformation). Let f ∈ F[x1, . . . , xn] be a polynomial and

let ℓ ∈ N. We define the reversal operation on f with respect to a variable xi as follows:

revℓi [f ] := xℓi · f |xi=
1
xi

= xℓi · f(x1, . . . , xi−1,
1

xi
, xi+1, . . . , xn).

By iteration, we can extend this definition to a set of variables xI , for some arbitrary
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I = {i1, . . . , ir} ⊆ [n].

revℓI [f ] := revℓi1

[
revℓi2 [. . . rev

ℓ
ir [f ]]

]
.

Alternatively:

revℓI [f ] := xℓi1 · · ·x
ℓ
ir · f(y1, . . . , yn),

where yj =


1
xj
, if xj ∈ I

xj , if xj /∈ I.

For intuition, express f as a polynomial in xi such that f = fdx
d
i + fd−1x

d−1
i +

. . . + f1xi + f0, where each coefficient fj is a polynomial in variables other than xi.

Then, revdi [f ] reverses the order of coefficients in this representation. That is, revdi [f ] =

f0x
d
i +f1x

d−1
i + . . .+fd−1xi+fd. In particular, if f is monic in xi then revdi [f ] is xi-reverse

monic.

The following lemma summarizes some of the basic, yet useful properties of the reversal

transformation. Subsequently, we will use these properties implicitly.

Lemma 2.2.11. Let f, g, h ∈ F[x1, x2, . . . , xn] such that f = g ·h. Let i ∈ [n] and suppose

that d ≥ degxi
(f). Then:

1. revdi [f ] is a polynomial (and not a rational function).

2. degxi
(revdi [f ]) ≤ d.

3. ∥revdi [f ]∥ = ∥f∥.

4. Let a, b such that d = a+ b. Then revdi [f ] = revai [g] · revbi [h].

2.3 The sparsity connection with Newton polytopes

For a polynomial f ∈ F[x1, x2, . . . , xn], we define the Newton polytope of f , denoted by Pf ,

as the convex hull (or convex-span) of all the points in supp(f). Recall the definition of

Minkowski sum of two polytopes. Minkowski sum is well studied in polytope literature and



31

comes with some nice properties. The Minkowski sum A+ B is itself a convex polytope.

Let V (P ) denote the set of vertices (corner points) of a polytope P , then one can show

a certain ‘incompressibility’ property: |V (A + B)| ≥ max{|V (A)| , |V (B)|}. See the

exposition in [BSV20, Prop. 3.2] or [DdO14, Cor. 3.13] for a proof of this.

The following classical fact about Minkowski sum of Newton polytopes, was first ob-

served by [Ost21] a century ago.

Proposition 2.3.1 ([Ost21]). Let f, g, h ∈ F[x1, . . . , xn] be polynomials such that f = g ·h.

Then

Pf = Pg + Ph.

Further, we know that ∥f∥ ≥ |Vf |, since supp(f) is in the convex hull of Vf . Therefore,

we are able to connect sparsity of f with its factors as follows:

Proposition 2.3.2 ([BSV20, DdO14]). Let f, g, h ∈ F[x1, . . . , xn] be polynomials such that

f = g · h. Then

∥f∥ ≥ |Vf | ≥ max{|Vg|, |Vh|}. (2.2)

Another way to think about sparsity bound problem for f = g · h is to determine how

many monomials of g survive on multiplication with h. Equation (2.2) tells us that at

least |Vg| many monomials survive. These vertices of Pg are in a sense extremal monomials

in g that never get canceled on multiplication (with any h).

2.4 Symmetric Polytopes

In this section, we discuss definitions and few properties of symmetric-support polynomials

and symmetric polytopes.

Definition 2.4.1 (Symmetric-support polynomials). We call f ∈ F[x1, . . . , xn] a sym-

metric polynomial if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)), for any permutation σ ∈ Sn. It is

equivalent to saying: f is symmetric if and only if coeff(xe11 · · ·xenn )(f) = coeff(x
eσ(1)

1 · · ·xeσ(n)
n )(f),

for all σ ∈ Sn. We call f ∈ F[x1, . . . , xn] a symmetric-support polynomial if for each

monomial xe11 · · ·xenn , we have coeff(xe11 · · ·xenn )(f) ̸= 0⇒ coeff(x
eσ(1)

1 · · ·xeσ(n)
n )(f) ̸= 0, for
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every σ ∈ Sn. Note that all symmetric polynomials are also symmetric-support polynomi-

als.

For example, f = x21x2x3+x1x
2
2x3+x1x2x

2
3 is a symmetric polynomial and hence, also

symmetric-support. In contrast, f = x21x2x3 + 2x1x
2
2x3 − x1x2x

2
3 is a symmetric-support

polynomial that is not symmetric. While f = x21x2x3 + x1x
2
2x3 is not even symmetric-

support.

Definition 2.4.2. We say that a polytope P is symmetric if for each point (v1, . . . , vn) in

P , (vσ(1), . . . , vσ(n)) is also in P , for every permutation σ ∈ P .

We now observe that Newton polytopes of symmetric-support polynomials are in fact

symmetric polytopes!

Lemma 2.4.3 (Symmetric polynomials ⇒ symmetric polytopes). Let f be a symmetric-

support polynomial. Then the Newton polytope Pf of f is also symmetric.

Proof. Let supp(f) = {v1, . . . ,vk}. Let v ∈ Pf be an arbitrary point. We need to show

that σ ◦ v ∈ Pf , for every σ ∈ Sn. Since Pf = CS(supp(f)), we can express v as:

v =
k∑

i=1

αi · vi.

Then for an arbitrary σ ∈ Sn, observe that:

σ ◦ v =

k∑
i=1

αi · σ ◦ vi.

Now, since f is a symmetric-support polynomial, σ ◦vi is also in supp(f), for each i ∈ [k].

The above equation then implies that σ ◦ v ∈ CS(supp(f)), which means that σ ◦ v ∈

Pf .

It turns out that symmetric polytopes have a nice property: a point is a vertex in a

symmetric polytope P if and only if all its Sn permutations are also vertices in P .

Lemma 2.4.4 (Vertices of symmetric polytope). Let P be a symmetric polytope with V (P )

as its vertex set. Then, for any σ ∈ Sn: v ∈ V (P ) if and only if σ ◦ v ∈ V (P ).
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Proof. (⇒) Suppose V (P ) := {v1, . . . ,vk}. Let v ∈ V (P ). Consider any permutation

σ ∈ Sn. Since P is a symmetric polytope, we at least know that σ ◦v ∈ P . For the sake of

contradiction, suppose σ ◦v /∈ V (P ). Thus, it is an internal point which can be expressed

as a nontrivial convex combination of vertices. There exist, for i ∈ [k], 0 ≤ αi < 1,∑k
i=1 αi = 1 such that:

σ ◦ v = α1 · v1 + . . .+ αk · vk

σ−1 ◦ (σ ◦ v) = σ−1 ◦ (α1 · v1 + . . .+ αk · vk)

v = α1 · (σ−1 ◦ v1) + . . .+ αk · (σ−1 ◦ vk).

Observe that σ−1 ∈ Sn and since P is symmetric σ−1 ◦ vi ∈ P for all i ∈ [k]. This means,

v is a nontrivial convex combination of other points in P , which contradicts the fact that

v is a vertex. Therefore, σ ◦ v must also be a vertex.

(⇐) Now we wish to prove that all permutations of a non-vertex point must also be

non-vertices. Let v /∈ V (P ). Then, for any σ ∈ Sn, we get a nontrivial convex combination:

v = α1 · v1 + . . .+ αk · vk

σ ◦ v = α1 · σ ◦ v1 + . . .+ αk · σ ◦ vk

Again, since P is symmetric σ ◦ vi ∈ P for all i ∈ [k]. Thus, σ ◦ v is a nontrivial convex

combination of other points, hence it must be a non-vertex.





Chapter 3

Sparse Factoring via Symmetric

Polytopes

In this chapter, we will show how to deterministically factor sparse polynomials that are

symmetric. A polynomial is called symmetric if it is invariant under the permutation of

variables. The work of Bhargava et al [BSV20] showed that the problem of sparse fac-

toring reduces to proving factor-sparsity bounds (See Lemma 3.4.1). In this chapter, we

shall prove that s-sparse symmetric polynomials with individual degree d have factors of

at most sO(d2 log d) sparsity and use this bound to get poly(s)-time deterministic factoring

algorithm for such polynomials, when d is constant. As discussed earlier also, the re-

striction on individual degree being constant is necessary as there are s-sparse symmetric

polynomials having factors of sparsity slog d in characteristic zero fields and sd in finite

fields (See examples 1.2.1 and 1.2.2 respectively). We use the polytope connection with

factor-sparsity outlined in Section 2.3 by showing that Newton polytopes of symmetric

polynomials have high number of vertices. In other words, we show that the gap between

number of vertices and total number of integral points in such symmetric polytopes is low.

After developing the necessary tools, we prove our factor-sparsity bound of sO(d2 log d) for-

mally in Theorem 3.3.3. To achieve this bound, we define a new notion of min-entropy for

a set of vectors and our underlying structural result (Theorem 3.1.4) analyzes min-entropy

for the convex span of a given set. We also remark that all the results in this chapter hold

35



36

for any field F, finite or otherwise.

3.1 Polytope Entropy

In this chapter, we shall be mainly interested in vectors that have a single coordinate of

high frequency. We say that such vectors have low min-entropy. Recall the definition

of min-entropy in Definition 2.2.1. The main result of this section is: Convex span pre-

serves low min-entropy. Formally, if we have a δ-min-entropy set of vectors/points from

{0, 1, . . . , d}n, then every integral point in its convex span has min-entropy ≤ O(dδ). This

structural observation stated in Theorem 3.1.4 will act as a foundation for all the main

results in this chapter.

The driving intuition is that internal points in a convex span must derive some nice

properties from the vertices as they can be expressed as their convex combination. In

this case, the nice property will be low min-entropy. In order to prove this, we first

design a set of symmetric hyperplane equations such that for each hyperplane, the entire

δ-min-entropy set V lies on one side of its halfspace (Lemma 3.1.1). Thus, every point

in convex-span of V must also lie on the same side (Observation 3.1.2). Secondly, the

hyperplane equations are so designed that any integral-point lying on that side must have

min-entropy at most O(dδ) (Lemma 3.1.3). This design of the hyperplane equations is the

novelty of this chapter. We will apply Theorem 3.1.4 in obtaining efficient factor-sparsity

bounds later in this chapter. However, we believe that it could be of independent interest

also in convex geometry.

Let Pf be the Newton polytope of f and Vf be its set of vertices such that Pf = CS(Vf ).

We prove few claims below which will help us prove Theorem 3.1.4. We are given Vf to

be a δ-min-entropy set. Let m := n− δ. We first design a hyperplane u⊺ · y+ dδ = 0 that

will help us prove very useful properties later. Define vector u ∈ {−1,+1}n such that,

ui :=


+1 if i ≤ δ +m/2

−1 otherwise.

(3.1)



37

The first δ + m/2 coordinates of u are +1 and the remaining n − (δ + m/2) = m/2

coordinates are −1.

Lemma 3.1.1 (Hyperplane cover). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy set and u

be as defined in (3.1). Let Sn be the finite symmetric group. Then, every point y ∈ V

satisfies each of the following inequalities:

(σ ◦ u)⊺ · y + dδ ≥ 0, for each σ ∈ Sn . (3.2)

Proof. Let y be any ≤ δ-min-entropy point from V ; so assume that y has some majority

element i with frequency ≥ m = n − δ. Let σ ∈ Sn be any permutation. Define l :=

(σ ◦ u)⊺ · y. It suffices to show that l ≥ −dδ. We claim that to minimize l by varying

(σ ◦ u), we can place at most δ many d’s in the coordinates corresponding to −1 and rest

of the ≥ m coordinates must be filled by i. Since we have a total of (δ+m/2) coordinates

equal to +1 and remaining (m/2) coordinates equal to −1, the minimum value of l in this

case is (δ+m/2) · i− (m/2− δ) · i− (δ) · d = (2i− d)δ ≥ −dδ , since i ≥ 0. Thus, l ≥ −dδ

in this configuration.

We now see why this is the optimal configuration to minimize l. Note that the majority

element i will always have a non-negative contribution in l, since its frequency in the

positions corresponding to +1 will always be greater than or equal to its frequency in the

positions corresponding to -1. This is because there are only m/2 positions corresponding

to -1 and i has frequency ≥ m. Therefore to minimize its contribution, majority element

i should be fixed to 0. To get lowest possible value from non-majority elements in y, we

should set all of them to d and place them in positions corresponding to -1. This will give

minimum value of l to be −dδ. Rest of the configurations will only have higher values.

Thus, l + dδ ≥ 0 for each y ∈ V and for every σ ∈ Sn.

If for a set of points, each point lies on one side of a hyperplane, then all the points in

their convex-span also lie on that side. We prove this observation below. This will imply

that, Lemma 3.1.1 holds for every point in CS(V ) also.

Observation 3.1.2 (Halfspace is convex). Let V = {v1,v2, . . . ,vk} ⊆ Rn be a set of k
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vectors. Suppose for some (a, b) ∈ Rn × R and for each i ∈ [k], a⊺ · vi + b ≥ 0. Then, for

any v ∈ CS(V ), a⊺ · v + b ≥ 0.

Proof. This follows because v is a convex combination of vectors in V . Let v = α1 · v1 +

. . .+ αk · vk, where
∑k

i=1 αi = 1 and αi ∈ R≥0 for each i ∈ [k]. Thus,

a⊺ · v + b = a⊺ ·

(
k∑

i=1

αi · vi

)
+ b

=

(
k∑

i=1

αi · a⊺ · vi

)
+

k∑
i=1

αi · b

=

k∑
i=1

αi · (a⊺ · vi + b) ≥ 0.

In the second step, we use
∑k

i=1 αi = 1; while in the last step we use the hypothesis and

αi ≥ 0 for each i ∈ [k].

Suppose we are given a sorted point y that satisfies the inequality u⊺ · y + dδ ≥ 0.

Below, we prove that such a point has low min-entropy.

Lemma 3.1.3 (Integral-point in the cover). Let u be as defined in (3.1). Let y ∈

{0, 1, . . . , d}n be a point with 0 ≤ y1 ≤ y2 ≤ . . . ≤ yn ≤ d such that u⊺ · y + dδ ≥ 0

holds. Then, y is a (2dδ)-min-entropy point.

Proof. Recall n = δ + m. Let us call, expectedly, the first (δ + m/2) coordinates, the

‘positive zone’ of y and the remaining (m/2) coordinates, the ‘negative zone’ of y; this

corresponds to positions of +1’s and −1’s in u respectively. Let y =: y+ + y−, where we

define y+ and y− as follows,

(y+)j :=


yj if j ≤ δ +m/2

0 otherwise.

(y−)j :=


0 if j ≤ δ +m/2

yj otherwise.

Suppose the first coordinate in the negative zone of y is i for some i ∈ {0, 1, . . . , d}. We
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then claim that y has at least n− 2dδ coordinates with this same value i, proving y to be

a 2dδ-min-entropy point. Let p+ and p− denote the frequency of i in positive and negative

zones of y respectively, for some integers p+, p− ≥ 0. Note that u⊺ · y = ∥y+∥1 − ∥y−∥1,

where ∥·∥1 is the L1-norm. We first upper bound ∥y+∥1. Since y is sorted, the last p+

coordinates in positive zone must be i and all coordinates preceding it are of value at most

i− 1. This gives us

∥y+∥1 ≤ (i− 1) · (δ +m/2− p+) + i · (p+) = iδ + im/2− δ −m/2 + p+ . (3.3)

Now, we lower bound ∥y−∥1. Since y is sorted, the first p− coordinates in negative zone

must be i and all subsequent coordinates are of value at least (i+ 1). This gives us

∥y−∥1 ≥ i · (p−) + (i+ 1) · (m/2− p−) = im/2 +m/2− p− . (3.4)

Let l := u⊺ ·y+ dδ. By hypothesis, l ≥ 0. Then using (3.3) and (3.4) together, we observe

that

0 ≤ l = u⊺ · y + dδ = ∥y+∥1 − ∥y−∥1 + dδ

0 ≤ iδ + im/2− δ −m/2 + p+ − (im/2 +m/2− p−) + dδ

= (i+ d)δ − δ −m+ p+ + p−

≤ 2dδ − n+ p+ + p− (since i ≤ d and n = m+ δ)

n− 2dδ ≤ p+ + p− .

Recall that total frequency of the value i in y is p+ + p− ≥ n − 2dδ. This proves that y

is a (2dδ)-min-entropy point; finishing the proof. (We note that the calculations in (3.3)

and (3.4) are technically for i ∈ [d − 1]. For the corner cases of i = 0 or i = d, the same

logic will work and in fact with a better lower bound on frequency of i in y.)

We are now ready to prove the main theorem of this section.

Theorem 3.1.4 (Polytope Entropy Theorem). Let V ⊆ {0, 1, . . . , d}n be a δ-min-entropy

set, then CS(V ) ∩ Zn is a (2dδ)-min-entropy set.

Proof. In Lemma 3.1.1, we showed that every point v ∈ V belongs to the halfspace
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u⊺ · v + dδ ≥ 0. In fact, we proved it for every permutation σ ∈ Sn of u. Let y be any

integral-point in CS(V ). Thus by Observation 3.1.2, (σ◦u)⊺ ·y+dδ ≥ 0, for every σ ∈ Sn.

Note that since V ∈ {0, 1, . . . , d}n, any integral point y ∈ CS(V ) also lies in {0, 1, . . . , d}n.

Further, let π ∈ Sn be the permutation which sorts y, i.e. yπ(1) ≤ yπ(2) ≤ . . . ≤ yπ(n).

Since the hyperplane cover holds for every permutation, in particular it holds for π−1 ∈ Sn

also, i.e. (π−1 ◦ u)⊺ · y + dδ ≥ 0. Thus,

(π−1 ◦ u)⊺ · y + dδ = u⊺ · (π ◦ y) + dδ ≥ 0 .

Now by Lemma 3.1.3, as π◦y is sorted, we deduce that π◦y is a (2dδ)-min-entropy vector.

Since min-entropy of a vector does not change on permuting it, we deduce that y is also

a (2dδ)-min-entropy point.

Remark. Note that Theorem 3.1.4 is almost tight as a blow-up in min-entropy of internal

integral points by a factor of d is inevitable. To observe this, consider V to be the support

set in Example 2.2.2 with min-entropy δ = 1. It is easy to see that the integral vector

v =
∑d

i=1 ei is in CS(V ), where ei is the standard unit vector with a single 1 in position

i and rest all 0. Thus, v is a vector with 1 in first d coordinates and remaining all 0, and

it has min-entropy exactly d, for d ≤ n/2. Therefore, CS(V ) ∩ Zn is of min-entropy at

least dδ. However, in this work we are concerned with d = O(1), so even 2dδ blowup is

perfectly fine.

3.2 Polytope point counting

In the last section, we proved that a low min-entropy vertex set implies low min-entropy

for the whole polytope. Now, we shall see that a low min-entropy polytope has low number

of total integral points. We start by observing that a sparse, symmetric polynomial cannot

have high min-entropy. This will then help us prove that a symmetric polytope has low

number of integral points. Recall the definition of symmetric-support polynomials and

symmetric polytopes from Section 2.4.
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3.2.1 Point counting

We now come to the counting part of this work, where we shall connect symmetry, min-

entropy and sparsity with each other. We will also make use of Theorem 3.1.4 here to

achieve efficient bounds on the count of integral points of symmetric and low min-entropy

polytopes. The lemma below mentions few standard bounds that we will make use of

later.

Lemma 3.2.1 (Counting estimates). 1. For positive integers a, b with a ≥ b, (a/b)b ≤(
a
b

)
.

2. For positive integers a, b, c with a ≥ bc,
(
a
bc

)
≤
(
a
c

)b
.

3. For positive real x, log(1 + x) > ln(1 + x) > x− x2

2 .

Proof. For (1), see that
(
a
b

)
= a(a−1)···(a−b+1)

b(b−1)···1 ≥
(
a
b

)b
.

For (2), we make use of
(

a
c+b′

)
≤
(
a
b′

)
·
(
a−b′

c

)
≤
(
a
b′

)
·
(
a
c

)
. Use this b times to get(

a
bc

)
≤
(
a
c

)b
.

For (3), let f(x) = ln(1 + x)− (x− x2

2 ). Then,

f ′(x) =
1

1 + x
− (1− x) =

x2

1 + x
.

Note that for x = 0, f(0) = 0 and f ′(x) > 0 for x > 0. Therefore, f(x) > 0, for x > 0.

Using a simple counting argument below, we bound the total number of points in a

given δ-min-entropy set of integral points. Thus, low min-entropy implies small cardinality

for a set.

Lemma 3.2.2 (min-entropy-sparsity upper bound). Let T ⊆ {0, 1, . . . , d}n be a δ-min-

entropy set. Then, |T | ≤
(
n
δ

)
· (d+ 1)δ+1.

Proof. Any v ∈ T has min-entropy ≤ δ and thus has atleast n − δ coordinates that are

equal. To specify v, one needs to specify the indices of these repeated coordinates (≤
(
n
δ

)
possibilities) and specify a total of δ+1 values for all the coordinates of v (d+1 possibilities

for each). Hence, we deduce that |T | ≤
(
n
δ

)
· (d+ 1)δ+1.
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We now show that a symmetric set of integral points is of somewhat low min-entropy.

Lemma 3.2.3 (symmetry ⇒ low min-entropy). Let V ⊆ {0, 1, . . . , d}n be any symmetric

set. Then V is a δ-min-entropy set, for some δ < 2d · log |V |.

Proof. Consider the smallest possible δ, for which V can be a δ-min-entropy set. By

pigeonhole principle, for any point in V , there exists a coordinate-value with frequency

≥ n/(d+ 1). Therefore,

δ ≤ n− n

d+ 1
= n

(
1− 1

d+ 1

)
. (3.5)

Since δ is chosen to be the minimum possible, a non-empty V contains a vector v having

some integral value with maximum-frequency exactly n−δ. Since V is symmetric, it must

also contain all the distinct Sn-permutations of this vector v, which are at least
(
n
δ

)
many.

This implies that |V | ≥
(
n
δ

)
and further using Lemma 3.2.1, we get that |V | ≥

(
n
δ

)δ
. Then,

log |V | ≥ δ · log
(n
δ

)
≥ δ · log

 n

n
(
1− 1

d+1

)
 [Using (3.5)]

= δ · log
(
1 +

1

d

)
> δ ·

(
1

d
− 1

2d2

)
[Using Lemma 3.2.1]

≥ δ

2d
[As d ≥ 1] .

This proves that δ < 2d · log |V |.

Finally, we come to our polytope bounds. Using Theorem 3.1.4 and the counting

observations above, we now show that convex span of a low min-entropy set has low

number of integral points.

Theorem 3.2.4 (low min-entropy polytope count). Let V ⊆ {0, 1, . . . , d}n be a δ-min-

entropy set. Then, |CS(V ) ∩ Zn| ≤
(
n
δ

)2d · (d+ 1)2dδ+1.



43

Proof. Theorem 3.1.4 proves that CS(V ) ∩ Zn is a (2dδ)-min-entropy set. Note that

CS(V )∩Zn is also a subset of {0, . . . , d}n, since V is. Then by Lemma 3.2.2, |CS(V )∩Zn| ≤(
n
2dδ

)
· (d + 1)2dδ+1. The conclusion then follows by using Lemma 3.2.1 to observe that(

n
2dδ

)
≤
(
n
δ

)2d
.

We now show that the gap between number of vertices and total number of integral

points in a symmetric polytope, is low.

Theorem 3.2.5 (Symmetric polytope count). Let V ⊆ {0, 1, . . . , d}n be the vertices of a

symmetric polytope P . Then, |P ∩ Zn| ≤ |V |O(d2 log d)).

Proof. Consider the smallest possible δ, for which V can be a δ-min-entropy set. Since

P is a symmetric polytope, its vertex set V is also symmetric by Lemma 2.4.4. By

Lemma 3.2.3, the min-entropy of V is at most δ := O(d · log |V |). Then by Theorem 3.2.4,

|CS(V )∩Zn| ≤
(
n
δ

)2d ·(d+1)2dδ+1. Observe that (d+1)2dδ+1 ≤ dO(d2 log |V |) = |V |O(d2 log d).

Since V is non-empty, it contains at least one δ min-entropy vector. Since V is symmetric,

it also contains all the permutations of this vector, which are at least
(
n
δ

)
-many. Hence,

|V | ≥
(
n
δ

)
. Thus,

(
n
δ

)2d ≤ |V |2d and we get the desired conclusion.

Remark 3.2.6. We can also view Theorem 3.2.5 in a different way. Let P be a symmetric

polytope formed by taking convex hull of some symmetric set E ⊆ {0, 1, . . . , d}n. Then,

P must have many vertices (corner points), at least |E|Ω(1/(d2 log d))-many, to be precise.

We get this incompressibility result by substituting P = CS(E) in Theorem 3.2.5 and

observing that E ⊆ P ∩ Zn.

3.3 Factor sparsity bounds

In Section 2.3, we discussed the broad polytope approach to getting factor-sparsity bounds,

in particular Equation (2.2). We proved Theorem 3.2.4 and Theorem 3.2.5 in the previous

section, which give us the required polytope bounds, for using this method. In this section,

we will reap benefits of our hard labor done earlier to show that factors of symmetric or

low min-entropy sparse polynomials are also sparse.

Pranav Bisht
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Remark. Throughout this section, whenever we talk about symmetric polynomials, we

can replace them with the larger class of symmetric-support polynomials. The proofs

remain the same. See Definition 2.4.1 to recap what we mean by symmetric-support.

We start by proving sparsity bound for a symmetric factor g of some s-sparse sparse

polynomial f , which may or may not be symmetric. To get a poly(s) sparsity bound, we

only require individual degree of g to be constant, while f may have arbitrary individual

degree. Of course, this is only useful when f has some symmetric factor.

Theorem 3.3.1 (Symmetric factor sparsity bound). Let f ∈ F[x1, . . . , xn] be an s-sparse

polynomial. Let g be any symmetric factor of f , with individual degree at most d. Then,

g has sparsity at most sO(d2 log d).

Proof. Let Pg be the Newton polytope of g and Vg be its vertex set. Since g is symmetric,

Pg is a symmetric polytope. Now invoke Theorem 3.2.5 with P = Pg to note that |Pg ∩

Zn| ≤ |Vg|O(d2 log d). Observe that supp(g) ⊆ Pg ∩ Zn and |Vg| ≤ |Vf | ≤ s. Therefore,

∥g∥ ≤ sO(d2 log d).

We will be needing the following observation for our main proofs below.

Observation 3.3.2. Let f, g, h ∈ F[x1, . . . , xn] be polynomials such that f = g · h. Let

Pf be the Newton polytope of f . Then, ∥g∥ ≤ |Pf ∩ Zn|.

Proof. By Minkowski sum property, we have that Pf = Pg + Ph. For every u ∈ supp(g),

consider a fixed point v ∈ supp(h). Observe that u + v ∈ Pf for every u, since u ∈ Pg

and v ∈ Ph. Moreover, since the support vectors are integral, u + v ∈ Pf ∩ Zn, for

every u. In other words, Pf ∩ Zn contains a translated copy of supp(g). This means that

∥g∥ ≤ |Pf ∩ Zn|.

We have sufficient tools now to prove our main theorems of this chapter.

Theorem 3.3.3 (Symmetric sparsity bound). Let f ∈ F[x1, . . . , xn] be an s-sparse, sym-

metric polynomial with individual degree d. Then, every factor of f has its sparsity bounded

by sO(d2 log d).
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Proof. Since f is symmetric, its Newton polytope Pf will also be symmetric. Let Vf be

the vertex set of Pf . Then, invoke Theorem 3.2.5 with P = Pf to deduce that |Pf ∩Zn| ≤

|Vf |O(d2 log d). The conclusion then follows from Observation 3.3.2 and |Vf | ≤ s.

The above factor-sparsity bound is poly(s) when d is constant. For δ-min-entropy

polynomials, we get poly(n) factor-sparsity bound below, when d, δ are constants.

Theorem 3.3.4 (Factors of low min-entropy polynomials). Let f ∈ F[x1, . . . , xn] be a δ-

min-entropy polynomial with individual degree d. Then, every factor of f has its sparsity

bounded by (nd)O(dδ).

Proof. Let Pf be the Newton polytope of f and Vf be its vertex set. Since f is of δ-min-

entropy, so is Vf , as Vf ⊆ supp(f). Then by Theorem 3.2.4, we deduce that |Pf ∩ Zn| ≤(
n
δ

)2d · (d+ 1)2dδ+1 ≤ (nd)O(dδ). The conclusion then follows from Observation 3.3.2.

Remark. In Theorem 3.3.1 (resp. Theorem 3.2.5), we do not require the whole of g (resp.

P ) to be symmetric, rather we only need its vertex set Vg (resp. V ) to be symmetric,

which is a much weaker requirement. Similarly, we don’t need f to be symmetric in

Theorem 3.3.3 but only Vf to be symmetric. In these cases, we will not require use of

Lemma 2.4.4.

3.3.1 Tightness of sparsity bounds

We consider the two examples discussed earlier where factors of a sparse polynomial have

significantly high sparsity, unless the individual degree is bounded.

In Example 1.2.1, observe that ∥f∥ = 2n, while ∥g∥ = dn. If we let s := ∥f∥, then

∥g∥ = slog d. Over fields of characteristic 0, this is an example which exhibits highest known

blowup in sparsity. Moreover, it also shows that slog d is a lower bound on factor-sparsity.

Note that f is a symmetric polynomial and Theorem 3.3.3 shows that ∥g∥ ≤ sO(d2 log d).

In Example 1.2.2, observe that ∥f∥ = n, while ∥g∥ =
(
n+d−1

d

)
≈ nd. If we let s := ∥f∥,

then ∥g∥ ≈ sd. The factor-sparsity bounds in this work hold for any field F, finite or

otherwise. Moreover, f is also symmetric and falls under the purview of Theorem 3.3.3,

which shows that ∥g∥ ≤ sO(d2 log d). Hence, this example shows that in Theorem 3.3.3,
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we cannot do better than sd. Note that this f is also a low min-entropy polynomial, in

fact with δ = 1 as all the exponent vectors in supp(f) have n − 1 coordinates having the

same value 0. Thus, we can use Theorem 3.3.4 for this f to get a factor-sparsity bound of

(np)O(p) which is really close to the actual sparsity nd.

3.4 Factoring algorithms

Given a polynomial f , the complete factorization of f is a representation of f as fe1
1 fe2

2 · · · f
ek
k ,

where f1, . . . , fk are co-prime irreducible polynomials and e1, . . . , ek are positive integers.

This representation is unique up to a reordering of fi’s. A nice feature of the results in

[BSV20] is that once you prove a nice factor-sparsity bound, they also show how to get a

deterministic factoring algorithm for sparse polynomials which runs in time polynomial in

the sparsity bound proven. We restate this as Lemma 3.4.1 below. Here cF(d) is the best

known time complexity for factoring a univariate polynomial of degree d over the field F.

For F = Q, cF(d) ≤ poly(d, t) where t is the maximum bit-complexity of the coefficients

of f [LLL82]. For a finite field F = Fpℓ , cF(d) ≤ poly(ℓ · p, d) [Ber67, CZ81].

Lemma 3.4.1 (Theorem 5.8 in [BSV20]). Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial

with individual degrees at most d. Let ξ(n, d, s) be the upper bound on sparsity for every

factor of f . Then given f , there is a deterministic algorithm that computes complete

factorization of f in (n · ξ(n, d2, sd))O(d2) · poly(cF(d2)) field operations.

In other words, the above theorem shows a deterministic reduction from multivariate to

univariate factoring over any field F. In [BSV20], they showed that ξ(n, d, s) ≤ sO(d2 logn)

and then used Lemma 3.4.1 to get a factoring algorithm of spoly(d) logn time complexity,

which is quasi-polynomial in the bounded individual degree setting. In this work, we

deal with symmetric and constant-min-entropy input polynomials, for which we show that

ξ(n, d, s) ≤ (ns)poly(d). Thus, we can use Lemma 3.4.1 to get polynomial time factoring

algorithms in the bounded individual degree setting. The finer time complexities are

discussed in the proofs of Corollary 3.4.2 and Corollary 3.4.3 below. Also, note that

ξ(n, d, s) is a lower bound on time complexity for sparse factoring algorithms as we output
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each factor as an explicit list of monomials.

Corollary 3.4.2 (Symmetric factoring algorithm). Let f ∈ F[x1, . . . , xn] be an s-sparse,

symmetric polynomial with individual degree d. Then, there is a deterministic algorithm

that computes the complete factorization of f in at most poly(sd
7 log d · nd2 · cF(d2))-time.

Proof. Let f ∈ F[x1, . . . , xn] be an s-sparse, symmetric polynomial with individual de-

gree d. In Theorem 3.3.3, we show that ξ(n, d, s) ≤ sO(d2 log d). Plugging this value in

Lemma 3.4.1, we get a deterministic factoring algorithm for f . The time complexity

T (n, s, d) for this algorithm is:

T (n, s, d) = (n · ξ(n, d2, sd))O(d2) · poly(cF(d2))

=
(
n · sd·O(d4 log d2)

)O(d2)
· poly(cF(d2))

= sO(d7 log d) · nO(d2) · poly(cF(d2)).

The time complexity of the above factoring algorithm is poly(s, n, cF(d)) when d is a

constant. For a constant-min-entropy polynomial with constant individual degree, we can

factor it in poly(n, cF(d))-time as shown below.

Corollary 3.4.3 (Low min-entropy factoring algorithm). Let f ∈ F[x1, . . . , xn] be a δ-

min-entropy polynomial with individual degree d. Then, there is a deterministic algorithm

that computes the complete factorization of f in at most poly((nd)d
4δ · cF(d2))-time.

Proof. Let f ∈ F[x1, . . . , xn] be a δ-min-entropy polynomial with individual degree d. In

Theorem 3.3.3, we show that ξ(n, d, s) ≤ (nd)O(dδ). Plugging this value in Lemma 3.4.1,

we get a deterministic factoring algorithm for f . The time complexity T (n, s, d) for this

algorithm is:

T (n, s, d) = (n · ξ(n, d2, sd))O(d2) · poly(cF(d2))

=
(
n · (nd2)O(d2δ)

)O(d2)
· poly(cF(d2))

= (nd)O(d4δ) · poly(cF(d2)).
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3.5 Discussion

Comparison with previous techniques: The fascinating approach of connecting

sparsity with Newton polytopes was first presented in [DdO14], which was summarized

in Equation (2.2) earlier. The more important part of actually getting a non-trivial

factor-sparsity bound using this polytope approach was done in [BSV20]. For f = gh,

[BSV20] proved a lower bound on |V (Pg)| in terms of ∥g∥ by using an approximate

version of Carathéodory’s theorem [BSV20, Theorem 3.6] and showed that |V (Pg)| ≥

∥g∥
1

O(d2 logn) . Thus using (2.2), they get ∥g∥ ≤ ∥f∥O(d2 logn). Although the use of ap-

proximate Carathéodory’s theorem gives the first non-trivial factor-sparsity bound, it also

brings in an O(log n) term in the exponent of their bound. In this work, we make use of

the sparsity connection in [DdO14] but replace the lower bound method of [BSV20] with

our new techniques of designing a specific set of hyperplane equations in Structure Theo-

rem 3.1.4, and exploiting the symmetry of polytopes in Theorem 3.2.5. These new tech-

niques help us get rid of the unwanted log n dependence in exponent of the factor-sparsity

bound. If g is symmetric, we show a much better lower bound of |V (Pg)| ≥ ∥g∥
1

O(d2 log d) .

This gives us ∥g∥ ≤ ∥f∥O(d2 log d) using (2.2).

The result of [BSV20] and Theorem 3.2.5 in our work, both show a lower bound on

|V (Pg)|. Remark 4.3 and Claim 4.4 of [BSV20] show that this particular proof strategy

cannot get a sparsity upper bound better than sO(logn), for general factors of a general

sparse polynomial. They show that the general polytope approach hits a dead end there.

However, we derive the results in this work despite these known limitations and show a

positive evidence for the sparsity conjecture Conjecture 1.2.3. We note that the polytope

example in Claim 4.4 of [BSV20] is not symmetric and is of high min-entropy and therefore,

it is not a hurdle for the results of this work. We utilize structural properties like symmetry

or low min-entropy of input f to get sparsity upper bound for its factors, even though the

factors themselves might not be symmetric or of low min-entropy.

Future Directions: This work proved polynomial-sized factor-sparsity bounds for low

min-entropy polynomials.The next task is to prove efficient bounds for factors of high-min-
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entropy polynomials. We note that the example in Claim 4.4 of [BSV20] is a polynomial

with its vertices having exactly n/2-min-entropy such that its Newton polytope has at least

nΩ(logn)-many integral points. Therefore, a new technique which goes beyond counting

number of internal points in a polytope is required. Otherwise, if one does not believe

in the sparsity-conjecture, then one needs to come up with a sparse high-min-entropy

polynomial which has dense factors.





Chapter 4

Exact Power Testing

In this chapter, we consider a subproblem of sparse factoring. We restrict the input sparse

polynomial f to be an exact power. A polynomial f ∈ F[x1, x2, . . . , xn] is an exact power

if there exists (another) polynomial g ∈ F[x1, x2, . . . , xn] and e ∈ N such that f = ge. The

motivating question here is can one obtain a sparsity bound for g, better than that of a

general factor? Despite the rich structure, this question is still open. The best known

sparsity bound for exact roots (i.e. ∥g∥ in terms of ∥f∥) is still the general sparsity bound

of size sO(d2 logn) by [BSV20]. However, we can still ask the decision problem of testing

whether f is an exact power. Observe that one can use the factorization algorithm of

[BSV20] to test if a given sparse polynomial is an exact power, in quasi-polynomial time.

Similarly, a polynomial-size sparsity bound, even for the case of exact roots, would imply

a polynomial-time algorithm for exact-power testing problem. In this chapter, we provide

a polynomial-time algorithm for exact-power testing that does not rely on this sparsity

bound. We show that, there is a deterministic algorithm that given a sparse polynomial

f ∈ F[x1, x2, . . . , xn] of constant individual degree as an input, decides whether f = ge for

some polynomial g ∈ F[x1, x2, . . . , xn] and e ∈ N, in time poly(s, n). It is formally stated

in Theorem 4.1.7.

We remark that the algorithm only performs exact-power testing and does not output

a “witness” polynomial g. Indeed, a polynomial-time algorithm that actually outputs g

would imply a polynomial-size sparsity bound on exact roots! In addition, the runtime

51



52

of our algorithm is polynomial in the bit-complexity of the field elements since it does

not rely on univariate polynomial factorization. For instance, for finite fields we get the

runtime of poly(log |F|) vs poly(|F|).

4.1 Exact Power Testing

In this section we will design our algorithm for exact power testing. We want to test

whether f = ge for some g ∈ F[x1, x2, . . . , xn] and e ∈ N. We first show an sO(d) spar-

sity bound for g, when f is an s-sparse, reverse-monic polynomial of individual degree d

(Lemma 4.1.1). Moreover, we also get an algorithm to compute g for this case in Algorithm

1.

In general though, our input polynomial f may not be reverse-monic, but we show that

sparsity bound obtained for the reverse-monic case suffices for exact power testing. We

first convert f into a reverse-monic polynomial f̂ with respect to some variable xi, using

a known standard transformation (see Definition 4.1.4). This step only incurs a slight

sparsity blow-up of sd. One important property of this transformation is that it preserves

the “exact power” structure. That is, if f = ge, then f̂ = he, for some polynomial h. We

then compute this e-th root of the reverse-monic f̂ , as mentioned previously.

However, we are still not quite done. It can happen that a polynomial f which was

not an exact power, may become an exact power after the reverse-monic transformation.

We need an additional condition to get the converse implication. We show that if both f̂

and f|xi=0
are exact powers, then we can correctly conclude that f is also an exact power

(Claim 4.1.6). This gives us a recursive algorithm, as f|xi=0
is a polynomial in (n − 1)

variables. This procedure is described formally in Algorithm 2.

4.1.1 Reverse Monic Case

We start with the case when our input polynomial f is reverse-monic w.r.t. some variable.

We generalize it to the general case in Section 4.1.2.

We use Newton’s Binomial Theorem to get the sparsity bound for f1/e below. This tool
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has been used before to bound the size of e-th roots for the classes of algebraic circuits,

formulas and ABPs. See for example [Dut18, ST21b]. Although, these works assume

char(F) to be 0 or a non-divisor of e, we prove our result below for fields of arbitrary

characteristic.

Lemma 4.1.1. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial of individual degree d

which is xi-reverse monic, for some i ∈ [n]. If f = ge for some polynomial g ∈ F[x1, . . . , xn]

and e ∈ N, then g is sd/e+1-sparse.

Proof. We can write g as g = f1/e = (1 + (f − 1))1/e. By Newton’s Binomial Theorem,

this gives

g = (1 + (f − 1))1/e =
∞∑
i=0

(
1/e

i

)
(f − 1)i. (4.1)

We first focus on the case when char(F) is either zero or it does not divide e. In that case

1/e is well defined in F and so are all the binomial coefficients appearing in (4.1). Since

f is reverse-monic in xi, f |xi=0 = 1. This means that (f − 1) has xi-degree ≥ 1. Since g

has xi-degree = d/e, (4.1) becomes a finite sum modulo the ideal ⟨xi⟩d/e+1. Thus,

g =

d/e∑
i=0

(
1/e

i

)
(f − 1)i mod⟨xi⟩d/e+1. (4.2)

Since ∥f − 1∥ ≤ s, it is easy to see that G =
∑d/e

i=0

(
1/e
i

)
(f − 1)i is sd/e+1-sparse. Since

g = Gmod⟨xi⟩d/e+1 and going mod ⟨xi⟩d/e+1 can only decrease sparsity, we get that g is

also sd/e+1-sparse.

Now we handle the case when char(F) divides e. Let p be the characteristic of F, for

some prime p. Let e = pk · q, where pk is the highest power of p which divides e, for some

integer k ≥ 1 and p ̸ | q. Then by the famous Frobenius endomorphism, we know that:

g(x1, . . . , xn)
p = g(xp1, . . . , x

p
n)

g(x1, . . . , xn)
pk·q =

(
g(xp

k

1 , . . . , xp
k

n )
)q

. (4.3)

Since f = ge = gp
k·q, we can use the variable transformation yj ← xp

k

j , for each j ∈ [n] to

get that

f = g(y1, . . . , yn)
q.
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Observe that xi-degree in every non-zero monomial of f is a multiple of e = pk ·q, therefore

f is a proper polynomial in F[y1, . . . , yn]. Moreover f is still s-sparse as the transformation

does not affect sparsity. We further note that if f was reverse-monic in xi, it will also be

reverse-monic in yi. Thus, we have reduced to the previous case, since p does not divide q.

Moreover, the individual degree of f is now reduced, specifically yi-degree of f is d′ = d/pk.

This implies that g(y1, . . . , yn) has sparsity ≤ sd
′/q+1 = sd/e+1. Since this transformation

does not affect sparsity, we deduce that our original g is also sd/e+1-sparse.

Remark 4.1.2. Lemma 4.1.1 is also true for a monic f of sparsity s such that f = ge. This

is because we can convert a monic f into a reverse-monic f̂ by the reversal transformation,

f̂ = revdi [f ] (see Definition 2.2.10). Observe that if f is monic in xi, then f̂ is reverse-monic

in xi. By definition, this transformation is invertible. In fact, f = revdi [f̂ ], thus given f̂ ,

we can recover f . We also get that ∥f∥ = ∥f̂∥ = s. Since f̂ = ĝe and ĝ is sd/e+1-sparse

using Lemma 4.1.1, we also get that g is sd/e+1-sparse.

In fact, Lemma 4.1.1 gives rise to an algorithm to compute the eth root of a reverse-

monic f , as shown below.

Lemma 4.1.3. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial of individual degree d

which is xi-reverse monic for some i ∈ [n]. If f = ge for some polynomial g ∈ F[x1, . . . , xn]

and e ∈ N, then there is a deterministic algorithm to compute g in poly(sd/e, n, d) F-

operations.

Proof. Algorithm 1 below computes the required g when f = ge, for some reverse-monic

f .

Correctness: Follows from Lemma 4.1.1.

Time Complexity: Steps 2 to 6, except Step 4 can be done in O(d) time. Step 4 will

take poly(s, n, d) time as f is s-sparse. Steps 8 and 9, each take poly(sd/e) F-operations

as ∥g∥ ≤ ∥G∥ ≤ sd/e+1. Thus, total complexity is poly(sd/e, n, d) F-operations.
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Algorithm 1: To compute eth root of f :

Input: Polynomial f ∈ F[x1, . . . , xn] of individual degree ≤ d, s-sparse and
reverse-monic in variable xi such that f = ge.

Output: Root g.
1 Let p := char(F).
2 if p > 0 and p | e then
3 Let e = pk · q, where pk is the highest power of p that divides e and p ̸ | q.
4 f ← f

(
x
1/pk

1 , . . . , x
1/pk

n

)
.

5 d← d/pk.

6 e′ ← e and e← e/pk. /* Saving value of e in e′ and updating e to q
*/

7 end

8 G←−
∑d/e

i=0

(
1/e
i

)
(f − 1)i.

9 g ←− G (mod x
d/e+1
i ).

10 if p > 0 and p | e′ then
11 g ← g

(
xp

k

1 , . . . , xp
k

n

)
.

12 end
13 return g.

Remark. Using Remark 4.1.2, Lemma 4.1.3 also works for a monic f by first making it

reverse-monic, computing its eth root and then returning the reversal of that.

4.1.2 General Case

Now, we handle the case where input f is not monic or reverse-monic in any variable. In

this case, we are not able to compute the exact root, but we can solve the decision version

of this problem, that is we show how to efficiently test if f = ge, for some g and e ≥ 1.

We first give a standard trick to convert a polynomial into a reverse-monic polyno-

mial. The properties mentioned below are fairly straightforward to prove, see for example

[BSV20, Lem 5.5]. For the sake of convenience, we slightly abuse the notation x to denote

the set {x1, . . . , xn} \ {xi} throughout Section 4.1.2.

Definition 4.1.4 (Reverse-monic transformation). Let f ∈ F[x1, . . . , xn] be an s-sparse

polynomial of individual degree at most d. Pick any variable xi ∈ supp(f) such that
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f |xi=0 ̸≡ 0. Set f0 := f |xi=0. We define

f̂ =
1

f0
· f |xi=f0·y .

This transformation has some nice properties:

1. f̂ is reverse-monic in y. Moreover f̂ is a proper polynomial in F[x][y] (instead of a

rational function in F(x)[y]).

2. ∥f̂∥ ≤ sd.

3. Individual degree of f̂ is at most d2. However, degy(f̂) = degxi
(f) ≤ d.

We remark that it could be the case that the trailing coefficient f0 = 0 for every xi

above. We show how to handle that case in Step 3 of Algorithm 2. So without loss of

generality, we can always convert our polynomial f into reverse-monic f̂ .

By definition of this transformation, one can easily show that if f = ge, then f̂ = he,

for some suitable h. However, the converse is not always true. For example, consider

f(x, z) = z(x+ 1)2. It is not an exact power but if we make it reverse-monic w.r.t. x we

get f̂(y, z) = 1/z · f(zy, z). It turns out to be f̂ = (zy+1)2, which is an exact power. For

testing whether f is an exact power, we need a converse also. In the two claims below,

we find the extra condition on trailing coefficient, which gives us a suitable converse. This

will amount to a recursive algorithm for exact power testing in Algorithm 2.

Claim 4.1.5 (⇒). If f = ge in F[x, xi], then f̂ = he in F[x, y] for some polynomial h and

f0 = ge0 in F[x], where g0 := g|xi=0.

Proof. Let f = fk · xki + . . . + f1 · xi + f0 and g = gm · xmi + . . . + g1 · xi + g0. If f = ge,

then k = em and f0 = ge0. Thus,

f̂ =
1

f0
· f(x, f0 · y) =

1

f0
· g(x, f0 · y)e

=

(
g(x, f0 · y)

g0

)e

= he,

for h := g(x,f0·y)
g0

. By definition of the reverse-monic transformation, f̂ ∈ F[x, y] is a proper
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polynomial in this ring. Clearly, h is in F(x)[y] by definition. Also f̂ = he ∈ F[x, y],

therefore h also belongs to F[x, y], by Lemma 2.2.7.

Claim 4.1.6 (⇐). If f̂ = he in F[x, y] and f0 = be in F[x], then f = ge in F[x, xi].

Proof. Observe that,

f(x, xi) = f0 · f̂
(
x,

xi
f0

)
= f0 · h

(
x,

xi
f0

)e
=

(
b · h

(
x,

xi
f0

))e

=
(
g(x, xi)

)e
,

for g := b · h(x, xi
f0
). Clearly, g ∈ F(x)[xi] from above. But since f ∈ F[x][xi] and f = ge,

this implies g ∈ F[x, xi] by Lemma 2.2.7.

Let rF(a, e) denote the time complexity of deciding whether a = be, for a, b ∈ F and

for some e ∈ N. Then,

• For a finite field F = Fq, rF = poly(log q) F-operations (Lemma 4.1.8).

• For the field of rationals F = Q, rF = poly(e, log a) F-operations. For an integer (or

rational number), it is easy to even compute the e-th root by binary search, or one

can simply invoke univariate factorization ([LLL82]) for xe − a to compute a1/e.

We finally come to our main theorem of the chapter.

Theorem 4.1.7. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial of individual degree

d. There is a deterministic algorithm to test whether f = ge for some polynomial g ∈

F[x1, . . . , xn] and e ∈ N. The algorithm takes poly(sd
2
, n, d)+rF(f(0, . . . , 0), e) F-operations.

Proof. The e = 1 case is trivial. Run the Algorithm 2 below for each e ∈ {2, . . . , d}. If

any such e exists such that f = ge, that is Algorithm 2 outputs YES, then f is an exact

power. Otherwise, if for every e Algorithm 2 outputs NO, then f is not an exact power.

We discuss the correctness and time-complexity of Algorithm 2 below.
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Algorithm 2: Exact power testing

Input: An s-sparse polynomial f ∈ F[x1, . . . , xn] with individual degree d and an
integer e ∈ {2, . . . , d}.

Output: YES, if f = ge for some polynomial g and NO, otherwise.
1 For each i ∈ [n], check whether f is reverse-monic in variable xi. If such an i

exists, then set f̂ := f, y := xi and go to Step 8 directly, else go to Step 2.
2 Choose any i ∈ [n]. Set f0 := f |xi=0 and xi := y.
3 if f0 = 0 then
4 Let k be the highest power of xi such that xki divides f.

5 If e ̸ | k then output NO and return, otherwise set f = f/xki and f0 = f |xi=0.

6 end

7 Define f̂ := 1
f0
· f(x, f0 · y).

8 Invoke Algorithm 1 for f̂ which is reverse-monic in variable y to get candidate
root ĝ.

9 Check whether f̂ = ĝe, by multiplying out. If it is, go to Step 10, otherwise
output NO.

10 For the (n− 1)-variate polynomial f0 := f |xi=0 ∈ F[x], recursively check whether

f0 is eth power of some polynomial. If it is, then output YES, otherwise output
NO.

Correctness: If f is indeed equal to ge for some e ∈ {2, . . . , d}, then by Claim 4.1.5,

f̂ = he for some h and f0 = be, for b = g|xi=0. Thus, by Lemma 4.1.3, Step 8 will compute

the correct root ĝ and in Step 10, the algorithm will output YES. If f is not an exact

power for any e ∈ [d], the algorithm will output NO in either Step 5 or Step 9 or Step 10.

This follows due to Claim 4.1.6 (consider contrapositive).

Time Complexity: Step 1 takes poly(s, n, d) F-operations as we only have to check

whether f |xi=0 = 1 at most n times. In Steps 2-6, we are required to compute the

trailing coefficient of f w.r.t xi-variable, which takes poly(s, n, d) F-operations. Step 7

takes at most poly(sd, n, d) time. Step 8 takes at most poly(∥f̂∥d/e, n, d) F-operations

by Lemma 4.1.3 as y-degree of f̂ is still d. Since ∥f̂∥ ≤ sd, this step takes at most

poly(sd
2/e, n, d) F-operations. Multiplying out in Step 9 will take take at most poly(s(d

2/e)·e) =

poly(sd
2
) F-operations as ∥ĝ∥ ≤ sd

2/e+1. Note that in Step 10, we recurse on f0, which

has sparsity ≤ s, therefore there is no blow-up of sparsity in the recursion. Hence, this

step takes poly(sd
2
, n, d) F-operations to reach the base case of deciding whether the

field element f(0, . . . , 0) has an e-th root. The total complexity is thus, poly(sd
2
, n, d) +
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rF(f(0, . . . , 0), e) F-operations.

Remark. Note that for a finite field F = Fq, the time-complexity of Algorithm 2 is

poly(sd
2
, n, log q) time. For the field of rationals F = Q, the time-complexity is poly(sd

2
, n, t),

where t is the bit-complexity of the coefficients of input polynomial.

Using the standard theory of finite fields, we show how to test whether a finite field

element is an exact power. In other words, we show that rF = poly(log q) for a finite field

Fq. This is required for the base case of Algorithm 2, when working over finite fields.

Lemma 4.1.8 (Folklore). For a finite field Fq, we can decide whether an element a ∈ Fq

is a kth power residue, i.e. a = bk for some b ∈ Fq in poly(log q) Fq-operations.

Proof. We will focus on F∗
q since 0 = 0k trivially. We will prove that a = bk for some b ∈ F∗

q

and k ≥ 1, if and only if a
q−1
d = 1 in F∗

q , where d = gcd(k, q − 1). Having proved that,

we can simply test this by computing a
q−1
d in poly(log q) Fq-operations using repeated

squaring. Now we prove both the directions for

a = bk ⇔ a
q−1
d = 1.

(⇒) Observe that a = bk ⇒ a
q−1
d = b

k(q−1)
d . Since d = gcd(k, q − 1), d divides k,

hence k
d is an integer. Thus, we get that a

q−1
d = b

k(q−1)
d = 1 by using the generalization of

Fermat’s Little Theorem, i.e. xq−1 = 1 for all x ∈ F∗
q .

(⇐) We know that F∗
q is a cyclic group of order q− 1. Let g be its generator such that

a = gr, for some r ∈ [q − 2] (For r = 0, we know that 1 = 1k trivially). Now, if a
q−1
d = 1,

we get that g
r(q−1)

d = 1. This implies that r
d is an integer or that d divides r. By Bezout’s

identity, we know that d = gcd(k, q− 1) = sk+ t(q− 1) for some integers s, t. Since d | r,

we get that r = s′k + t′(q − 1). This proves that a is a kth power residue as:

a = gr = gs
′k+t′(q−1) = gs

′k = bk

in F∗
q for b = gs

′
.
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4.2 Discussion

In this chapter, we designed a poly-time algorithm to test whether f = ge, for some

polynomial g and e ∈ N , where f has bounded individual degree. The search version of

this problem is open, i.e. compute the exact root g in poly-time. Note that Lemma 3.4.1

discussed earlier implies that we only need to prove a polynomial-size sparsity bound for

g in order to compute it. Thus, the next open problem in the context of this chapter

is to prove a polynomial-size sparsity bound (Conjecture 1.2.3) for the special case of

exact-roots f = ge, where f has constant individual degree d. The smallest open case

here is d = 4 and e = 2, in other words prove that square-root of a sparse multi-quartic

polynomial is also sparse.



Chapter 5

Co-factor Sparsity via Unique

Projections

In this chapter, we consider a variant of sparse factorization problem. In sparse factoring,

we are given an input polynomial f ∈ F[x1, . . . , xn]. If f factors as f = gh, we are asked

to prove that every factor of f is sparse. Now suppose you are promised that one of the

factors, say h is also sparse. Then, can one prove that g is sparse? We call g the quotient

polynomial or co-factor of h. We remark that any (even non-constructive) efficient upper

bound on the sparsity of g allows us to compute g efficiently by interpolating the ratio

f/h using a reconstruction algorithm for sparse polynomials (e.g. [KS01]) and verifying

the result.

To state our result we need the following technical definition. We say that a poly-

nomial h ∈ F[x1, x2, . . . , xn] has a unique projection of length k if there exist k variables

xi1 , xi2 , . . . , xik and k corresponding exponents e1, e2, . . . , ek such that h has a unique

monomial that contains the pattern xe1i1 x
e2
i2
· . . . ·xekik (see Definition 5.2.1 for more details).

Let f be an s-sparse polynomial of individual degree at most d such that f = gh.

Suppose, in addition, that h is a multilinear polynomial with a unique projection of length

k. Then g is sO(dk)-sparse.

This is formally proved in Theorem 5.2.15. Note that for constant k, we get the desired

sO(d) bound in sparsity conjecture. We remark that Example 1.2.2 with d = p−1 (resulting
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in a lower bound of nΩ(p)) showcases the tightness of our result as here f is n-sparse and

h = x1 + . . .+ xn has a unique projection of length 1 (e.g. x1) which results in an upper

bound of nO(p) for g. We can also extend the above result to the case of a co-factor of

a power of a multilinear polynomial. See Theorem 5.2.19 for the formal statement. In

general k may not be constant but we show that every multilinear s-sparse polynomial

always has a unique projection of length O(log s) (see Lemma 5.2.5). Using this, we obtain

a new sparsity bound of size sO(d log s) for all multilinear co-factors.

Let f be an s-sparse polynomial of individual degree d such that f = gh. Suppose, in

addition, that h is a multilinear polynomial. Then g is sO(d log s)-sparse.

This is formally proved in Corollary 5.2.16. The obtained bound is slightly better than

the general sparsity bound of size sO(d2 logn) by [BSV20] when s = poly(n). Although

our overall improvement may seem incremental (e.g. it does not allow us to “get rid”

of the log n in the exponent) our main contribution here is conceptual: identifying a

combinatorial property - the length of the multilinear polynomial - that governs the bound

on the sparsity of multilinear co-factors.

5.1 Multilinear co-Factor Motivation

The results which are informally stated above apply to the factorization scenario of f = gh

where f is s-sparse and h is multilinear. First of all, note that by previous results (see

[BSV20] and references within) h itself is s-sparse. So we are looking to bound the sparsity

of g. As it turns out, this pattern is the “bottleneck” case for multicubic polynomials. In

other words, showing a polynomial-size sparsity bound on g in this scenario would imply

a polynomial-size sparsity bound on factors of general multicubic polynomials! In fact,

it is sufficient to consider the case when the degree of g in every variable is exactly 2!

We remark that getting polynomial-size sparsity bound is open for d ≥ 3. The following

lemma summarizes this formally.

Lemma 5.1.1. Suppose there exists an absolute constant a ≥ 1 such that for any mul-

ticubic polynomial f : if g | f and f/g is multilinear then ∥g∥ ≤ ∥f∥a. Then for any
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multicubic polynomial f if g | f then ∥g∥ ≤ ∥f∥a.

Proof. We prove the following claim: Let f ∈ F[x1, x2, . . . , xn] be a multicubic polynomial

such that f = uv and v ̸≡ 0. Then ∥u∥ ≤ ∥f∥a. Note that the claim also covers the case

when f = u ≡ 0. The proof is by induction on n (the number of variables in f). The base

case is when n = 0 (i.e. u, f, v ∈ F) where the claim follows trivially. Suppose n ≥ 1. We

have the following cases to consider:

• There exists a variable xi s.t. degxi
(u) ≥ 1 but degxi

(v) = 0. Let 1 ≤ d ≤ 3 be the

degree of xi in u. In this case we can write:

(udx
d
i + . . .+ u0)v = uv = f = fdxi

d + . . .+ f0.

Here, uj , fj and v do not depend on xi. Formally: fj = ujv for j ∈ {0, . . . , d}. By

the induction hypothesis, we have that ∥uj∥ ≤ ∥fj∥a for j ∈ {0, . . . , d} and hence:

∥u∥ =
d∑

j=0

∥uj∥ ≤
d∑

j=0

∥fj∥a ≤

 d∑
j=0

∥fj∥

a

= ∥f∥a.

• There exists a variable xi s.t. degxi
(v) ≥ 1, but degxi

(u) = 0. Pick α ∈ F such that

v|xi=α ̸≡ 0. We have that:

u · v|xi=α = u|xi=α · v|xi=α = f |xi=α.

By the induction hypothesis: ∥u∥ ≤ ∥f |xi=α∥a ≤ ∥f∥a.

• There exists a variable xi s.t. degxi
(u) = 1. Wlog degxi

(v) ≥ 1. We can write

(u1xi + u0)(vdx
d
i + . . .+ vex

e
i ) = uv = f = (fd+1x

d+1
i + . . .+ fex

e
i ).

Here, d > e and vd, ve ̸≡ 0. In particular, we have that u1vd = fd+1 and u0ve = fe.

By the induction hypothesis: ∥u∥ = ∥u1∥+ ∥u0∥ ≤ ∥fd+1∥a + ∥fe∥a ≤ ∥f∥a.

• WLOG we are left with the case that for each i ∈ [n] we have that: degxi
(u) = 2

and degxi
(v) = 1. Based on our assumption, in this case ∥u∥ ≤ ∥f∥a and we are

done.
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5.2 Co-Factor Polynomial Sparsity

In this section we will prove our main results on co-factor sparsity in Theorem 5.2.15 and

Corollary 5.2.16. We begin with some technical definitions.

5.2.1 Unique Projections

Definition 5.2.1. Let V ⊆ Nn. A unique projection of V of length k is a set {(i1, e1), . . . , (ik, ek)}

such that there exists a unique vector v ∈ V satisfying ∀j ∈ [k] : vij = ej.

A unique projection of a polynomial h ∈ F[x1, x2, . . . , xn] is defined as a unique projection

of supp(h).

In other words, there exists a unique monomial in the monomial representation of h that

contains the pattern xe1i1 x
e2
i2
· · ·xekik . The following is immediate from the definition.

Observation 5.2.2. Let h ∈ F[x1, x2, . . . , xn] be a polynomial and let {(i1, e1), . . . , (ik, ek)}

be a unique projection of h. Pick j ∈ [k] and let ℓ ≥ ej . Then

{(i1, e1), (i2, e2), . . . , (ij−1, ej−1), (ij , ℓ− ej), (ij+1, ej+1), . . . , (ik, ek)}

is a unique projection of revℓij [h].

Subsequently, we demonstrate the usefulness of unique projections.

Lemma 5.2.3. Let h ∈ F[x1, x2, . . . , xn] be a polynomial with a unique projection of the

form {(i1, 0), (i2, 0), . . . , (ik, 0)} (i.e. ∀j ∈ [k] : ek = 0). Then h is {i1, i2, . . . , ik}-reverse

pseudo-monic.

Proof. Let I = {i1, i2, . . . , ik}. By iterative application of Part 1 of Observation 2.2.9, we

obtain that

supp(h|xI=0I ) =
{
e ∈ supp(h)

∣∣ ∀j ∈ [k] : eij = 0
}

As I corresponds to a unique projection, the set of the RHS contains exactly one vector

and the claim follows from Part 2 of Observation 2.2.9.

Lemma 5.2.4. Let h ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and let {(i1, e1), . . . , (ik, ek)}

be a unique projection of h. Furthermore, let J = {ij | ej = 1}. That is, the set of all
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indices ij for which ej = 1. Then h̃ := rev1J [h] is {i1, i2, . . . , ik}-reverse pseudo-monic.

Proof. First, note that since h is a multilinear polynomial, we have that ej = 0 for indices

j ∈ {i1, . . . , ik} \ J . Subsequently, by iterative application of Observation 5.2.2, we obtain

that h̃ is a multilinear polynomial with a unique projection {(i1, 0), (i2, 0), . . . , (ik, 0)}.

Note that h̃ is a proper polynomial (and not a rational function) by iterative application

of Part 1 in Lemma 2.2.11. The claim then follows from Lemma 5.2.3.

We conclude this section by showing that every set contains a unique projection of (at

most) logarithmic size and a relation of unique projections with δ-min-entropy polynomials

that were defined in [BS22].

Lemma 5.2.5. Let V ⊆ Nn be a set of size |V | ≤ s. Then V has a unique projection of

length at most log s+ 1.

Proof. The proof is by induction on the size of V . For the base case |V | = 1 there exists

a unique projection of length 1. Now assume |V | ≥ 2. Therefore, V contains at least

two different vectors u ̸= w. Let i be such that ui ̸= wi. Let us denote a = ui and

b = wi. Partition V into Va := {v ∈ V | vi = a} and Vb := {v ∈ V | vi = b}. We have

that |Va| + |Vb| ≤ |V |. Hence, wlog 1 ≤ |Va| ≤ s/2. By the induction hypothesis, Va has

a unique projection of length at most log(s/2) + 1 = log s. We now add the index i and

ei = a to the set to obtain a unique projection for V of size log s+ 1.

Recently, [BS22] defined a class of polynomials called ‘low min-entropy’ polynomials

and showed an (nd)O(dδ) sparsity upper bound for the factors of a δ-min-entropy polyno-

mial. We quickly give their definition of a δ-min-entropy set and then show a combinatorial

connection of min-entropy with our notion of unique projections below. We note this con-

nection between these two combinatorial concepts but our results are incomparable from

those in [BS22].

Definition 5.2.6 ([BS22]). A vector v ∈ Nn has min-entropy δ if it has the same value in

(n− δ) of its coordinates. A set V ⊆ Nn is called a δ-min-entropy set if for every v ∈ V ,

v has min-entropy ≤ δ.
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Lemma 5.2.7. Let V ⊆ Nn be a δ-min-entropy set. Then V has a unique projection of

length at most 2δ + 1.

Proof. Let u ∈ V be a vector with maximum min-entropy in V . Let m(u) denote the

majority value in u. In other words, u has the largest number of non-majority values

among all vectors in V . Let ui1 , . . . , uik be all the non-majority values in u. Since u has

min-entropy ≤ δ, the length of this sequence k is at most δ. We note that the remaining

elements of u outside this sequence have the same value (equal to m(u)). We extend the

sequence to length k+ δ + 1 by adding any δ + 1 elements from these remaining elements

of u to get: ui1 , . . . , uik , uik+1
, . . . , uik+δ+1

. We claim that {(i1, ui1), . . . , (ik+δ+1, uk+δ+1)}

is a unique projection of the set V .

We need to show that if v is another vector in V such that vij = uij , for each j ∈ [k+δ+

1] (values agree on projection), then v = u. Observe that uik+1
= . . . = uik+δ+1

= m(u),

by definition of k. This means vik+1
= . . . = vik+δ+1

= m(u) also. We deduce that at

least δ + 1 coordinates of v have value m(u). We also know that v has min-entropy ≤ δ

and note that for a ≤ δ-min-entropy vector, if any δ + 1 coordinates have the same value,

that value is the majority value. Hence, m(v) = m(u). Now suppose for the sake of

contradiction that there exists some coordinate ir outside the projection (r > k + δ + 1)

for which vir ̸= uir . Since all the non-majority values of u have already appeared in the

projection coordinates, we deduce that uir = m(u) = m(v). This means that vir ̸= m(v).

In that case, vir is another element in v apart from vi1 , . . . , vik which is distinct from m(v).

This is a contradiction to our assumption that u is a vector with maximum min-entropy.

Hence, vij = uij for all j > k + δ + 1. By our premise, they also agree on the k + δ + 1

projection coordinates. Hence vj = uj , for all j ∈ [n] and thus, v = u. Moreover, since

k ≤ δ, length of this unique projection is k + δ + 1 ≤ 2δ + 1.

5.2.2 Co-factor sparsity bounds

We now state and prove the technical results of this section in increasing order of gen-

erality. We will culminate in our main results towards the end in Theorem 5.2.15 and

Corollary 5.2.16. In what follows, let f, h ∈ F[x1, x2, . . . , xn] be two s-sparse polynomials
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such that f = gh.

Lemma 5.2.8. Suppose that h is reverse monic and the individual degree of g is at most

d. Then g is sd+2-sparse.

Proof. By hypothesis, let h be reverse monic w.r.t. some variable xi ∈ supp(h). Express

h as a univariate in xi with coefficients as polynomials in the remaining variables. Since

h is xi-reverse monic, the constant term, h|xi=0 is 1. Therefore, every term in (1− h) has

xi-degree ≥ 1. We use this observation in a division-elimination argument as follows:

g =
f

h
=

f

1− (1− h)
=

∞∑
j=0

f(1− h)j . (5.1)

Let xi-degree of g be di. Then, we can safely truncate the infinite sum in Equation (5.1)

as follows:

g =

di∑
j=0

f(1− h)j mod ⟨xdi+1
i ⟩. (5.2)

Equation (5.2) helps us in bounding sparsity of g. Note that going mod ⟨xdi+1
i ⟩ can only

decrease sparsity, so we focus only on the sparsity of finite sum in (5.2). Since g is a

factor of f , its individual degree di is also upper bounded by d. Also note that both

∥f∥, ∥(1− h)∥ ≤ s. Therefore, we get that ∥g∥ ≤
∑d

j=0 s
j+1 ≤ sd+2.

Generalizing this observation we obtain:

Lemma 5.2.9. Suppose that h is I-reverse monic and the individual degrees of the vari-

ables of g in xI are at most d. Then g is sd|I|+2-sparse.

Proof. We follow the same template as in proof of Lemma 5.2.8, with the change that h is

reverse monic with respect to a set I of variables instead of just a single variable. Express

h as a polynomial in xI variables with coefficients as polynomials in the remaining n− |I|

variables. Since h is I-reverse monic, h|xI=0I (the constant term of h) is 1. Therefore,

every term in (1− h) has total xI -degree ≥ 1. We then get the same Equation (5.1) for g.

Let I = {i1, . . . , ik} ⊆ [n], where k = |I|. Let individual degree of variable xij in g be dj
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for each j ∈ [k]. Then, we can truncate the infinite sum as follows:

g =
dk∑
j=0

f(1− h)j mod ⟨xd1+1
i1

, . . . , xdk+1
ik
⟩. (5.3)

By the premises, for each j ∈ [k] each individual degree dj is upper bounded by d. There-

fore, we only need to sum up to j = dk in (5.3) as the total degree in xI variables is upper

bounded by dk. Therefore, we get that ∥g∥ ≤
∑dk

j=0 s
j+1 ≤ sdk+2 = sd|I|+2.

The next lemma transforms a pseudo-monic polynomial into a monic polynomial while

maintaining the sparsity and the multiplicative properties.

Lemma 5.2.10. Let f = gh. Suppose that h is I-reverse pseudo-monic and the individual

degrees of the variables of g in xI are at most d. Then there exists polynomials f̃ , g̃, h̃ ∈

F[x1, x2, . . . , xn] such that:

1. h̃ is I-reverse monic.

2. f̃ = g̃h̃.

3. ∥f̃∥ = ∥f∥, ∥g̃∥ = ∥g∥, ∥h̃∥ = ∥h∥.

4. The individual degrees of the variables of g̃ in xI are at most d.

Proof. Let α := h|xI=0I . We first define f̂ , ĝ and ĥ by setting xi := xi · α for all i ∈ I,

into f, g and h, respectively. Next, we set f̃ := f̂ , g̃ := ĝ · α and h̃ = ĥ/α. We will now

prove each part of the claim.

1. First, observe that h̃ is, indeed, a polynomial (and not a rational function). This is

due to the fact that α divides ĥ. Next, h̃|xI=0I = ĥ|xI=0I/α = h|xI=0I/α = 1.

2. f̃ = f̂ = ĝĥ = (ĝ · α)(ĥ/α) = g̃h̃.

3. Since α is a monomial or a field element there is 1− 1 correspondence between the

monomials of f, g, h and f̃ , g̃, h̃, respectively.

4. By definition, α ∈ F[x[n]\I ]. Hence, multiplication or division by α does not affect

the degrees of the variables in I.
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By transforming a pseudo-monic polynomial into a monic polynomial we can generalize

Lemma 5.2.9 to the pseudo-monic case.

Corollary 5.2.11. Suppose that h is I-reverse pseudo-monic and the individual degrees

of the variables of g in xI are at most d. Then g is sd|I|+2-sparse.

Proof. Apply Lemma 5.2.9 on f̃ , g̃ and h̃ from Lemma 5.2.10. We obtain that g̃ and hence

g is sd|I|+2-sparse.

Remark 5.2.12. In the context of exact-root sparsity, we can extend the result of Lemma 4.1.1

from the reverse monic to the I-reverse pseudo-monic case. It is done in the exact same

fashion as we moved from Lemma 5.2.8 to Corollary 5.2.11 above. The formal statement

is given in Theorem 5.2.13 below. In addition, we observe that if f = ge then f is I-reverse

pseudo-monic iff g is I-reverse pseudo-monic (for the exact same I).

Theorem 5.2.13. Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and individual

degree at most d such that f = ge for some (other) polynomial g ∈ F[x1, x2, . . . , xn] and

e ∈ N. In addition, suppose that f is I-reverse pseudo-monic for some I ⊆ [n]. Then the

sparsity of g is bounded by sO(d·|I|/e).

Any multilinear factor of a sparse polynomial is also sparse. This is a known result,

which can be found, for example in [BSV20].

Lemma 5.2.14. Let f, h ∈ F[x1, x2, . . . , xn] where h is a multilinear polynomial and h | f .

Then ∥h∥ ≤ ∥f∥.

Now we finally prove the main results of this chapter.

Theorem 5.2.15. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial, with a multilinear

factor h such that f = g · h. Suppose that the individual degree of g is at most d and h

has a unique projection of length at most k. Then g is sdk+2-sparse.

Proof. Let {(i1, e1), (i2, e2), . . . , (ik, ek)} be the guaranteed unique projection of h and let

J = {ij | ej = 1}. We define:

f̃ := revd+1
J [f ] , g̃ := revdJ [g] and h̃ := rev1J [h].
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By Lemma 2.2.11, we have that f̃ = g̃ · h̃, where f̃ is an s-sparse polynomial, g̃ is a poly-

nomial with individual degree at most d and h̃ is a multilinear polynomial. Furthermore,

by Lemma 5.2.14, ∥h̃∥ ≤ ∥f̃∥ ≤ s. Finally, by Lemma 5.2.4, h̃ is {i1, i2, . . . , ik}-reverse

pseudo-monic. Consequently, by Corollary 5.2.11, we obtain that g̃ and hence g are sdk+2-

sparse.

Corollary 5.2.16. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial, such that f = g · h

where h is multilinear polynomial and g is a polynomial with individual degree at most d.

Then g is sd(log s+1)+2-sparse.

Proof. By Lemma 5.2.14, ∥h∥ ≤ ∥f∥ ≤ s. Consequently, by Lemma 5.2.5, h has a unique

projection length at most log s+ 1. Further using Theorem 5.2.15, we deduce that ∥g∥ ≤

sd(log s+1)+2.

Similarly, by plugging in Lemma 5.2.7 into Theorem 5.2.15 we obtain the following

relation to low min-entropy polynomials.

Corollary 5.2.17. Let f ∈ F[x1, . . . , xn] be an s-sparse polynomial, such that f = g · h

where h is a δ-min-entropy, multilinear polynomial and g is a polynomial with individual

degree at most d. Then g is sd(2δ+1)+2-sparse.

Remark 5.2.18. By using the formal expansion:

1

(1− x)ℓ
=

∞∑
j=0

(
j + ℓ− 1

j

)
xj

for division elimination in the proof of Lemma 5.2.9, we can get somewhat stronger versions

of our results below.

Theorem 5.2.19. Let f ∈ F[x1, x2, . . . , xn] be a polynomial of sparsity s and individual

degree at most d such that f = ghℓ for some ℓ ∈ N. Suppose, in addition, that h is a

multilinear polynomial with a unique projection of length k. Then the sparsity of g is

bounded by sO((d−ℓ)k).
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5.3 Discussion

In this chapter, we discussed the problem of bounding sparsity for the quotient polynomial

f/h, where f is s-sparse and h is a multilinear polynomial. We prove sO(d log s) bound here,

where n is the number of variables. Can one improve this sparsity bound? Ideally, get rid

of the log s term in the exponent. One can start by studying the structure of multilinear

polynomials with non-constant or log-sized unique projections. In a different direction,

can one extend our sO(d log s) bound for any quotient polynomial f/h, where both f, h

are s-sparse polynomials of individual degree d and h can be non-multilinear. Note that

Lemma 5.2.5 is proved for any sparse polynomial, not just for multilinear polynomials.

However, transforming h to a reverse pseudo-monic h̃ step breaks down (see Lemma 5.2.4),

as the reversal operation for a non-multilinear h can produce a rational function h̃ instead

of a polynomial.
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Chapter 6

PIT Preliminaries

6.1 Notations

We require some new notations for Part-II of the thesis, in addition to those used in

Part-I (Section 2.1). We borrow some of the notations here from [GKST17]. Let xk

or x≤k denote the tuple of first k variables (x1, x2, . . . , xk) and x>k denote the tuple of

remaining variables (xk+1, xk+2, . . . , xn). Let π denote the variable order of an ROABP,

where π : [n] → [n] is some permutation. This means the variables are read in the order

(xπ(1), xπ(2), . . . , xπ(n)). Let Fw×w[x] denote the ring of polynomials in n-variables over

the matrix algebra of w × w matrices.

Let A(x) ∈ F[x] be a polynomial in n variables of degree d. For an exponent vector a

let |a|1 denote the degree of the monomial xa. Let coeff(A)(xa) ∈ F denote the coefficient

of the monomial xa in A(x). We use A[d] to denote the degree-d homogeneous part of A(x)

and A[<d] to denote the remaining lower-degree terms. Let y and z be a partition of x such

that |y| = k, then the coefficient polynomial A(y,a), denotes the coefficient of monomial

ya in A(x) which is a polynomial in F[z]. Similarly A(z,b) ∈ F[y] is the coefficient of

monomial zb in A(x). Observe that A(x,a) and coeff(A)(xa) are different. For example if

A(x) = x1x2 + x22 + 2x1, then A(x1,1) = x2 + 2 while coeff(A)(x1) = 2.

A polynomial A(x) ∈ Fw×w[x] is called a matrix polynomial, where the coefficients are

w × w matrices of field constants. The coefficient space of A(x) is defined as the span of

75
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all the coefficients of A: spanF{coeff(A)(xa) | a ∈ {0, 1, . . . , d}n}. We can also define it for

any prefix of variables.

For a set of polynomials P, their F-span is defined as: spanFP :=
{∑

A∈P αA · A |

αA ∈ F
}
. The set P is called F-linearly independent if

∑
A∈P αA · A = 0 implies αA = 0

for all A ∈ P. DimFP is then defined as cardinality of the largest F-linearly independent

subset of P.

6.2 Hitting set generator (HSG)

The problem of PIT asks for determining whether a given input polynomial is identically

zero or not. The input polynomial is given in the form of some algebraic circuit. In white-

box PIT, one can look ‘inside’ the input circuit while in black-box PIT, the input is given

as a black-box and one can only evaluate the given circuit on field points. Therefore,

in black-box PIT for a class of n-variate polynomials C, we are asked to provide a set

H ∈ Fn such that for any non-zero f ∈ C, there exists at least one point α ∈ H such that

f(α) ̸= 0. Such a set H is called hitting-set for class C. In general, we always have the

following brute-force hitting-set, which is efficient when n is small.

Lemma 6.2.1 ([Alo99]). Let f ∈ F[x1, . . . , xn] be a polynomial with degxi
(f) ≤ di, for i ∈

[n]. Let Wi ⊆ F be a set of size at least di+1. If f ̸≡ 0, then there exists a ∈W1× . . .×Wn

such that f(a) ̸= 0.

There is also a notion of hitting set generator (HSG) or simply generator in short, which

is equivalent to a hitting set and is easier to work with PIT algorithms. We frame the PIT

result in this work using generators. We give the formal definition of a generator below.

Definition 6.2.2 (Generator). Let C be a class of n-variate polynomials. Consider G =

(G1,G2, . . . ,Gn) : Fk → Fn, an n-tuple of k-variate polynomials where for each i ∈ [n],

Gi ∈ F[t1, t2, . . . , tk]. Let f(x1, . . . , xn) be an n-variate polynomial. We define action of G

on polynomial f by f(G) = f(G1, . . . ,Gn) ∈ F[t1, . . . , tk]. We call G a k-seeded generator

for class C if for every non-zero f ∈ C, f(G) ̸≡ 0. Degree of generator G is defined as

deg(G) := max{deg(Gi)}ni=1.
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Sometimes, we will use the symbol f◦G in place of f(G) to avoid parenthesis in complicated

equations. For a polynomial-time PIT algorithm, k is kept constant. A generator G acts

as a variable reduction map which converts an input polynomial f ∈ F[x1, . . . , xn] to

f(G) ∈ F[t1, . . . , tk] such that f ≡ 0 if and only if f(G) ≡ 0. Let D be the degree

of G and d be the individual degree of f . Then G gives us a brute-force hitting-set of

size (ndD)k (Lemma 6.2.3). In other words, we get a polynomial-time black-box PIT

algorithm for f when k is constant, G can be designed in polynomial time and its degree

is also polynomially bounded.

The following lemma shows how to obtain hitting set from a generator. It basically

follows from Lemma 6.2.1. One can also obtain a generator from a given hitting set. See

[SV15, For14] for equivalence of hitting-sets and generators.

Lemma 6.2.3 (Generator =⇒ hitting-set, [SV15]). Let G = (G1, . . . ,Gn) : Fk → Fn be

a generator for a circuit class C such that deg(G) := D. Let W ⊆ F be any set of size

ndD. Then, H := G(W k) is a hitting set, of size |H| ≤ (ndD)k, for polynomials f ∈ C of

individual degrees < d.

Generator for a class of a polynomials is also a generator for the product of polynomials

from that class, since the generator will hit each polynomial in the product.

Lemma 6.2.4 (Folklore). Let f =
∏k

i=1 fi be a non-zero polynomial, where for each

i ∈ [k], fi ∈ C, for some circuit class C. Let G be a generator for class C. Then, f(G) ̸≡ 0.

Generator for a class of polynomials is also generator for the factors of a polynomial

in that class. This is because the polynomial ring is an integral domain.

Lemma 6.2.5 (Folklore). Let f ∈ C be a non-zero polynomial in circuit class C. Let G be

a generator for C. If f has a non-zero factor g, then g(G) ̸≡ 0.

Below we state the folklore trick of polynomial interpolation which recovers coefficients

of a univariate polynomial from sufficiently many evaluations of the polynomial.

Lemma 6.2.6 (Lagrange Interpolation). Let α1, . . . , αk be any k distinct points in F.

Suppose we are given evaluations of a polynomial f(x) ∈ F[x] of degree k − 1 at these k
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points, βi = f(αi) for each i ∈ [k]. Then we can recover f as follows:

ℓi(x) =
∏

1≤j≤k
j ̸=i

x− αj

αi − αj

f(x) =

k∑
i=1

βiℓi(x)

Proof. Observe that ℓi(αj) = 0 for i ̸= j and 1 when i = j. Thus, f(αi) = βi. Also

f(x) is the unique degree k−1 polynomial with these evaluations, since if there is another

polynomial g ̸= f with same k evaluations, then f − g is a non-zero polynomial of degree

≤ k − 1 having k roots, which is a contradiction.

Often we have a set of candidate maps for a class of polynomials P, such that for each

polynomial f ∈ P, one of the maps in the set acts as a generator for that particular f .

The following lemma shows that we can replace these set of candidate generators with a

single generator for class P.

Lemma 6.2.7 (Generator Interpolation). Let G = {Φ1, . . . ,Φℓ} where each Φi : Fk → Fn

is of seed-length k. Suppose G is a set of candidate generators for a class of n-variate

polynomials P such that for any non-zero f ∈ P, there exists i ∈ [ℓ], f(Φi) ̸≡ 0. Then,

there exists a single generator Ψ : Fk+1 → Fn of seed-length k + 1 such that for every

non-zero f ∈ P, f(Ψ) ̸≡ 0. Moreover, deg(Ψ) = max{ℓ− 1, deg(Φ1), . . . ,deg(Φℓ)}.

Proof. Let {α1, . . . , αℓ} be an arbitrary set of distinct constants. Let t1, . . . , tk be the seed

variables for every Φi and let y be the new seed variable. Define Ψ : Fk+1 → Fn to be the

Lagrange interpolation polynomial as follows:

Ψ =
ℓ∑

i=1

( ∏
1≤j≤ℓ
j ̸=i

y − αj

αi − αj

)
Φi.

Observe that Ψ|y=αi = Φi for each i ∈ [ℓ]. We know that for any non-zero f ∈ P,

there exists i ∈ [ℓ] such that f(Φi) ̸≡ 0. Therefore f(Ψ)|y=αi ̸≡ 0. Hence f(Ψ) ̸≡ 0

as a polynomial in F[y, t1, . . . , tk] since its evaluation at y = αi is non-zero. Note that

degy(Ψ) = ℓ− 1.
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We mention the famous Kronecker map below, which preserves non-zeroness of any

multivariate polynomial.

Lemma 6.2.8 ([Kro82]). Let f(x) ∈ F[x1, . . . , xn] be a non-zero polynomial of individual

degree < d. Let the Kronecker HSG, Φ : F → Fn be defined as (td
0
, td

1
, . . . , td

n−1
). Then,

f(Φ) ̸≡ 0.

We now show how to replace a k-seeded HSG with a single seed HSG of appropriate degree.

Lemma 6.2.9. Let Φ : Fk → Fn be a k-seeded hitting set generator for some class P of

n-variate, degree d polynomials in F[x] such that deg(Φ) = D. Then, there is a single-seed

generator Ψ : F→ Fn for class P with deg(Ψ) ≤ (dD + 1)k.

Proof. Let f ∈ P be a non-zero polynomial. Since Φ is a generator for f , f(Φ) ̸≡ 0.

Now, consider the Kronecker HSG Γ : F→ Fk = (zB
0
, zB

1
, . . . , zB

k−1
) for the polynomial

f(Φ) ∈ F[t1, . . . , tk], where we set B := dD + 1. Since deg(f(Φ)) < B, by Lemma 6.2.8,

f(Φ◦Γ) ̸≡ 0. Thus, we get a univariate HSG Ψ := Φ◦Γ : F→ Fn such that for a non-zero

f ∈ P, f(Ψ) ̸≡ 0. Observe that deg(Ψ) = deg(Γ).deg(Φ) = Bk−1.D ≤ (dD + 1)k.

blackbox PIT for the class of sparse polynomials is achieved by the following lemma.

Lemma 6.2.10 (Sparse HSG; [KS01]). Let f ∈ F[x1, . . . , xn] be a non-zero m-sparse

polynomial of individual degree at most d. Let p be a prime larger than max(d,mn +

1). Then, there is some k ∈ [mn + 1] such that the univariate polynomial f ′(y) :=

f(y, yk
1 mod p, . . . , yk

n−1 mod p) is non-zero. This yields a HSG Ψ : F → Fn for the class

of m-sparse polynomials such that deg(Ψ) = poly(m,n, d).

Proof. We refer reader to [SY10, Theorem 4.12] for the proof of f ′(y) being non-zero.

Observe that this gives us a set G of HSGs for the class P of m-sparse polynomials,

G = {Φk}k∈[mn+1], where Φk : F→ Fn = (y, yk
1 mod p, . . . , yk

n−1 mod p). Using Lemma 6.2.7,

we get a single two-seeded HSG Φ : F2 → Fn such that f(Φ) ̸≡ 0 for a non-zero f ∈ P. By

using Lemma 6.2.9, we also get a univariate HSG Ψ for class P. Degree of f(Ψ) is at most
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poly(m,n, d). We get a deterministic poly-time blackbox PIT for class P by evaluating

f(Ψ) on its (degree +1)-many distinct points.

Using the above lemma, we can also design a generator for a polynomial whose leading

homogeneous part is sparse.

Lemma 6.2.11 (Top Sparse). Let f ∈ F[x1, . . . , xn] be a polynomial of degree d such that

f [d] is m-sparse, where f [d] denotes the top degree-d homogeneous part of f . Then, there

is a hitting set generator Ψ : F→ Fn for f with deg(Ψ) = poly(m,n, d).

Proof. Note that if f is a non-zero polynomial of degree d, then f [d] ̸= 0. Moreover sparsity

of f [d] is at most m. Thus by Lemma 6.2.10, we have an HSG Φ : F → Fn for f [d] with

deg(Φ) = poly(m,n, d) such that f [d](Φ) ̸≡ 0. Let z be a new variable. Observe that,

f [d](x) = coeff
(
f(zx1, zx2, . . . , zxn)

)
(zd).

Let HSG Φ =: (g1(y), . . . , gn(y)). This gives us a two-seeded HSG Φ′ := (zg1(y), . . . , zgn(y))

for f . This is because,

f(zx1, . . . , zxn) = f [d](x) · zd + f [d−1](x) · zd−1 + . . .+ f [0] · z0

f(zg1, . . . , zgn) = f [d](g1, . . . , gn) · zd + . . .+ f [0] · z0

f(zg1, . . . , zgn) = f [d](Φ) · zd + . . .+ f [0] · z0

Since f [d](Φ) ̸≡ 0, this implies f(Φ′) = f(zg1, . . . , zgn) ̸≡ 0. Note that deg(Φ′) =

poly(m,n, d). Now, by Lemma 6.2.9 we get a single-seed HSG Ψ : F→ Fn for f such that

f(Ψ) ̸≡ 0 and deg(Ψ) = poly(m,n, d).

6.3 GCD, Resultants and Subresultants

In this section we discuss the classical tool of resultants and subresultants. In Theo-

rem 7.2.1 we prove an interesting connection between subresultant of two polynomials

with their gcd and resultant of their co-prime parts. This result will be crucial in the

design of our PIT algorithm in Chapter 7.
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The polynomial ring F[x1, . . . , xn] is a unique factorization domain (UFD). Hence, the

gcd of two polynomials is well defined up to a multiplication by field element. We can

also define gcd with respect to a single variable xi, where we treat rest of the variables

as field elements. That is, gcdxi
(f, g) is well defined up to multiplication by a rational

function depending on the remaining variables. By convention, we choose the normalized

gcd whenever we consider gcdxi
(f, g) in this work. For example, let f = x21x2 + x1x

2
2 and

g = x21x
2
2, then gcd(f, g) = x1x2 while gcdx2

(f, g) = x2. Technically, the former is gcd in

F[x1, x2] and the latter is normalized gcd in F(x1)[x2].

We now consider a somewhat more general scenario. Let A(y), B(y) ∈ R[y] be two

non-zero polynomials of y-degree d and e, respectively in an arbitrary UFD R. Suppose

A(y) =
∑d

i=0 ai ·yi and B(y) =
∑e

j=0 bj ·yj . Consider the (d+e)× (d+e) Sylvester matrix

M whose first e rows are the e shifts of the row vector (ad, . . . , a0, 0, . . . , 0) and next d

rows are the d shifts of the row vector (be, . . . , b0, 0, . . . , 0).

M =



ad ad−1 . . . a1 a0

ad ad−1 . . . a1 a0

. . . . . . . . . . . .

ad ad−1 . . . a1 a0

be be−1 . . . b1 b0

be be−1 . . . b1 b0

. . . . . . . . . . . .

be be−1 . . . b1 b0



.

Definition 6.3.1 (Resultant). The resultant Resy(A,B) ∈ R is defined to be the deter-

minant of this Sylvester matrix. That is, Resy(A,B) = det(M).

In our setting, R will be a polynomial ring, say F[x1, . . . , xn] and Resy(A,B) will be

a polynomial free of y-variable. The following is the most fundamental property of the

Resultant:

Lemma 6.3.2 (See e.g. [GCL92, vzGG13, CLO15]). Let A,B ∈ F[y, x1, . . . , xn] be two
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polynomials. Then gcdy(A,B) ̸= 1 if and only if Resy(A,B) ≡ 0. That is, A and B have

a non-trivial factor that depends on the variable y (degy(gcd(A,B)) > 0) iff the Resultant

of A,B w.r.t. y is the identically zero polynomial.

We state the following important connection between projection of resultant and re-

sultant of projections.

Lemma 6.3.3. Let f, g ∈ F[y,x] be two polynomials and let a ∈ Fn. Then,

Resy(f, g)(a) ̸= 0 =⇒ Resy(f(a), g(a)) ̸= 0.

Proof. Let d := degy(f), e := degy(g), r := degy(f(a)) and t := degy(g(a)). Then with

some easy determinant calculations, one can show that:

Resy(f, g)(a) =



Resy(f(a), g(a)) r = d, t = e

(lcy(f)(a))
e−t · Resy(f(a), g(a)) r = d, t < e

(−1)e(d−r) · (lcy(g)(a))d−r · Resy(f(a), g(a)) r < d, t = e

0 r < d, t < e

Note that if Resy(f, g)(a) ̸= 0, then Resy(f(a), g(a)) divides it and hence the conclusion

follows.

Lemma 6.3.2 and Lemma 6.3.3 together give us the following useful Corollary:

Corollary 6.3.4. Let f(y,x) and g(y,x) be two polynomials in F[y,x]. Let a ∈ Fn. Then,

Resy(f, g)(a) ̸= 0 =⇒ gcdy(f(y,a), g(y,a)) = 1.

We also require multiplicative property of the Resultant that essentially follows from

the definition:

Lemma 6.3.5. Let A,B, u, v ∈ F[y, x1, . . . , xn] be polynomials. Then Resy(A,B) | Resy(uA, vB).

We now study few useful sub-matrices of the Sylvester matrix below.
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Definition 6.3.6 (j-th principal resultant). Let Mj be the submatrix of M formed by

deleting last j rows of A terms, last j rows of B terms and the last 2j columns. We call

Mj to be the j-th principal resultant of A and B. Note that Resy(A,B) = M = M0.

We can now define the subresultant polynomial as follows.

Definition 6.3.7 (Subresultant). Let Mij be the (d+ e− 2j)× (d+ e− 2j) submatrix of

Sylvester matrix M formed by deleting:

• rows e− j + 1 to e (each having coefficients of A(y)),

• rows d+ e− j + 1 to d+ e (each having coefficients of B(y)),

• columns d+ e− 2j to d+ e, except for column d+ e− i− j.

Note that the j-th principal resultant Mj is exactly Mjj.

For 0 ≤ j ≤ e, the j-th subresultant of A(y), B(y) ∈ R[y] is the polynomial in R[y] of

degree j defined by

Sy(j, A,B) = det(M0j) + det(M1j) · y + . . .+ det(Mjj) · yj .

We state below known results in the theory of subresultants, which will be useful for

us.

Lemma 6.3.8 (Lem 7.1 of [GCL92]). Let A(x), B(x) ∈ R[x] be two polynomials over an

arbitrary UFD R. Let K be the field of fractions of R. Suppose

A(x) = Q(x) ·B(x) +R(x),

for some polynomials Q,R ∈ K[x] such that degx(A) = m, degx(B) = n, degx(Q) = m−n,

degx(R) = k and m ≥ n > k. Let b and r denote the leading coefficients of B(x) and R(x)
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respectively. Then

Sx(j, A,B) = (−1)(m−j)(n−j) ×



bm−k · Sx(j, B,R) 0 ≤ j < k

bm−k · rn−k−1 ·R(x) j = k

0 k < j < n− 1

bm−n+1 ·R(x) j = n− 1.

That is, Sx(j, A,B) equals to one of the above four expressions multiplied by the corre-

sponding sign (−1)(m−j)(n−j).

We conclude this section making an important observation that any subresultant (and

hence the Resultant) of two sparse polynomials of individual degree at most d is a sum

of at most d + 1 determinants of 2d × 2d matrices where each entry is a coefficient of a

sparse polynomial and, hence is itself a (somewhat) sparse polynomial of a small individual

degree.

Observation 6.3.9. Let A,B ∈ F[y, x1, . . . , xn] be two s-sparse polynomials with indi-

vidual degrees at most d. Then for any j, Sy(j, A,B) is an (2ds)2d+1-sparse polynomial

with individual degrees at most 2d2.

6.4 ROABPs

Characterizing dependencies: We state the definition of characterizing dependencies

which defines an ROABP layer by layer.

Definition 6.4.1 ([GKST17], Defn. 2.7). Let A(x) be a polynomial of individual de-

gree d with variable-order (xπ(1), xπ(2), . . . , xπ(n)). Suppose, for each k ∈ [n] and y =

(xπ(1), . . . , xπ(k)), dimF{A(y,a) | a ∈ {0, 1, . . . , d}k} ≤ w. For k ∈ [n], we define the

spanning set spank(A) and the dependency set dependk(A) as subsets of {0, 1, . . . , d}k as

follows. For k = 0, let depend0(A) := ϕ and span0(A) := {ϵ}, where ϵ = () denotes the

empty tuple. For k ∈ [n], let

• dependk(A) := {(a, j) | a ∈ spank−1(A) and 0 ≤ j ≤ d}, i.e. dependk(A) contains
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all possible extensions of the tuples in spank−1(A).

• spank(A) ⊆ dependk(A) is a subset of size ≤ w, such that for any b ∈ dependk(A),

the polynomial A(y,b) is in the span of {A(y,a) | a ∈ spank(A)}.

Such dependencies of {A(y,a) | a ∈ dependk(A)} over {A(y,a) | a ∈ spank(A)} comprise

the characterizing set of dependencies (certifying the width of A).

Nisan’s characterization: [Nis91] gave an exact width characterization for ROABPs.

We follow the presentation of [GKST17] for this characterization.

Lemma 6.4.2 ([GKST17], Lem. 2.4, 2.8). Let A(x) be a polynomial of individual degree

d, computed by an ROABP of width w with variable order (xπ(1), xπ(2), . . . , xπ(n)). For

k ∈ [n], let y = (xπ(1), xπ(2), . . . , xπ(k)) be the prefix of length k and z be the suffix of

length n− k. Then, dimF{A(y,a) | a ∈ {0, 1, . . . , d}k} ≤ w.

Conversely, let A(x) be a polynomial of individual degree d, with x = {x1, . . . , xn} and

w ≥ 1, such that for any k ∈ [n] and yk = (xπ(1), xπ(2), . . . , xπ(k)), we have dimF{A(yk,a) |

a ∈ {0, 1, . . . , d}k} ≤ w. Then, there exists an ROABP of width w for A(x) in the variable

order (xπ(1), xπ(2), . . . , xπ(n)).

Remark. Here, we are taking w to be the maximum width across all layers in an ROABP.

Moreover, we are talking about width of any ROABP computing A. To be more precise,

Nisan’s characterization says that for an optimal width ROABP for A, the width in layer

k will be exactly the same as dimension of the coefficient polynomials in that layer. Let wk

be the width of layer k for any k ∈ [n] in the optimal ROABP. Then, wk = dimF{A(yk,a) |

a ∈ {0, 1, . . . , d}k}.

We need the following lemma later in Section 8.3.1, which is not difficult to prove

(simply inspect the required coefficient).

Lemma 6.4.3 ([GKST17], Lem. 2.6). Let A(x) be a polynomial of individual degree d,

computed by an ROABP of width w. Let y = (xi1 , xi2 , . . . , xik) be any k variables of

x. Then, the coefficient polynomial A(y,a) can be computed by an ROABP of width w,
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for every a ∈ {0, 1, . . . , d}k. Moreover, all these ROABPs have the same variable order,

inherited from the variable order of the ROABP for A.

Known results for ROABPs: We mention few folklore and known results for ROABPs

below. The width is additive for sum of ROABPs that compute in the same variable order.

Lemma 6.4.4 (Parallel Sum). Let A and B be polynomials computable by ROABPs of

width w1 and w2 respectively, in the same variable order. Then A + B can be computed

by an ROABP of width w1 + w2 in this order.

Proof. We compute the sum by joining the two ROABPs in parallel. Let s1, t1 be the

source and sink vertices of ROABP A respectively and s2, t2 be that of B. Create a new

source vertex s and a sink vertex t for A+B. Draw an edge from s→ s1 with unit label

and an edge s → s2 with unit label. Similarly, join t1 → t and t2 → t with unit labels.

Clearly, the new ROABP is of width w1 + w2.

The lemma below shows that PIT for
∑∧∑

circuits reduces to PIT for log-variate

ROABPs.

Lemma 6.4.5 (
∑∧∑

to ROABP; [FSS14], [Sax08]). If we have poly-time blackbox PIT

for log-variate (commutative) ROABPs, then we have poly-time blackbox PIT for (standard

multivariate) diagonal depth-3 circuits. Moreover, if we have poly-time blackbox PIT for

sum of log-variate, constant width (commutative) ROABPs, then also we get the same

conclusion.

Proof sketch. [FS13a, FS13b] exploited the fact that diagonal depth-3 circuits have low

dimension partial-derivative space to show that non-zero polynomials computed by them

have a nonzero log-support monomial. That is, a degree d polynomial f =
∑k

i=1 ℓ
di
i has

dimF{∂<∞(f)} = poly(k, n, d) = poly(s), where s is the size of circuit, ℓi’s are linear

polynomials and {∂<∞(f)} denotes the space of all partial derivatives of f . Note that a

simple monomial like x1x2 . . . xn with support n has dimF{∂<∞(x1 . . . xn)} = 2n. With
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few additional observations, they prove that a non-zero f must compute a monomial with

non-zero coefficient, that is supported on at most O(log s) variables.

Under the promise of such a log-support monomial, we can apply the generator G of

[SV09], used in [FSS14] or the map of [Vai15], both of seed-length O(log n). Both these

maps preserve non-zeroness of f , i.e f(G) ̸≡ 0.

The maps/generators are such defined that after applying either of them, we will

get to ‘power of sums of univariates’ form which we can convert to ‘sum of products of

univariates’ form using the duality-trick of [Sax08], i.e f(G) =
∑t

i=1

∏n′

j=1 fij(xj) where t =

poly(s, d) and number of variables in f(G) are n′ = O(log s). Observe that each product-

of-univariates
∏n′

j=1 fij(xj), has a width-1 ROABP in any variable order (commutative).

Thus by Lemma 6.4.4, f(G) can be computed by an O(log s)-variate, width t = poly(s, d)

ROABP. Thus, solving PIT for log-variate ROABP will solve PIT for f(G) and hence for

f . Second part follows by observing that f(G) is also a sum of t-many width-1, log-variate

ROABPs.

Prefix and suffix maps: In Chapter 8, we will need the notation of prefix and suffix

maps which are defined below.

Definition 6.4.6 (Prefix/suffix map). Suppose A is an ROABP in the variable order

(y1, . . . , yn). For some ℓ ≤ n, let G : F → Fℓ = (G1, . . . ,Gℓ) be a generator for ℓ-variate

ROABPs of some fixed width, with a single seed variable t. We call Ψ : Fn−ℓ+1 → Fn =

(G1, . . . ,Gℓ, yℓ+1, . . . , yn) a prefix map with respect to generator G. Note that A(Ψ) ∈

F[t, yℓ+1, . . . , yn]. In a similar fashion, we define suffix map with respect to G as Φ :

Fn−ℓ+1 → Fn = (y1, . . . , yn−ℓ,G1, . . . ,Gℓ).

Basically, a prefix map projects the initial ℓ variables of a polynomial using G and leaves

the remaining variables as it is, while a suffix map projects the last ℓ variables using G

and leaves the initial variables untouched. Below, we show that any linear combination

of polynomials computed in an internal layer of an ROABP can also be computed by an

ROABP of same width.
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Lemma 6.4.7 (Partial ROABP). Let D =
∏n

i=1Di(yi) be an ROABP of width w in the

variable order (y1, . . . , yn). For some k ∈ [n− 1], consider the decomposition of D at k-th

layer as D =
∑w

i=1 Pi ·Qi. Then for any c1, . . . , cw ∈ F, the polynomials
∑w

i=1 ci · Pi and∑w
i=1 ci ·Qi can be computed by ROABPs of width w each.

Proof. Note that D = D≤k · D>k = (P1, . . . , Pw)(Q1, . . . , Qw)
⊺. Observe that D≤k is an

ROABP of width w with w-many output nodes computing the polynomials P1, . . . , Pw.

We can add a single sink node t and edges (Pi, t) with weights ci, for each i ∈ [w]. This

modified ROABP of width w computes the polynomial
∑w

i=1 ci ·Pi. Proof for
∑w

i=1 ci ·Qi

follows similarly.

Below, we show that a generator for an ROABP in ℓ variables, can be extended to a

generator for an ROABP in n ≥ ℓ variables of same width, if the remaining variables are

untouched.

Lemma 6.4.8. Let G : F → Fℓ be a generator for ℓ-variate ROABPs of width w. Then

the prefix map Ψ with respect to G is a generator for n-variate ROABPs of width w, for

some n ≥ ℓ.

Proof. Suppose G = (G1, . . . ,Gℓ). Let f ∈ F[x1, . . . , xn] be a non-zero polynomial com-

puted by an ROABP of width w in the variable order (y1, . . . , yn). For the sake of con-

tradiction, suppose f(Ψ) =: f(G1, . . . ,Gℓ, yℓ+1, . . . , yn) ≡ 0. Then decomposing D at ℓ-th

layer we get f =
∑w

i=1 Pi · Qi, where for each i ∈ [w], Pi ∈ F[y≤ℓ] and Qi ∈ F[y>ℓ]. By

Nisan’s characterization (Lemma 6.4.2), Q1, . . . , Qw are F-linearly independent. Observe

that

f(Ψ) =

w∑
i=1

Pi(G) ·Qi ≡ 0. (6.1)

Let t be the single seed variable for G. For each i, Pi(G) is a non-zero univariate polynomial

in t, as Pi is a non-zero ℓ-variate polynomial computed by a width w ROABP and G is

a generator for such polynomials. Therefore, there exists some i ∈ [w] and α ∈ F such

that Pi(G)|t=α ̸= 0. Let ci := Pi(G)|t=α for all i ∈ [w]. Then
∑w

i=1 ci · Qi ≡ 0 by (6.1).

Since there is some non-zero ci, this implies a non-trivial dependency among Qi’s, which

contradicts their linear independence. Hence, f(Ψ) ̸≡ 0.
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Similarly, one can show that the suffix map Φ wrt generator G is also a hitting set for

n ≥ ℓ variate-ROABPs.

6.5 Border PIT

Recall the definition of a border class from Section 1.4.2. It turns out that for a sin-

gle ROABP, border does not add any power, i.e. ROABP = ROABP. We give a proof

exposition below.

Lemma 6.5.1 ([For16]). A polynomial f ∈ F[x] in the border class of width w ROABPs

can also be computed by an ROABP of width at most w.

Proof. Let g = f+ϵh, where g has an ROABP of width w over F(ϵ). We need to show that

the limit polynomial f also has ROABP-width ≤ w over F. Let the unknown variable order

of g be (y1, . . . , yn). By applying Nisan’s characterization [Nis91] on g, we know that for all

k ∈ [n], the matrix defined in [Nis91] for each layer, Mk has rank at most w over F(ϵ). This

means determinant of any (w+1)× (w+1) minor of Mk is identically zero. Observe that

entries of Mk are coefficients of monomials of g which are in F[ϵ][x]. Thus, determinant

polynomial will remain zero even under the limit, ϵ → 0. Hence, for f = limϵ→0 g, each

matrix Mk also has rank at most w over F. Thus by Nisan’s characterization, f also has

an ROABP of width at most w. This matrix is now commonly called as partial derivative

matrix. The notion of rank of partial derivative matrix is equivalent to the notion of

dimension of the space spanned by the coefficient polynomials as defined in Lemma 6.4.2

and used in this work. We refer the reader to chapter on The Partial Derivative Matrix

in [Sap16] for details on this matrix and its connection with coefficient polynomials.

Let f be a degree d polynomial computed by an ROABP of width w and let f [d] be its

leading homogeneous degree-d part. Lemma 8.2.6 states that f [d] can also be computed

an ROABP of width w. This fact also has a nice alternate proof via border complexity as

follows. It is not difficult to show that for a polynomial f of degree-d in class C, f [d] can

be computed in the border class C. Since for ROABPs the border is the same, f [d] can

also be computed by an ROABP of width ≤ w.
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For a class C, where the border class C is same as C, the PIT algorithm will be same

for both C and C. For example, the class of sparse polynomials and also the class of single

ROABPs (Lemma 6.5.1). However, for classes where C ̸= C, blackbox PIT algorithms that

work for C may not work for the border class C. The only thing we can say for such classes,

in general, is that PIT for C is in PSPACE, as PIT for VP is in PSPACE [GSS19, FS18].

PIT algorithms, which rely on a rank based measure, usually work for the border class

also, since the rank based measure also works for the border class. An example of this are

the PIT algorithms for the class C of diagonal depth-3 circuits, even though for this class

it is unknown whether C is same as C.

Lemma 6.5.2 (Border
∑∧∑

; [For16]). The blackbox PIT algorithms in [FS13a], [FSS14]

and [FGS18] for the class of diagonal depth-3 circuits also solve blackbox PIT for its border

class in their same respective times.

Proof Sketch. We discussed in the first part of the proof of Lemma 6.4.5 that for a polyno-

mial f computed by size-s
∑∧∑

circuit, dim{∂<∞(f)} = poly(s) which helps in proving

that f has a non-zero monomial of O(log s) support. All of the works - [FS13a], [FSS14]

and [FGS18] build on this property to give efficient PIT algorithms for f .

Actually, one can also show that a polynomial g computed in the border of size-s∑∧∑
circuit also has dim{∂<∞(g)} = poly(s) as discussed in [For16]. Its proof is very

similar to the proof of Lemma 6.5.1 below. This then proves that g also has a non-zero

monomial of O(log s) support. Thus, the above mentioned PIT algorithms also work for

g.



Chapter 7

PIT for Σ[2]ΠΣΠ[ind-deg d] circuits

In this chapter, we focus on the circuit model for PIT. The depth-4 ΣΠΣΠ circuit class (see

Section 1.1 for definition) is extremely important in the context of the PIT problem, as it

is known that a polynomial-time black-box PIT for this class implies a quasi-polynomial-

time black-box PIT for general VP circuits [AV08, AGS19]. It is no surprise therefore, that

this model has been tough to crack. Even very restricted subclasses of ΣΠΣΠ are open,

for example poly-time PIT for
∑[k] ∏∑∏[δ], even when k = δ = 3. Our main result here

is an efficient (deterministic) identity testing algorithm for the class of Σ[2]ΠΣΠ[ind-deg d]

circuits, where a Σ[2]ΠΣΠ[ind-deg d] circuit C of size s computes a polynomial of the form:

C =
r∏

i=1

gi +
m∏
j=1

hj

where each polynomial (gi and hj) is an s-sparse polynomial with individual degree at

most some constant d. Note, though, that r and m, and hence the total degree of of C,

can be arbitrary (i.e. polynomially) large. In particular, the polynomial computed by C

may not itself be sparse. This class generalizes the model considered in [Vol17], where

m = 1 and the gi-s are irreducible polynomials.

It turns out this problem is related to the sparse factorization problem discussed in

Chapter 3. Observe that the identity testing problem for this circuit class reduces to

polynomial factorization of sparse polynomials with bounded individual degree. Therefore,

by invoking the factorization algorithm of [BSV20], we can get an algorithm whose runtime

91
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is efficient in terms of the sparsity bound. Plugging in the best bound of [BSV20], results

in a quasi-polynomial-time algorithm. Here, we give a polynomial-time algorithm for

this model. In addition, our algorithm operates in the black-box setting, whereas the

described factorization-based algorithm is a white-box algorithm. Let f ∈ F[x1, . . . , xn]

be a polynomial computed by a Σ[2]ΠΣΠ[ind-deg d] of size s, where d is some fixed constant.

Then, we show that there exists a deterministic algorithm that given a black-box access to

f determines if f ≡ 0, in time poly(s, n). See Theorem 7.3.9 for the formal version.

7.1 Proof Technique

Let C =
r∏

i=1
gi +

m∏
j=1

hj where gi-s and hj-s are s-sparse polynomials in F[x1, x2, . . . , xn] of

individual degree at most d. Clearly, if C ≡ 0 then it will evaluate to zero on any input.

Now suppose C ̸≡ 0. Our goal is to find a point a ∈ Fn such that C(a) ̸= 0. Our approach

relies on the uniqueness of factorization property of the ring of multivariate polynomials.

Specifically, we have that
r∏

i=1

gi ̸= −
m∏
j=1

hj

Consequently, wlog there exists an irreducible polynomial (factor) u and ℓ > 0 such that

uℓ divides the LHS but does not divide the RHS. Our goal is to preserve this “situation”

while reducing the number of variables. Clearly, a random projection will be sufficient.

However, we wish to obtain a deterministic algorithm. To this end, we are looking for a

projection that does not introduce new dependencies between factors. That is, for every

i, j: if v | gi and u | hj satisfying gcd(u, v) = 1 we need to ensure that gcd(u′, v′) = 1,

when u′ and v′ are the projections of u and v, respectively. The main tool for that is the

Resultant. Indeed, one of the fundamental properties of the resultant is that

Res(A,B) ̸≡ 0 if and only if gcd(A,B) = 1.

In the multivariate setting, this condition roughly translates into:

[∀xk : Resxk
(u, v) ̸≡ 0] =⇒ gcd(u′, v′) = 1.
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In other words, we need to hit all the resultants of the form Resxk
(u, v) when v | gi and

u | hj . By definition, Resxk
(u, v) is a determinant of 2d× 2d matrix where each entry is a

coefficient of u or v. Hence, Resxk
(u, v) is tO(d)-sparse polynomial with individual degree

at most O(d2), where t is an upper bound on the sparsities of u and v. Consequently, we

can use a hitting set generator for sparse polynomials (e.g. [KS01]) to hit the resultant. As

u and v are factors of s-sparse polynomials of individual degree d, the best upper bound

by [BSV20] will be t = sO(d2 log s). This will result in a quasi-polynomial-time algorithm.

Another idea would be to use the multiplicative properties of the resultant and hit

Resxk
(hj , gi) instead. Indeed, Resxk

(hj , gi) ̸≡ 0 =⇒ Resxk
(u, v) ̸≡ 0 and since gi and hj

are s-sparse, Resxk
(hj , gi) is s

O(d)-sparse and this would get a polynomial-time algorithm.

The main issue is that we could have Resxk
(u, v) ̸≡ 0 while Resxk

(hj , gi) ≡ 0. For example,

if hj = uf and gi = vf for the same polynomial f . Going back, one may ask whether

we could show a better sparsity bound on Resxk
(u, v). While we do not quite do that,

we instead show that Resxk
(u, v) is a factor of some sO(d)-sparse polynomial of individual

degree at most O(d2). As the ring of polynomials forms an integral domain, this allows

us to use a polynomial-size hitting set generator for sparse polynomials.

To achieve the above goal, suppose for simplicity that gi = ua1 · vb1 and hj = ua2 · vb2 ,

for some non-negative integers a1, b1, a2, b2. If all these numbers are strictly positive,

we run into the same issue we have encountered earlier. That is, Resxk
(u, v) ̸≡ 0 while

Resxk
(hj , gi) ≡ 0. To address that, we apply Theorem 7.2.1 (our structural result) which

allows us to “extract” the gcd. For example, if gi = uv2 and hj = u2v, we can write

gi = v ·uv and hj = u ·uv and obtain that Resxk
(u, v) is a factor of Sxk

(degxk
(uv), gi, hj),

which is an sO(d)-sparse polynomial (see Observation 6.3.9). However, a sole gcd extraction

may be insufficient. Consider the case when gi = uv2 and hj = uv. Repeating the same

argument will just yield a trivial statement that Resxk
(v, 1) = 1 is a factor of a sparse

polynomial. To overcome this difficulty, we apply the previous argument on powers of

gi and hj . That is, on gzi = uza1 · vzb1 and htj = uta2 · vtb2 . The idea now would be

to isolate the powers of u from the powers of v. Within the same example, consider

g2i = u2v4 = v · u2v3 and h3j = u3v3 = u · u2v3. Now, by Theorem 7.2.1, Resxk
(u, v)
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is a factor of Sxk
(degxk

(u2v3), g2i , h
3
j ). More generally, we show how to find appropriate

“small” z and t using linear algebra.

Unfortunately, though, this could be made possible only when hj and gi satisfy certain

“non-degeneracy” condition w.r.t u and v. More formally, when the matrix E :=

a1 a2

b1 b2


has full rank (see Lemma 7.3.6). Our final crucial observation is that we can actually ignore

“degenerate” pairs u, v. To this end, we prove a technical lemma (Lemma 7.3.2) which

could be of independent interest.

7.2 Structure Theorem

In this section, we prove our main technical result which links the gcd of two polynomials,

their subresultant and the resultant of their coprime parts. It could be of interest in its

own right.

Theorem 7.2.1. Let A(x), B(x) ∈ R[x] be two polynomials over an arbitrary UFD R.

Suppose A(x) = f(x) · g(x) and B(x) = h(x) · g(x) with degx(A) = m, degx(B) = n,

degx(g) = d, degx(f) = m′ = m− d and degx(h) = n′ = n− d. Then

Sx(d,A,B) = g · Resx(f, h) · lcx(g)m
′+n′−1

Proof. Let K be the field of fractions of UFD R. Consider Euclidean division of A by B

in K[x] so that we get A(x) = Q(x) ·B(x) +R(x), for some polynomials Q,R ∈ K[x] such

that degx(R) < degx(B). Note that since g divides both A and B, it must also divide R.

Therefore, R = g · p for some polynomial p(x) ∈ K[x]. Thus, we also get

f(x) = Q(x) · h(x) + p(x) (7.1)

Let degx(R) = k for some k < n and let degx(p) = k′ = k−d. Now, we prove the theorem

by induction on degx(p).
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Base case: degx(p) = k′ = 0. In other words, degx(R) = k = d. Thus using second case

of Lemma 6.3.8, we get that:

Sx(d,A,B) = (−1)(m−d)(n−d) · bm−k · rn−k−1 ·R

= (−1)m′.n′ · lcx(h)m−k · lcx(g)m−k · lcx(p)n−k−1 · lcx(g)n−k−1 · pg

= (−1)m′.n′ · g · lcx(h)m−k · lcx(p)n−k · lcx(g)m+n−2k−1

Sx(d,A,B) = (−1)m′.n′ · g · lcx(h)m−k · lcx(p)n−k · lcx(g)m
′+n′−1 (7.2)

The second last step above follows because p = lcx(p) when degx(p) = 0. Now, we

shall compute Resx(f, h). Note that Resx(f, h) = Sx(0, f, h) by definition of subresultant.

Considering (7.1) with degx(p) = 0, we can use second case of Lemma 6.3.8 to get:

Sx(0, f, h) = (−1)(degx(f)−0).(degx(h)−0) · lcx(h)degx(f)−degx(p) · lcx(p)degx(h)−degx(p)−1 · p

= (−1)m′.n′ · lcx(h)m
′ · lcx(p)n

′−1 · p [as degx(p) = 0]

= (−1)m′.n′ · lcx(h)m
′ · lcx(p)n

′
[as p = lcx(p)]

Resx(f, h) = (−1)m′.n′ · lcx(h)m−k · lcx(p)n−k (7.3)

(7.2) and (7.3) together yield Sx(d,A,B) = g ·Resx(f, h) · lcx(g)m
′+n′−1 for the base case.

Induction step: Now, we assume degx(p) = k′ > 1. In other words, degx(R) = k > d.

Therefore, by first case of Lemma 6.3.8:

Sx(d,A,B) = (−1)(m−d)(n−d) · bm−k · Sx(d,B,R)

= (−1)m′.n′ · lcx(h)m−k · lcx(g)m−k · Sx(d,B,R) (7.4)

Now consider Euclidean division of B by R in K[x] to get

B(x) = Q′(x) ·R(x) +R′(x) (7.5)

for some polynomial R′(x) ∈ K[x] with degx(R
′) < degx(R). Since g divides both B and

R, we deduce that g must also divide R′. Let R′ = g · p′ for some polynomial p′ ∈ K[x].
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Thus from (7.5), we also get

h(x) = Q′(x) · p(x) + p′(x) (7.6)

In (7.5) since degx(R
′) < degx(R) or equivalently degx(p

′) < degx(p), we can use induction

hypothesis to deduce that,

Sx(d,B,R) = g · Resx(h, p) · lcx(g)n
′+k′−1 (7.7)

Note that degx(p) = k′ > 0 in induction step, thus we can use first case of Lemma 6.3.8

on (7.1) to get

Resx(f, h) = Sx(0, f, h)

= (−1)(degx(f)−0)(degx(h)−0) · lcx(h)degx(f)−degx(p) · Sx(0, h, p)

= (−1)m′.n′ · lcx(h)m
′−k′ · Resx(h, p)

Resx(h, p) =
Resx(f, h)

(−1)m′.n′ · lcx(h)m′−k′
. (7.8)

Substituting (7.8) in (7.7), we get:

Sx(d,B,R) = g · Resx(f, h)

(−1)m′.n′ · lcx(h)m′−k′
· lcx(g)n

′+k′−1 (7.9)

Substituting (7.9) back into (7.4), we get

Sx(d,A,B) = (−1)m′.n′ · lcx(h)m−k · lcx(g)m−k · g · Resx(f, h)

(−1)m′.n′ · lcx(h)m′−k′
· lcx(g)n

′+k′−1

= lcx(g)
m−k · g · Resx(f, h) · lcx(g)n

′+k′−1 [as m− k = m′ − k′]

= g · Resx(f, h) · lcx(g)m−k+n′+k′−1

= g · Resx(f, h) · lcx(g)m
′+n′−1 [as m− k + k′ = m− d = m′]

This completes the proof of induction step, as well as that of the theorem.
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7.3 PIT for Σ[2]ΠΣΠ[ind-deg d] Circuits

In this section we prove our main result in Theorem 7.3.9. We refer the reader to Sec-

tion 1.1 for the formal definition of an algebraic circuit and PIT algorithm. Also, recall

the definition of hitting set generator in Definition 6.2.2.

7.3.1 The Σ[k]ΠΣΠ[ind-deg d] Model

A size s, depth-4 ΣΠΣΠ circuit computes a polynomial of the form f =
∑k

i=1

∏m
j=1 fij ,

where fij are s-sparse polynomials for each i ∈ [k], j ∈ [m]. For s = poly(n), [LST22] gives

the first deterministic sub-exponential time PIT for constant-depth (depth-4 also) which

runs in (sn)O(nµ)-time, where µ > 0 is any real number. While a polynomial-time PIT

algorithm for general depth-4 circuit continues to be elusive, various restricted versions of

this model have been attacked. One such restriction is to make the top fan-in k constant.

For k = 2, even white-box PIT for Σ[2]ΠΣΠ circuits is still open. A more restricted model

is the class of Σ[k]ΠΣΠ[d] circuits, where the top fan-in k and the bottom fan-in d are

constants. For a size-s circuit of this class, fij ’s are s-sparse polynomials of constant total

degree at most d. Even this restricted model seems to be quite non-trivial. Only very

recently, [DDS21] gave a quasi-polynomial-time black-box PIT algorithm for this model.

For k = 3 and d = 2 (fij ’s are quadratic polynomials), [PS21] give a polynomial-time

black-box PIT algorithm. For k = 3 and d > 2, coming up with a polynomial PIT

algorithm remains an open question.

We now introduce, what we call the Σ[k]ΠΣΠ[ind-deg d] model. In the Σ[k]ΠΣΠ[d] model,

the sparse polynomials fij ’s have constant total degree ≤ d. We relax this restriction to

fij ’s being constant individual degree ≤ d polynomials in Σ[k]ΠΣΠ[ind-deg d] model. This

is a more general model, since fij ’s can now have much higher total degree, like O(n). In

Section 7.3.3, we give a deterministic polynomial-time black-box PIT algorithm for this

model when k = 2 and d is any constant. We also note that our PIT algorithm works for

any field F, while the works of [PS21, DDS21] do have certain field restrictions.
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7.3.2 Vectors and Interlacing

In this section we will state and prove some useful properties of vectors that will be useful

later. It may also be of independent interest.

Definition 7.3.1 (Interlacing). Let a, b, c, d ∈ R. We say that two pair of points (a, b)

and (c, d) interlace if (a − c)(b − d) < 0. Equivalently, (a − c) and (b − d) have opposite

signs.

Remark: In particular, interlacing implies that at least two of a, b, c, d are non-zero.

The following result relates the interlacing property with linear dependence.

Lemma 7.3.2. Let a,b ∈ Rn
≥0 and c,d ∈ Rm

≥0 such that

(
n∑

i=1
ai,

n∑
i=1

bi

)
interlaces with(

m∑
j=1

cj ,
m∑
j=1

dj

)
. Then there exists i ∈ [n], j ∈ [m] such that the matrix

ai cj

bi dj

 has full

rank.

Proof. Without loss of generality, suppose
n∑

i=1
ai >

m∑
j=1

cj and
n∑

i=1
bi <

m∑
j=1

dj . In particular,

there exists s ∈ [n], t ∈ [m] such that as, dt > 0. Consider the 2× (n+m) matrix,

E :=

a1 · · · an c1 · · · cm

b1 · · · bn d1 · · · dm

 .

Suppose E is not full-rank. Since a and d are non-zero vectors, E is not the zero matrix

and hence it must have rank 1. In that case, the first row is linearly dependent on the

second row. Since all E’s entries are non-negative, there exist α, β > 0 such that α·a = β ·b

and α · c = β · d. This implies:

α ·

(
n∑

i=1

ai

)
= β ·

(
n∑

i=1

bi

)
, α ·

 m∑
j=1

cj

 = β ·

 m∑
j=1

dj

 .

Which in turn implies:

β ·

(
n∑

i=1

bi

)
= α ·

(
n∑

i=1

ai

)
> α ·

 m∑
j=1

cj

 = β ·

 m∑
j=1

dj

 =⇒
n∑

i=1

bi >

m∑
j=1

dj

This contradicts the interlacing property. Hence, E must be full-rank. Let E′ be a
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2 × 2 rank-2 minor of E. If E′ is of the form E′ =

ai cj

bi dj

 for some i, j we are done.

Otherwise, suppose if E′ is of the form E′ =

ai aj

bi bj

 or E′ =

ci cj

di dj

 then by the

exchange property, we can exchange one of the columns in E′ with non-zero columns

ct
dt


or

as
bs

, respectively, to get a rank-2 minor of the required form.

7.3.3 The PIT Algorithm

For a polynomial f and an irreducible polynomial u, let eu(f) denote the highest power

of u in f . In other words, f = ueu(f) · g, such that u ̸ | g. If u ̸ | f , then eu(f) = 0. We

define a polynomial Φ with respect to two non-zero polynomials P,Q as follows:

Definition 7.3.3. Let P,Q ∈ F[x1, . . . , xn] be two non-zero polynomials. Define a non-

zero polynomial ΦP,Q ∈ F[x1, . . . , xn] as:

ΦP,Q :=
∏

u,v | PQ
i∈[n]

Resxi(u, v) ·
∏
i∈[n]

lcxi(P ) ·
∏
i∈[n]

lcxi(Q),

where u, v are irreducible factors of P or Q such that (eu(P ), ev(P )) interlaces with

(eu(Q), ev(Q)). Moreover, we only consider non-zero multiplicands.

The next Lemma shows that a non-zero of Φ preserves non-similarity of polynomials.

Lemma 7.3.4. Let P,Q ∈ F[x1, x2, . . . , xn] be two polynomials such that P ≁ Q and let

a ∈ Fn such that ΦP,Q(a) ̸= 0. Then, there exists an i ∈ [n] such that P (xi,a−i) ≁

Q(xi,a−i).

Proof. By our premise, we have P ≁ Q. By uniqueness of factorization, without loss of

generality, there exists an irreducible factor u of P , appearing with higher power in P

than in Q. That is, eu(P ) > eu(Q). Let k = eu(P ) and ℓ = eu(Q). We have k > ℓ ≥ 0.

We get ℓ = 0, when u does not divide Q. Let P = uk · G and Q = uℓ · H, for some
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polynomials G,H such that u does not divide either of them. Define set T := {v |

v is an irreducible factor of H and ev(P ) ≥ ev(Q)}. Then let

P = uk ·

(∏
v∈T

vev(P )

)
·G′

Q = uℓ ·

(∏
v∈T

vev(Q)

)
·H ′,

where G′, H ′ are the product of remaining polynomials from G and H respectively.

We choose i to be any element in var(u), i.e. u depends on xi. Note that lcxi(P ) ̸≡ 0,

since u is a factor of P which depends on xi. Since lc is multiplicative, we get that

lcxi(P (xi,a−i)) = lcxi(u(xi,a−i))
k · lcxi(G(xi,a−i)). From our premise, we also know that

ΦP,Q(a) ̸= 0. Then by the definition of ΦP,Q, we get that lcxi(P (xi,a−i)) ̸= 0, which

implies that lcxi(u(xi,a−i)) ̸= 0. Together with the fact that u has xi-degree at least

one, we conclude that u(xi,a−i) also has xi-degree at least one. Suppose for the sake of

contradiction that P (xi,a−i) ∼ Q(xi,a−i). Then, we get

u(xi,a−i)
k ·

(∏
v∈T

vev(P )(xi,a−i)

)
·G′(xi,a−i) ∼ u(xi,a−i)

ℓ ·

(∏
v∈T

vev(Q)(xi,a−i)

)
·H ′(xi,a−i)

=⇒ u(xi,a−i)
k−ℓ ·

(∏
v∈T

vev(P )−ev(Q)(xi,a−i)

)
·G′(xi,a−i) ∼ H ′(xi,a−i).

Since k > ℓ and ∀v ∈ T : ev(P ) ≥ ev(Q), LHS is a proper polynomial in the above equation.

Moreover, u(xi,a−i) divides LHS. Now since LHS ∼ H ′(xi,a−i) and u(xi,a−i) depends

on xi, we deduce that H ′(xi,a−i) also depends on xi. By uniqueness of factorization, we

also deduce that u(xi,a−i) divides H
′(xi,a−i).

Let H ′ = ve11 · . . . ·vemm be the irreducible factorization of H ′, for some m ≥ 1 and ej ≥ 1

for all j ∈ [m], where each vj is irreducible. Here ej = evj (Q) for each j ∈ [m]. Then

H ′(xi,a−i) = v1(xi,a−i)
e1 · . . . · vm(xi,a−i)

em , where vj(xi,a−i)’s may not be irreducible

anymore due to substitution. Recall that u does not divide H and hence it does not

divide H ′ either. Since u is irreducible, we get that gcdxi
(u, vj) = 1, for all j ∈ [m]. At

the same time, recall that u(xi,a−i) divides H
′(xi,a−i). Since H ′(xi,a−i) depends on xi,

this implies that u(xi,a−i) shares a non-trivial factor with some vj(xi,a−i) which depends
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on xi. Thus, there exists some j ∈ [m] such that gcdxi
(u(xi,a−i), vj(xi,a−i)) ̸= 1. By

definition of H ′, vj /∈ T and hence evj (P ) < evj (Q) = ej for all j ∈ [m]. Recall that

eu(P ) = k > ℓ = eu(Q). Hence (eu(P ), evj (P )) interlaces with (eu(Q), evj (Q)). By our

premise, ΦP,Q(a) ̸= 0. Then by the definition of ΦP,Q, we get that Resxi(u, vj)(a−i) ̸= 0.

By further applying Corollary 6.3.4, we deduce that gcdxi
(u(xi,a−i), vj(xi,a−i)) = 1,

which gives us a contradiction. Hence, P (xi,a−i) ≁ Q(xi,a−i).

The following is a technical lemma that will be used subsequently.

Lemma 7.3.5. Let u, v ∈ F[x1, x2, . . . , xn] be two coprime and irreducible polynomials

such that var(u)∩var(v) is non-empty. And suppose we have two polynomials g = ua1 ·vb1

and h = ua2 · vb2, for some non-negative integers a1, b1, a2, b2. Define z := a2 + b2 and

t := a1 + b1. For any i ∈ var(u) ∩ var(v), let W := gcdxi
(gz, ht). Finally, let E be the

following matrix:

E :=

a1 a2

b1 b2

 .

Then

gz

W
=


udet(E) if det(E) ≥ 0

v− det(E) otherwise.

ht

W
=


vdet(E) if det(E) ≥ 0

u− det(E) otherwise.

Proof. We have that:

gz = (ua1 · vb1)z = ua1a2+a1b2 · va2b1+b1b2

ht = (ua2 · vb2)t = ua1a2+a2b1 · va1b2+b1b2

If det(E) ≥ 0, then a1b2 ≥ a2b1 and consequently W = ua1a2+a2b1 ·va2b1+b1b2 . In that case,

gz/W = ua1b2−a2b1 = udet(E) and ht/W = va1b2−a2b1 = vdet(E). Otherwise, if det(E) < 0,

then a2b1 > a1b2 and consequently W = ua1a2+a1b2 ·va1b2+b1b2 . Then gz/W = va2b1−a1b2 =

v− det(E) and ht/W = ua2b1−a1b2 = u− det(E).

We now show that under certain non-degeneracy condition, a resultant of two factors of

sparse polynomials is itself a factor of a (somewhat) sparse polynomial.
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Lemma 7.3.6. Let u ≁ v ∈ F[x1, x2, . . . , xn] be two irreducible polynomials. Suppose there

exist s-sparse, individual degree-d polynomials g, h ∈ F[x1, x2, . . . , xn] such that the matrix

E :=

eu(g) eu(h)

ev(g) ev(h)


has full rank. Then for any i ∈ [n] : Resxi(u, v) is a factor of a non-zero (sd)O(d3)-sparse,

O(d4)-individual degree polynomial.

Proof. Consider any i ̸∈ var(u) ∪ var(v). Then Resxi(u, v) is defined to be 1, which is

trivially a factor of any sparse polynomial. Now consider any i ∈ var(u) \ var(v). Then by

definition, Resxi(u, v) = vdegxi (u). Note that both ev(g) and ev(h) cannot be zero, as E

has full rank. Therefore, v is factor of g or h, which are both s-sparse. Similarly, u is also

a factor of g or h which implies degxi
(u) ≤ d. We deduce that Resxi(u, v) is a factor of an

sd-sparse polynomial. Similarly, we get the same conclusion for any i ∈ var(v) \ var(u).

We are now left with i ∈ var(u) ∩ var(v), for which we shall prove below.

Let us write g = ueu(g) · vev(g) · A and h = ueu(h) · vev(h) · B, for some polynomials

A,B ∈ F[x1, x2, . . . , xn] co-prime to both u and v. Let g′ = ueu(g) · vev(g) and h′ =

ueu(h) · vev(h). Further, let z = eu(h) + ev(h) and t = eu(g) + ev(g). Consider polynomials

gz = (g′)z · Az and ht = (h′)t · Bt. Since both g, h have individual degree d, we know

that eu(g), ev(g), eu(h), ev(h) ≤ d and hence s, t ≤ 2d. Pick any i ∈ var(u) ∩ var(v) and

consider gcdxi
(gz, ht). Define W := gcdxi

((g′)z, (h′)t) and Y := gcdxi
(Az, Bt). Since g′, h′

are co-prime to both A and B, we deduce that

gcdxi
(gz, ht) = W · Y.

By our premise, we have det(E) ̸= 0. Without loss of generality, let us assume det(E) > 0.

The other case follows similarly. Using Lemma 7.3.5, we get that (g′)z/W = udet(E) and

(h′)t/W = vdet(E). Therefore, we can write

gz = W · Y · udet(E) · A
z

Y
,

ht = W · Y · vdet(E) · B
t

Y
.
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Note thatAz/Y andBt/Y are proper polynomials by definition of Y . Let ℓ = degxi
(gcd(gz, ht)).

By Theorem 7.2.1, there exists k ≥ 0 such that:

Sxi(ℓ, g
z, ht) = W · Y · Resxi

(
udet(E) · A

z

Y
, vdet(E) · B

t

Y

)
· lcxi(W · Y )k.

Since both gz and ht are s2d-sparse with individual degree at most 2d2, by Observa-

tion 6.3.9, Sxi(ℓ, g
z, ht) is (sd)O(d3)-sparse with individual degree at most 8d4. Further-

more, observe that by definition:

gcdxi

(
udet(E) · A

z

Y
, vdet(E) · B

t

Y

)
= 1 =⇒ Resxi

(
udet(E) · A

z

Y
, vdet(E) · B

t

Y

)
̸≡ 0

=⇒ Sxi(ℓ, g
z, ht) ̸≡ 0.

Finally, since det(E) is a positive integer, we use Lemma 6.3.5 to deduce that

Resxi(u, v) | Resxi

(
udet(E) · A

z

Y
, vdet(E) · B

t

Y

)
.

Hence, we conclude that Resxi(u, v) is a factor of a non-zero (sd)O(d3)-sparse sub-resultant

polynomial.

Using the above, we conclude that while the multiplicands in the polynomial ΦP,Q may

not themselves be sparse, they are factors of (some) sparse polynomials. Consequently,

ΦP,Q can be hit by a hitting set generator for sparse polynomials.

Lemma 7.3.7. Let both P,Q ∈ F[x1, x2, . . . , xn] be products of s-sparse, individual degree-

d polynomials and let G be a generator for (sd)O(d3)-sparse, O(d4)-individual degree poly-

nomials. Then ΦP,Q(G) ̸≡ 0.

Proof. Let P =
∏

j∈[r] gj and Q =
∏

k∈[m] hk, where gj , hk are s-sparse polynomials of indi-

vidual degree d, for all j ∈ [r], k ∈ [m]. By definition, ΦP,Q has two types of multiplicands.

We will show that G hits both types.

For the first type, let u, v be any irreducible factors of P or Q such that (eu(P ), ev(P ))

interlaces with (eu(Q), ev(Q)). We wish to show that Resxi(u, v) ̸≡ 0 =⇒ Resxi(u, v)(G) ̸≡
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0. Observe that,

eu(P ) =
r∑

j=1

eu(gj) eu(Q) =
m∑
k=1

eu(hk)

ev(P ) =
r∑

j=1

ev(gj) ev(Q) =
m∑
k=1

ev(hk).

By definition, each of these e-values is a non-negative integer. Therefore by Lemma 7.3.2,

there exists j ∈ [r], k ∈ [m] such that E :=

eu(gj) eu(hk)

ev(gj) ev(hk)

 has full rank. Then by

Lemma 7.3.6, for any i ∈ [n] : Resxi(u, v) is factor of some (sd)O(d3)-sparse, O(d4)-

individual degree polynomial. Since, G is a generator for such polynomials, we deduce

that Resxi(u, v)(G) ̸≡ 0.

For the second type, by multiplicative property of lc, we know that for any i ∈ [n],

lcxi(P ) =
∏
j∈[r]

lcxi(gj) and lcxi(P )(G) =
∏
j∈[r]

lcxi(gj)(G).

Note that lcxi(gj) is also s-sparse with individual degree d. Hence, lcxi(gj)(G) ̸≡ 0, for

all j ∈ [r], i ∈ [n]. This implies lcxi(P )(G) ̸≡ 0, for all i ∈ [n] (whenever lcxi(P ) ̸≡ 0).

Similarly, we can show lcxi(Q)(G) ̸≡ 0, for all i ∈ [n]. We conclude that ΦP,Q(G) ̸≡ 0.

For a generator G = (G1, . . . ,Gn), we define G−i := (G1, . . . ,Gi−1,Gi+1, . . . ,Gn). For a

polynomial f ∈ F[x1, x2, . . . , xn], we define f(xi,G−i) := f(G1, . . . ,Gi−1, xi,Gi+1, . . . ,Gn).

By combining the result with Lemma 7.3.4 we obtain the following:

Corollary 7.3.8. Let P,Q ∈ F[x1, x2, . . . , xn] be products of s-sparse, individual degree-

d polynomials such that P ≁ Q. Let G = (G1, . . . ,Gn) : Ft → Fn be a generator for

(sd)O(d3)-sparse, O(d4)-individual degree polynomials. Then there exists an i ∈ [n] such

that P (xi,G−i) ≁ Q(xi,G−i).

Proof. By Lemma 7.3.7, we get that ΦP,Q(G) ̸≡ 0. From Lemma 6.2.3, we know that

there exists a set W ⊆ F of large enough size such that G(W t) ⊆ Fn is a hitting set for

ΦP,Q. In particular, there exists b ∈ W t such that for a := G(b), we have ΦP,Q(a) ̸= 0.
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By Lemma 7.3.4, there exists an i ∈ [n] such that P (xi,a−i) ≁ Q(xi,a−i). Now suppose

P (xi,G−i) ∼ Q(xi,G−i). Then have that

P
(
G1(b), . . . ,Gi−1(b), xi,Gi+1(b), . . . ,Gn(b)

)
∼ Q

(
G1(b), . . . ,Gi−1(b), xi,Gi+1(b), . . . ,Gn(b)

)
.

This implies that P (xi,a−i) ∼ Q(xi,a−i), which is a contradiction. Hence, P (xi,G−i) ≁

Q(xi,G−i).

Finally, we can prove the main result of the section.

Theorem 7.3.9. There exists a deterministic algorithm that given n, d, s and a black-box

access to a Σ[2]ΠΣΠ[ind-deg d] circuit of size s determines if C ≡ 0, in time poly((sd)d
3
, n).

Algorithm 3 provides the outline.

Algorithm 3: Black-box PIT algorithm for class Σ[2]ΠΣΠ[ind-deg d]

Input: A black-box access to a polynomial f(x1, . . . , xn) computed by

Σ[2]ΠΣΠ[ind-deg d] circuit

Output: “ZERO”, if f is identically zero and “NON-ZERO”, otherwise.

1 Call Lemma 6.2.10 to get generator G of seed-length 1 for n-variate polynomials

of sparsity ≤ (sd)O(d3) and individual degree ≤ O(d4).

2 for i← 1 to n do

3 Compute the bivariate polynomial f(xi,G−i).

4 Call Lemma 6.2.1 to do brute-force black-box PIT for f(xi,G−i).

5 if f(xi,G−i) ̸≡ 0 then return “NON-ZERO”.

6 end

7 return “ZERO”.

Proof. We now analyze the correctness and runtime complexity of Algorithm 3.

Correctness: Note that f ≡ 0 =⇒ f(xi,G−i) ≡ 0 trivially, for all i ∈ [n]. Thus, the

algorithm outputs “ZERO” in this case, as desired. Now suppose f ̸≡ 0. Let f = P +Q,

where both P,Q are product of s-sparse, individual degree d polynomials. If P ≁ Q,

then Corollary 7.3.8 implies that there exists an i ∈ [n] such that P (xi,G−i) ≁ Q(xi,G−i).
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In particular, P (xi,G−i) ̸= −Q(xi,G−i). Since f(xi,G−i) = P (xi,G−i) + Q(xi,G−i), we

deduce that f(xi,G−i) ̸≡ 0 in this case. Now suppose f ̸≡ 0 but P ∼ Q. Let P = cQ,

for some c ∈ F. Then f = (c + 1)Q, where c ̸= −1 and Q ̸≡ 0. This means that there

exists an i ∈ [n] such that lcxi(Q) ̸≡ 0. Using Lemma 7.3.7, we know that ΦP,Q(G) ̸≡ 0

and thus by definition of ΦP,Q, we get lcxi(Q)(G) ̸≡ 0. This implies that Q(xi,G−i) ̸≡ 0.

We conclude that f(xi,G−i) = (c+1)Q(xi,G−i) ̸≡ 0. Thus whenever f ̸≡ 0, the algorithm

outputs “NON-ZERO”.

Time complexity: By Lemma 6.2.10, degree of generator G is poly((sd)d
3
, n). Note that

f has individual degree at most sd and thus f(xi,G−i) has individual degree ≤ sd.deg(G).

Then by Lemma 6.2.1, testing non-zeroness of the bivariate polynomial f(xi,G−i) takes

only poly((sd)d
3
, n) time. The n iterations only add a factor of n.

7.4 Discussion

We introduced a new model for PIT in this chapter, called the Σ[k]ΠΣΠ[ind-deg d] circuits.

This is a generalization of the Σ[k]ΠΣΠ[δ] model studied in [DDS21]. Instead of sparse,

constant total-degree δ polynomials in the bottom ΣΠ, this model has sparse, constant

individual-degree d polynomials in the bottom ΣΠ.

In this chapter, we solved this new model for k = 2 and any constant d. For k = 2,

the question of PIT reduces to testing whether a product of sparse, constant individual

degree polynomials equals another such product. Here uniqueness of factorization can be

exploited. We don’t need to preserve the exact factorization pattern of these two products,

but it suffices to preserve just the co-primality of the distinct irreducible factors in these

products (under a variable reduction map). Towards that end, the broad idea here is

to construct a generator which hits all the appropriate resultants. The main problem in

this approach is that these irreducible factors may not be polynomially sparse. Factors of

sparse polynomials are not known to be polynomially sparse, unless one proves the sparsity

conjecture (Conjecture 1.2.3). However, in this chapter we use the problem against itself!

We don’t show that each resultant is sparse, but we show that it is a factor of some another

Pranav Bisht
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sparse polynomial (the subresultant). Thus, we are able to hit the resultants indirectly,

which gives us a poly-time blackbox PIT for Σ[2]ΠΣΠ[ind-deg d] circuits.

For k = 3, we have three products which is a more complex scenario and seems to

require new ideas. We leave it as an open problem to design a poly-time PIT algorithm

for Σ[k]ΠΣΠ[ind-deg d] circuits with bounded k and d, for any k ≥ 3. To the best of our

knowledge, even whitebox PIT for k = 3 and d = 1 is open!

Pranav Bisht





Chapter 8

PIT for sum of ROABPs and its

Border Class

The main model of computation for PIT in this chapter will be sum of ROABPs. Recall the

definition of ROABPs and sum of ROABPs from Chapter 6. For a single ROABP, we have

a well known poly-time PIT algorithm in the whitebox setting [RS05]. However, in the

blackbox regime, we only have quasi-polynomial time PIT algorithms [FS13b, AGKS15]

and no known poly-time algorithms. Therefore, various restrictions of ROABPs are stud-

ied. There are three size parameters for an ROABP: width, number of variables, degree.

[GKS17] developed a poly-time graybox (known variable order) PIT for constant width

ROABPs. The blackbox setting here is still open. One can also restrict the number of

variables to O(log s), where s is the overall size of ROABP. Lemma 6.4.5 shows that PIT

for log-variate ROABP subsumes PIT for
∑∧∑

circuits. However, even this PIT is still

open. In this chapter, for few results we shall restrict both width and number of variables,

however we will work for the more general model of sum of ROABPs.

The sum of ROABPs model was first studied by [GKST17]. For a constant number

of ROABPs, they give the first poly-time whitebox, and only a quasi-poly time blackbox

PIT algorithm. In this chapter we prove the following main PIT result.

Blackbox Polynomial Identity Testing for sum of constantly-many, log-variate

109
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constant-width ROABPs is in polynomial time.

This is formally stated in Corollary 8.3.8. In addition, with just a single restriction of log-

variate, we still get an improvement over [GKST17] in Corollary 8.3.9. More generally,

we also give efficient PIT for the border version. In subsequent works, the combined

restrictions on width and degree have also been studied for the orbit of ROABPs [ST21a,

BG21].

All the results in this chapter hold for any field F. Moreover, all our PIT algorithms

here are completely blackbox and assume no knowledge about the variable order of an

ROABP.

8.1 Previous works and motivation

In this section, we will discuss the major motivations behind this work by showing con-

nections of ROABP with other algebraic models of computation. We refer the reader to

Chapter 6 for formal definitions of these models.

ABPs: It is well known that ABPs subsume determinants and formulas. In turn, alge-

braic formulas subsume constant depth circuits (see [BOC92] and [Nis91, Lem. 1]). The

combined restrictions on variables and width still gives interesting sub-models for ABPs.

For example [AGS19, Thm.22] show that even solving PIT for log-variate width-2 ABPs

will almost solve the complete PIT problem. The ROABP model is also quite nontrivial

as a poly-time blackbox PIT is still open. Table 8.1 gives a comprehensive comparison

between the time complexities of previous works on ROABP model and this work. In the

table, algorithms of [FS13b] and [GKS17] work only for known variable orders. More-

over, the PIT of [GKS17] works only for fields of characteristic either zero or larger than

ndrlogn. The work of [FSS14] gives quasi-poly time PIT under the restriction of multilin-

earity or constant individual degree. We only mention our border algorithms in Table 8.1.

Naturally, we also solve PIT for the base class of sum of c ROABPs.
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Model Setting Time Reference∑∧∑
Blackbox (nd)O(logn) [ASS13]∑∧∑
Blackbox poly(d, 2n) [FGS18]

ROABP Graybox (ndr)O(logn) [FS13b]

ROABP Blackbox nO(d log r logn) [FSS14]

ROABP Blackbox (ndr)O(logn) [AGKS15]
ROABP Graybox O(ndrlogn) [GKS17]

Sum of c ROABPs Blackbox (ndr)O(c2c log(ndr)) [GKST17]

Border of sum of c ROABPs Blackbox (2n(nd)lognr3
c logn)O(c) This work

Border of sum of c ROABPs Blackbox poly(dc, rnc3
c
) This work

Table 8.1: Time complexities of different PIT algorithms related to n-variate, degree d
and width r ROABP model.

Log-variate: There has been a recent line of work on ‘Bootstrapping variables’ in al-

gebraic circuits. [AGS19] prove that solving blackbox PIT for circuits that depend only

on the first log◦c s variables is sufficient to solve blackbox PIT for general circuits. Here

c is a constant and log◦c is a composition of c logarithms. [KST19] and [GKSS19] fur-

ther showed that even saving on one evaluation point from the brute-force hitting-set

of constant-variate algebraic circuits would solve general PIT. Although such bootstrap-

ping results are not known for ROABPs, nonetheless log-variate ROABP is still an open

interesting model for the reasons discussed below.

The well studied diagonal depth-3 model
(∑∧∑)

is one of the lower hanging fruits

in PIT. [FGS18] were able to utilize low-variate setting to give the first poly-time blackbox

PIT for log-variate diagonal depth-3 circuits. The natural extension is to solve blackbox

PIT for log-variate ROABPs. In fact, it can be shown that PIT for log-variate commutative

ROABPs implies PIT for the general multivariate diagonal depth-3 model using the results

of [FS13a, FSS14]. See Lemma 6.4.5 for details. Making progress in this direction has

been the key motivation behind the tools and techniques developed in this work.

Constant width: The sum of constant-width ROABPs model is more expressive than

that of a single constant-width ROABP. [KNS16] observed that even a sum of two width-

3 ROABPs cannot be computed by a single constant-width ROABP which is stated as

Fact 8.1.1 here. Thus, this model is nontrivial and blackbox PIT for it is still open. Even

in the log-variate setting, sum of two width-3 ROABPs will require a single ROABP of
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super-constant width. Thus, sum of constantly many, constant width, log-variate ROABPs

lacked a poly-time blackbox PIT, which we solve in Corollary 8.3.8.

Fact 8.1.1 ([KNS16], Thm. 7). There is an explicit family of 3n-variate multilinear poly-

nomials {gn}n≥1 which is computable by sum of two width-3 ROABPs of size Θ(n), but

any single ROABP computing g must have width 2Ω(n).

PIT for Border: Border of a class can offer additional computational power. [For16]

gives an interesting example. Consider the class of polynomials which are of the form

αℓd1 + βℓd2, where ℓ1, ℓ2 ∈ F[x] are homogeneous linear polynomials. For d ≥ 3, it can be

shown that xd−1y cannot be expressed as αℓd1 + βℓd2. However, x
d−1y can be computed in

the border of this class, as shown below

g :=
1

dϵ

(
(x+ ϵy)d − xd

)
lim
ϵ→0

g = xd−1y

The fundamental problem in border complexity is to understand this difference in

the computational power of a class C and its border class C. Generally, one would like

to understand whether VP = VP, where VP is the class of polynomials with polynomial

sized algebraic circuits. However, this question is open even for more restricted classes like

diagonal depth-3 circuits, depth-3 circuits, ABPs etc. Border classes play an important

role in Mulmuley’s ‘GCT approach’ to attack P ̸= NP conjecture [MS01, MS08], and

in ‘GCT Chasm’ [Mul12b, Mul12a]. In particular, showing VP ̸= VNP is an important

structural question. We refer the reader to [BIZ18] for an excellent discussion on border

complexity.

An interesting question in border complexity is to come up with PIT algorithm for a

border class. Of course to solve PIT for a border class C, we necessarily need to solve PIT

for C. However for those circuit classes where we have an efficient PIT algorithm for C

and it is not known whether C = C, it is an interesting problem to solve PIT for C.

For the algebraic class of ROABPs, one can show that the border does not offer any

additional computation power, that is, ROABP = ROABP (Lemma 6.5.1). However, it is
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not clear if sum of constantly many ROABPs is equal to its border class. See Section 8.4

for a discussion on this. Therefore PIT for the border class of sum of ROABPs is an

interesting problem. We solve it for sum of constantly-many, constant width, log-variate

ROABPs.

8.2 PIT for Degree-preserving sum of ROABPs

In this section, we first give PIT for a single log-variate constant width ROABP (Lemma 8.2.8).

This is a consequence of our main structure theorem that concerns with homogenizing an

ROABP in same width (Theorem 8.2.4). More generally, we get PIT for what we call

a degree-preserving sum of ROABPs, where each ROABP is of constant width and log-

variate (Theorem 8.2.9). We formally define degree-preserving sum below.

Definition 8.2.1 (Degree-preserving sum). For k ∈ N, let f1(x), f2(x) . . . fk(x) be any k

polynomials in F[x1, . . . , xn]. We call
∑k

i=1 fi(x), a degree-preserving sum, if for f(x) :=∑k
i=1 fi(x), we have deg(f) = maxi deg(fi).

In other words, the highest degree term does not cancel in a degree-preserving sum. We

remark that the number of ROABPs in Theorem 8.2.9 is arbitrary and bounded only by

the size of input. This is in contrast with the results in next section and that of [GKST17],

where the number of ROABPs is kept constant due to the double exponential dependence

on it in the runtime. However, there the sum is not restricted to be degree-preserving.

8.2.1 Syntactically Homogeneous ROABP

An ROABP is called syntactically homogeneous, if for any two nodes (u, v) in the ROABP,

as source and sink respectively, the polynomial computed from u ⇝ v is homogeneous.

Clearly, every syntactically homogeneous ROABP is an ROABP computing a homogeneous

polynomial, but every ROABP computing a homogeneous polynomial is not syntactically

homogeneous. This is because some edge label in the ROABP may be inhomogeneous or

some intermediate path may be computing an inhomogeneous polynomial, which cancels

out in the end.
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Throughout this chapter, we work with unknown variable order of ROABP. If the

ROABP computes a polynomial over F[x], we assume an arbitrary variable order (y1, . . . , yn),

where for all i ∈ [n], yi = xπ(i) for some unknown permutation π : [n]→ [n].

Definition 8.2.2 (Syntactic homogeneity). Let f(x) ∈ F[x] be computed by an ROABP

D(x) of width r in the variable order (y1, . . . , yn). Let D(x) =:
∏n

i=1Di(yi), where

D1(y1) ∈ F1×r[y1], Dn(yn) ∈ Fr×1[yn], and Di ∈ Fr×r[yi] for 1 < i < n.

We call ROABP D(x), syntactically homogeneous, if for all 1 ≤ i < n, each entry in

the subproduct row-vector D≤i :=
∏i

j=1Dj ∈ F1×r[y≤i], is a homogeneous polynomial and

so is each entry in the subproduct column-vector D>i :=
∏n

j=i+1Dj ∈ Fr×1[y>i].

Although in this work, we only need Definition 8.2.2, it can be shown that it is equiv-

alent to the informal definition of syntactic homogeneity stated at the start of this sec-

tion. To see this observe that, Definition 8.2.2 clearly follows from homogeneity of the

polynomials [u ⇝ v] computed from u to v, for any two nodes (u, v) in ROABP. For

the other side, let V be the vertex set of the layer which contains u. Then, note that

[s ⇝ v] =
∑

w:w∈V [s ⇝ w] · [w ⇝ v]. By Definition 8.2.2, [s ⇝ v] is homogeneous and so

is each [s ⇝ w]. Also, the set of polynomials {[s ⇝ w] | w ∈ V } is F-linearly indepen-

dent by Nisan’s characterization. Now, apply Lemma 8.2.3 below to get each [w ⇝ v] (in

particular [u⇝ v]) to be homogeneous.

We first prove the following lemma, which we will need in the proof of Theorem 8.2.4.

Lemma 8.2.3. Let y and z be a partition of variable set x. Suppose f ∈ F[x] is a homo-

geneous polynomial of degree d having a variable disjoint decomposition as f =
∑r

i=1 figi,

where for all i ∈ [r], fi ∈ F[y] and gi ∈ F[z]. Suppose f1, . . . , fr are F-linearly indepen-

dent and each fi is also a homogeneous polynomial. Then, for each i ∈ [r], gi is also a

homogeneous polynomial.

Proof. For the sake of contradiction, suppose there exists a gk, for some k ∈ [r], which is

not homogeneous. Let fk be its corresponding polynomial which is homogeneous and has

degree, say dk. Since f is homogeneous of degree d, let gk = g
[d−dk]
k + g

[̸=(d−dk)]
k , where
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g
[d−dk]
k is the degree (d − dk) homogeneous part of gk and g

[̸=(d−dk)]
k is the rest of the

polynomial. We will prove that the latter part has to be zero.

Let za be any monomial in g
[̸=(d−dk)]
k with coefficient, say ck ̸= 0, where degree of

monomial |a|1 ̸= d − dk. The nonzero term fk · ckza in f has to get canceled since it is

of degree dk + |a|1 ̸= d. Observe that this term can get canceled only by product of za

with those fi that have degree dk (simply by variable disjointedness & degree comparison).

For ℓ ≤ r, let fi1 , fi2 , . . . , fiℓ be the polynomials in {f1, . . . , fr} of degree exactly dk. Let

coeff(gi)(z
a) =: ci, for i ∈ [r], where ci can be possibly zero except for ck. Then,

fi1 · (ci1za) + fi2 · (ci2za) + . . .+ fiℓ · (ciℓz
a) = 0

⇒ ci1fi1 + ci2fi2 + . . .+ ciℓfiℓ = 0 .

Since ck ̸= 0, this contradicts F-linear independence of f1, . . . , fr. Thus, g
[̸=(d−dk)]
k is zero.

Hence, ∀k ∈ [r], gk is a homogeneous polynomial of degree d− deg(fk).

If a homogeneous polynomial f is computed by an ROABP of width w, then the optimal

width ROABP for f constructed using Nisan’s characterization (Lemma 6.4.2) has width

r ≤ w. In the following theorem, we prove that it is also syntactically homogeneous.

Theorem 8.2.4 (Structure Theorem). Let f(x) ∈ F[x] be a degree d homogeneous polyno-

mial computed by an ROABP C(x) of width w in the variable order (y1, . . . , yn). Then, f

also has a syntactically homogeneous ROABP D(x) =
∏n

i=1Di(yi) of optimal width r ≤ w

in the same variable order. Moreover, ∀i ∈ [n], each entry in Di(yi) is merely a monomial

in yi.

Proof. If f is computed by a width w ROABP C(x), it will also have an optimal ROABP

D(x) of width r ≤ w constructed using Nisan’s characterization. Here, we follow the

construction as presented in [GKST17, Lem. 2.8]. For all i ∈ [n − 1], we can write f

as f = D≤i · D>i =
∑r

j=1 gj(y≤i)hj(y>i). Fix i. Nisan’s characterization picks the

entries of D≤i to be r F-linearly independent polynomials g1, . . . , gr ∈ F[y≤i] and entries

of D>i to another r F-linearly independent polynomials h1, . . . , hr. Recall definition of

spani(f) in Definition 6.4.1. By construction, for each j ∈ [r], hj =: f(y≤i,ej), where

Pranav Bisht
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{e1, . . . , er} := spani(f). Observe that if f is a homogeneous polynomial, then so is

each coefficient polynomial hj = f(y≤i,ej). Since f is a homogeneous polynomial and

hj ’s are F-linearly independent homogeneous polynomials, this forces each gj to be also

homogeneous, as proved in Lemma 8.2.3. Thus, for all i ∈ [n− 1], each entry in D≤i and

D>i is a homogeneous polynomial.

We now prove the second part of the theorem, that every entry in each intermediate

matrix Di(yi) is a monomial in yi. For D1, consider the partition D = D1 · D>1. By

syntactic homogeneity proved above, each entry of D1 is homogeneous and thus is of

the form y
bj
1 (single monomial), for some bj ≥ 0. Similarly, each entry of Dn is also

homogeneous, when considering the partition D = D≤n−1 ·Dn. For 1 < i < n, consider

D = D<i ·Di ·D>i.

D =

[
f1 f2 · · · fr

]


g11 g12 · · · g1r

g21 g22 · · · g2r
...

...
. . .

...

gr1 gr2 · · · grr





h1

h2
...

hr


(8.1)

Let entries of D<i be f1, . . . , fr ∈ F[y<i]. By syntactic homogeneity of D<i, each fk

for k ∈ [r], is homogeneous. Also, by Nisan’s characterization f1, . . . , fr are F-linearly

independent. Note that each entry of D≤i is inner product of D<i with appropriate column

of r × r matrix Di. Without loss of generality, let us consider the inner product with the

first column whose entries are g11, g21, . . . , gr1 ∈ F[yi]. By syntactic homogeneity of D≤i,

we know that G := f1g11 + f2g21 + . . . + frgr1 is homogeneous. Then, by Lemma 8.2.3

again, for each k ∈ [r], gk1 is also a homogeneous polynomial in yi. Similarly, for every

other column in Di. This shows that each matrix entry gij is homogeneous (& univariate)

and hence it is a monomial.

8.2.2 PIT for single ROABP

As a simple corollary of the structure theorem, we get the following sparsity bound for a

homogeneous polynomial computable by a width r ROABP.
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Lemma 8.2.5 (Sparsity bound). Let f(x) ∈ F[x1, . . . , xn] be a homogeneous polynomial

such that it can be computed by an ROABP of width r. Then, ∥f∥ ≤ rn.

Proof. Let D(x) be the width-r ROABP computing f over the field F. By Theorem 8.2.4,

without loss of generality, we can assume D(x) to be syntactically homogeneous with

width ≤ r. Thus, each edge label in the ROABP D is a univariate monomial. In that

case, each path from source to sink computes only a single monomial. The number of

paths from source to sink is at most rn, as there are n layers and for each layer we have

r choices. Hence the polynomial computes a sum of at most rn monomials.

We extend the above methods to prove another important property below: if a polyno-

mial has ROABP width-r, then so does its lead homogeneous part. For our work, we only

require proof for the highest degree homogeneous component, which we state below but

the same proof works for the lowest degree homogeneous component as well. Let width(f)

denote the minimum width in which f can be computed by an ROABP.

Lemma 8.2.6 (Homogeneous-part width). Let f(x) = f [d] + f [<d] be a polynomial of

degree-d, in F[x1, . . . , xn], where f [d] is the (lead) degree-d homogeneous component of f ,

and f<[d] is rest of the polynomial f . Then, width(f [d]) ≤ width(f), in the same variable

order.

Proof. Let f [d] have an ROABP of width(f [d]) =: k in unknown variable order (y1, . . . , yn).

For any fixed ℓ ∈ [n], consider the partition {y1, . . . , yℓ} ⊔ {yℓ+1, . . . , yn}. Without loss

of generality, there are k coefficient polynomials of f [d] – g1, . . . , gk ∈ F[y>ℓ] – that are

F-linearly independent. For some e1, . . . , ek ∈ {0, 1, . . . , d}ℓ, these are precisely gi =:

(f [d])(y≤ℓ,ei), for each i ∈ [k]. We claim that the k coefficient-operators e1, . . . , ek ∈

{0, 1, . . . , d}ℓ, that worked for f [d], will also work for f .

Formally, the set of polynomials {f(y≤ℓ,e1), . . . , f(y≤ℓ,ek)} will also be F-linearly in-

dependent. This will mean that dimF{A(yℓ,a) | a ∈ {0, 1, . . . , d}ℓ} ≥ k and hence

width(f) ≥ k, by Lemma 6.4.2. We prove the linear independence now. For each i ∈ [k],
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let gi := (f [d])(y≤ℓ,ei) and hi := (f [<d])(y≤ℓ,ei). Then,

f(y≤ℓ,ei) = (f [d])(y≤ℓ,ei) + (f [<d])(y≤ℓ,ei) =: gi + hi .

Here, ∀i ∈ [k], hi is of degree strictly less than that of gi. Observe that the coefficient-

operators (f [d])(y≤ℓ,ei) respect homogeneity. Therefore, ∀i ∈ [k], gi is a nonzero homoge-

neous polynomial of degree di := d − |ei|1. Since g1, . . . , gk are F-linearly independent,

any F-linear combination c1g1 + c2g2 + . . . + ckgk is nonzero, whenever ci ∈ F are not all

zero. Now, we prove our claim that the polynomials g1 + h1, . . . , gk + hk are F-linearly

independent.

Suppose not, then there exist c1, . . . , ck ∈ F not all zero such that

c1(g1 + h1) + . . .+ ck(gk + hk) = 0

c1g1 + . . .+ ckgk = −(c1h1 + . . .+ ckhk) . (8.2)

Let d′ := maxi{deg(gi) | ci ̸= 0}. We show that the LHS in (8.2) is a nonzero

polynomial of degree exactly d′. This is because gi are homogeneous. So, if degree of LHS

is < d′, then all the gi of degree d′ have to cancel among themselves. This cannot happen

since they are linearly independent. Thus, LHS is of degree d′ but RHS in (8.2) is a

polynomial of degree < d′, since deg(hi) < deg(gi) ≤ d′, for each i ∈ [k]. This contradicts

(8.2), thus proving {g1 + h1, . . . , gk + hk} to be F-linearly independent. We conclude that

width(f) ≥ k.

We get a nice structural result as a consequence: the leading homogeneous part of a

polynomial f ∈ F[x1, . . . , xn] computed by an ROABP of width r is at most rn-sparse.

Corollary 8.2.7 (Leading sparsity). Let f ∈ F[x1, . . . , xn] be a degree-d polynomial com-

puted by an ROABP of width-w. Let f [d] be the leading homogeneous component of f .

Then, ∥f [d]∥ ≤ wn.

Proof. Let width(f [d]) := r. Then by Lemma 8.2.6, r ≤ w. Since f [d] is a homogeneous

polynomial, Lemma 8.2.5 implies that ∥f [d]∥ ≤ rn ≤ wn.
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This immediately gives us blackbox PIT for a log-variate constant-width ROABP (pos-

sibly inhomogeneous), as stated below.

Lemma 8.2.8 (Single ROABP). Let P be a set of polynomials, over a field F, computed

by an ROABP of width-r and degree-d in n variables and unknown variable order. Then,

we can design a hitting set generator G : F → Fn for P with deg(G) = poly(d, rn). Thus,

we get a blackbox PIT algorithm for P in poly(d, rn) time.

Proof. Let f ∈ P be of a non-zero polynomial of degree exactly d. Let f [d] be the top

homogeneous part of f , which will also be non-zero. By Corollary 8.2.7, we get ∥f [d]∥ ≤

rn. Thus by Lemma 6.2.11, we get a single-seed HSG G : F → Fn for f such that

f(G) ̸≡ 0 and deg(G) = poly(d, rn). Thus, f(G) is a univariate polynomial with degree at

most poly(d, rn). Evaluating f(G) on deg(f(G)) + 1-many points yields a poly(d, rn) time

blackbox PIT.

8.2.3 PIT for Degree-Preserving Sum

In a similar fashion as above, we also get a blackbox PIT for a degree-preserving sum of

c ROABPs. Recall the definition of degree-preserving sum in Definition 8.2.1.

Theorem 8.2.9 (Degree-preserving sum). Let P be a set of n-variate polynomials com-

puted by a degree-preserving sum of c ROABPs, each of width r and degree d. Then,

blackbox PIT for P can be solved in poly(d, c · rn) time.

Proof. Let f(x) be a degree d polynomial computed by a degree-preserving sum, f(x) =∑c
i=1 fi(x), where for each i ∈ [c], fi(x) is computed by a width r ROABP. For each

i ∈ [c], let di := deg(fi). By Corollary 8.2.7, the top degree homogeneous part of each fi,

f
[di]
i has sparsity at most rn. For a non-zero f of degree d, the (leading) degree-d part of f ,

f [d] ̸= 0. Since the sum is degree-preserving, d = maxi∈[c] di. In other words, there exists

a subset of indices S ⊆ [c] such that for all j ∈ S, dj = d. This yields the homogeneous

sum:

f [d] =
∑
j∈S

f
[d]
j .
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Since |S| ≤ c, f [d] is non-zero with sparsity at most c · rn. Thus, we get a single-seed

HSG G : F → Fn for f with deg(G) = poly(d, c · rn), using Lemma 6.2.11. Thus, f(G) is

a univariate polynomial of degree poly(d, c · rn), which implies a blackbox PIT for f in

poly(d, c · rn) time.

Consider the class of polynomials which can be computed by a sum of c ROABPs,

where each ROABP computes a homogeneous polynomial. Such a sum can be expressed

as a degree-preserving sum. Thus, we get a blackbox PIT for this class in the same

time. We prove it as follows. Let f be computed by a sum of ROABPs, where each

ROABP computes a homogeneous polynomial. Suppose f(x) =
∑c

i=1 fi(x), where for

each i ∈ [c], fi(x) is a homogeneous polynomial, say of degree di, computed by an ROABP

of width r. Let degree of f be d. Let us consider the subset of indices S ⊆ [c], defined

as S = {j | j ∈ [c], dj ≤ d}. Since f is of degree d, observe that f =
∑

j∈S fj , since

homogeneous polynomials of degree > d must cancel out among themselves. Thus, f is

computed by a degree-preserving sum
∑

j∈S fj .

8.3 PIT for Sum of ROABPs

In this section, we discuss the general sum of ROABPs model, where the sum may

not be degree-preserving. Note that we cannot apply the same idea now because the

leading-degree components may cancel out in the sum and we do not have any analog of

Lemma 8.2.6 for intermediate degree homogeneous parts. Therefore, a different idea is

needed. For ease of exposition, we first explain the main idea of our PIT algorithm for

sum of two ROABPs. We then generalize it to sum of c ROABPs recursively. Even though

sum of ROABPs model is provably harder than a single ROABP (Fact 8.1.1), yet we show

a reduction from PIT of sum of ROABPs to PIT of a single ROABP in Theorem 8.3.7.

As an application of our reduction, we get new PIT algorithms in Corollary 8.3.8 and

Corollary 8.3.9, which are efficient in the log-variate setting.

We start by showing below that any hitting-set map for a prefix of variables, also

preserves the coefficient space dimension up to all subsequent variables. This will help us
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work directly with hitting sets of single ROABPs in our PIT and it will be used critically in

proof of Claim 8.3.2 later. Recall the definition of prefix and suffix maps in Definition 6.4.6.

Lemma 8.3.1 (Dim. preservation). Let D(y) be a matrix-product polynomial:

D(y) = D1(y1) · · ·Dk−1(yk−1) ·Dk(yk) ·D′(y>k),

where D1 ∈ F1×r[y1], Di ∈ Fr×r[yi] for 2 ≤ i < k, Dk ∈ Fr×r′ [yk] with r ≤ r′ and

D′ ∈ Fr′×1[y>k]. Suppose G : F → Fk−1 is a generator for any r-width, (k − 1)-variate

ROABP with seed variable t. Further, let Ψ be the prefix map with respect to G. Then, Ψ

preserves the k-prefix coefficient space dimension of D, i.e.

dimF{D(y≤k,a) | a ∈ {0, 1, . . . , d}
k} = dimF{D(Ψ)((t,yk),a) | a ∈ {0, 1, . . . , d}

2} .

Proof. Consider the matrix product for D(y) at (k − 1)th layer: D = D<k · Dk · D′,

where D<k :=
∏k−1

i=1 Di ∈ F1×r[y<k]. Without loss of generality, let the entries of

D<k ·Dk be the r′ F-linearly independent polynomials given by Nisan’s characterization

(Lemma 6.4.2). Similarly entries of D′ are r′ linearly independent polynomials given by

coefficient-extraction of D:

D<k ·Dk =: [P1, P2, . . . , Pr′ ],

D′ =: [Q1, Q2, . . . , Qr′ ]
⊺.

View Ψ as mapping the first k variables to F[t, yk] (keeping the rest n − k variables

unchanged). For ci ∈ F (i ∈ [r′]) not all zero, we have:

c1P1 + c2P2 + . . .+ cr′Pr′ ̸= 0 . (8.3)

Note that the polynomial c1P1 + c2P2 + . . .+ cr′Pr′ =: P has width r′ by Lemma 6.4.7.

Suppose the given generator G = (G1, . . . ,Gk−1). Define G′ := (G1, . . . ,Gk−1, yk). Since

G is an HSG (with seed t) for any width-r (k−1)-variate ROABP, G′ is an HSG (with seeds

t, yk) for any width ≤ r′ k-variate ROABP (having a width r ROABP in first k−1 layers)

using Lemma 6.4.8. Since P is indeed of width r′ (& k-variate), therefore G′ preserves
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the non-zeroness of (8.3), implying F-linear independence of P1(G′), . . . , Pr′(G′) ∈ F[t, yk].

Moreover,

D(Ψ) =
[
P1(G′), . . . , Pr′(G′)

]
· [Q1, Q2, . . . , Qr′ ]

⊺.

Hence, dimF{D(Ψ)((t,yk),a) | a ∈ {0, 1, . . . , d}
2} = dimF{D(y≤k,a) | a ∈ {0, 1, . . . , d}

k} =

r′, since otherwise if the dimension reduces on applying Ψ, we get a new non-trivial

dependency among {Pi(G′)}r
′

i=1, say c1P1(G′) + . . .+ cr′Pr′(G′) = 0. But these coefficients

will not form a dependency among {Pi}r
′

i=1, i.e. c1P1 + . . . + cr′Pr′ ̸= 0 and since G′

preserves non-zeroness of (8.3), it leads to a contradiction.

8.3.1 Sum of two ROABPs

We start with the sum of two ROABPs A+ B. The blackbox PIT developed here would

be extended to sum of c ROABPs in Section 8.3.2. Testing A+ B = 0 is same as testing

equivalence of A and B. Let A,B ∈ F[x] be polynomials of individual degree d, computed

by width-r ROABPs, each of size s in n variables. Suppose A is computed in some

unknown variable order (y1, y2, . . . , yn), where for all i ∈ [n], yi = xπ(i) for some unknown

permutation π : [n] → [n]. We can assume that variable order of B is different from A,

since otherwise by Lemma 6.4.4, A + B can be computed by a single ROABP of width

≤ 2r. In that case, since we will be applying a hitting set map for a single ROABP of width

O(r3) in Lemma 8.3.4, we are already done. The main idea in [GKST17] is to construct

an ROABP for B in the variable order of A, by using the characterizing dependencies of

A (Definition 6.4.1). Note that the width of an ROABP can blow up exponentially when

expressed in a different variable order (see [For14]). We can assume that B does not have

ROABP of width r in the variable order of A since otherwise, we will again get a single

ROABP of width 2r computing A+B in which case, we are done.

Thus we are in the setting: A ̸= −B, and B does not have a width r ROABP in the
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order (y1, y2, . . . , yn). By Lemma 6.4.2, there will be a minimum index k ∈ [n] such that

dimF{A(y≤k,a) | a ∈ {0, 1, . . . , d}
k} ≤ r, and

dimF{B(y≤k,a) | a ∈ {0, 1, . . . , d}
k} > r

In simple terms, k is the first layer in the variable order of A, where B does not have an

ROABP of width ≤ r. Let us consider the dependency equations at this kth layer for both

A and B. Observe that there exists an exponent b ∈ dependk(A) such that A will satisfy

its dependency equation while B will violate its dependency equation for this exponent.

This is because, if B satisfies dependency equations for all b ∈ dependk(A), then B also

has a width ≤ r ROABP till layer k, by Lemma 6.4.2. This contradicts our choice of k.

Thus, we have some b ∈ dependk(A) such that

A(u,b) =:
∑

a∈ spank(A)

αb,a ·A(u,a) (8.4)

B(u,b) ̸=
∑

a∈ spank(A)

αb,a ·B(u,a) (8.5)

where u := y≤k = (y1, y2, . . . , yk), and αb,a ∈ F are the dependency coefficients defined

by (8.4). Note that B may violate the dependency equations of A before layer k, while

having a width ≤ r representation. Unlike [GKST17], in our proof, we are ignoring such a

layer and care only about the layer, where we witness blow-up of width in ROABP of B.

Such a layer will exist under our assumption that B does not have a width ≤ r ROABP

in the variable order of A.

In the whitebox setting, one can essentially search for this violation/non-zeroness cer-

tificate and verify the satisfiability of dependency equations in poly-time. But in the

blackbox setting, the unknown variable order creates a hurdle in searching for this certifi-

cate. Guessing the variable order by brute force takes n! ≈ nn time. We will show later

that for the purpose of PIT, we can get around this obstacle in 2n time. We are okay with

2n overhead in the log-variate setting.

For a polynomial f ∈ F[y], for our convenience, let us use a short-hand f(ya11 y
a2
2 ) ∈

F[y3, . . . , yn] to denote the coefficient polynomial of monomial ya11 ya22 in f , which is same
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as f((y1,y2),(a1,a2)) in the earlier notation. Let G : F→ Fk−1 be an HSG for (k − 1)-variate

ROABPs of width r, with a single seed variable, say t1. Let Φ1 be the prefix map wrt G

such that f(Φ1) ∈ F[t1, yk, . . . , yn]. We now show in Claim 8.3.2 below that B continues

to violate the dependency equation (8.5) of A at the yk-layer, under the image of map Φ1.

We get (8.6) and (8.7) below, analogous to (8.4) and (8.5), respectively.

Claim 8.3.2 (Prefix map). Suppose G1 : F→ Fk−1 is a generator for any (k − 1)-variate

ROABP of width ≤ r, with single seed variable t1. Let Φ1 be the prefix map with respect to

G1. Let d′ := max{degt1(A(Φ1)), degt1(B(Φ1))} and E := {0, 1, . . . , d′}. Let span2(A(Φ1))

be a basis of size ≤ r such that there exists a set of constants {γb,a}, with F-dependencies

for every two-tuple b ∈ E2, defined as

A(Φ1)(tb11 y
b2
k )

=:
∑

a∈ span2(A(Φ1))

γb,a ·A(Φ1)(ta11 y
a2
k ) . (8.6)

Then, there exists b ∈ E2 with a dependency violation in B(Φ1), that is,

B(Φ1)(tb11 y
b2
k )
̸=

∑
a∈ span2(A(Φ1))

γb,a ·B(Φ1)(ta11 y
a2
k ) . (8.7)

Proof. For the sake of contradiction, suppose B(Φ1) follows the dependency equations of

A(Φ1) in the yk layer. This means ∀b, LHS equals RHS in (8.7). Since |span2(A(Φ1))| ≤ r,

this means B(Φ1) has a width r ROABP in the first two layers (t1 and yk). In other

words, coefficient space dimension for first two layers of B(Φ1) is ≤ r. Observe that then

by Lemma 8.3.1, Φ1 preserves the coefficient space dimension of the first k layers of B too.

Thus,

dimF{B(y≤k,a) | a ∈ Ek} = dimF{B(Φ1)((t1,yk),a) | a ∈ E2} ≤ r.

This contradicts our choice of k being the first variable up to which B does not have a width

r representation, which meant dimF{B(y≤k,a) | a ∈ Ek} > r (as in Lemma 6.4.2).

In the following claim, we pick an HSG G2 : F → Fn−k for (n − k)-variate ROABPs

of appropriate width, with a single seed variable, say t2. We consider the suffix map Φ2

wrt G2 and show that the image of B(Φ1) under Φ2 continues to violate a dependency

equation of the image of A(Φ1) under Φ2. For a polynomial f , we use the notation f ◦Φ2



125

below to denote f(Φ2). Note that Φ2 maps the last (n − k) variables of f using G2 and

leaves the remaining variables as it is. In the setup of Claim 8.3.2, A(Φ1) is a polynomial

in F[t1, yk, . . . , yn]. Then observe that (A(Φ1))(Φ2) =: A(Φ1) ◦ Φ2 is a polynomial in

F[t1, yk, t2].

Claim 8.3.3 (Suffix map). Assume the setup of Claim 8.3.2. Suppose G2 : F→ Fn−k is a

generator for any (n − k)-variate ROABP of width ≤ r2(r + 1), with single seed variable

t2. Let Φ2 be the suffix map with respect to G2. Then, there exists b ∈ E2 such that:

(A(Φ1) ◦ Φ2)(tb11 y
b2
k )

=
∑

a∈ span2(A(Φ1))

γb,a · (A(Φ1) ◦ Φ2)(ta11 y
a2
k ) (8.8)

(B(Φ1) ◦ Φ2)(tb11 y
b2
k )
̸=

∑
a∈ span2(A(Φ1))

γb,a · (B(Φ1) ◦ Φ2)(ta11 y
a2
k ) . (8.9)

Proof. (8.8) in this claim directly follows by applying map Φ2 on (8.6) and it is true

∀b ∈ E2. Now we shall prove that in (8.7) the difference polynomial g defined as,

g := B(Φ1)(tb11 y
b2
k )
−

∑
a∈ span2(A(Φ1))

γb,a ·B(Φ1)(ta11 y
a2
k ) ̸≡ 0

can be computed using a single ROABP of width at most r2(r + 1).

Let (xσ(1), . . . , xσ(n)) be the original variable order of B, for some permutation σ. By

assumption, B had a width r representation for the first (k−1) layers in the variable order

of A (y1, . . . , yn), implying

B = [P1, P2, . . . , Pr] · [Q1, Q2, . . . , Qr]
⊺,

where ∀i ∈ [r], Pi ∈ F[y<k] and Qi ∈ F[y≥k]. Recall that, by construction (Lemma 6.4.2),

Qi’s are certain coefficient polynomials ofB, Qi = B(y<k,ai) where {a1, . . . ,ar} = spank−1(A).

Now, by Lemma 6.4.3, each Qi has a width r ROABP in the variable order inherited from

B, that is, σ (y≥k). Clearly, for each a ∈ E,

B(Φ1)(t1,a) =

r∑
i=1

coeff(Φ1(Pi))(t
a
1) ·Qi,

implying B(Φ1)(t1,a) ∈ spanF{Q1, . . . , Qr}. For each a ∈ E, let B(Φ1)(t1,a) =: Q′
a, where

Q′
a is the suitable F-linear combination of Q1, . . . , Qr. Observe that by Lemma 6.4.4, any
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F-linear combination
∑r

i=1 ciQi, where each ci ∈ F, can be computed by a single ROABP

of width r2 by placing ROABP of each Qi in parallel. Thus, for each a ∈ E, Q′
a also has

an ROABP of width r2.

Moving one variable forward, again by applying Lemma 6.4.3 on each Q′
a, we know

that for each b ∈ E, Q′
a(yk,b)

:= (Q′
a)(yk,b) also has an ROABP of width r2 in the variable

order σ (y>k). We can rewrite our polynomial g as

g = Q′
b1(yk,b2)

−
∑

a∈ span2(A(Φ1))

γb,a ·Q′
a1(yk,a2)

.

The number of summands in g is |span2(A(Φ1))| + 1 ≤ r + 1, and each summand in

g has a width r2 ROABP. Hence, again by Lemma 6.4.4, g can be computed by a single

ROABP of width ≤ r2(r + 1) by placing each of the width r2 ROABPs in parallel.

By premise G2 is an HSG for any (n − k)-variate ROABP of width ≤ r2(r + 1) and

Φ2 is the suffix map wrt G2. Moreover, g by its definition is an (n− k)-variate polynomial

and therefore g(Φ2) = g(G2) ̸≡ 0. This yields the inequality in (8.9).

Suppose we are given a correct guess of the variable order of A, say (y1, y2, . . . , yn). Now,

let us combine both the prefix map Φ1 and suffix map Φ2 together, using their underlying

generators G1,G2, respectively. Let G1 =: (G11 , . . . ,G1k−1) and G2 =: (G21 , . . . ,G2n−k). Define

Φ : F3 → Fn = (G1, yk,G2) := (G11 , . . . ,G1k−1, yk,G21 , . . . ,G2n−k). Note that A(Φ1) ◦ Φ2 =

A(Φ). Then, using Claim 8.3.2 and Claim 8.3.3, we show that Φ is a generator for A+B,

because the dependency violation by B is preserved under the image of Φ. Moreover,

(A+B)(Φ) is a trivariate polynomial which is easy to test for non-zeroness.

Now we handle the case where variable order of A is unknown. Instead of going

through all n! permutations, we only go over all k-sized subsets of [n]. This is because

we are applying an HSG G1 of a single ROABP (of unknown variable order) on the prefix

variables and hence the order within the prefix-subset does not matter. For each choice

of subset, we go over additional n choices by trying each variable as yk. This process will

lead to constructing a set G of HSGs such that for an input polynomial A+B ̸≡ 0, there

is an HSG Φ ∈ G such that A + B(Φ) ̸≡ 0. Moreover, our set G has size ≤ n.2n which
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is poly(r, d) in the log-variate setting. Then, using Lemma 6.2.7 we can combine all the

generators into a single generator. We formalize this construction in the lemma below.

Lemma 8.3.4 (Sum of two). Let A(x) and B(x) be two polynomials of individual degree

d, each computed by an ROABP of width r. Let Γ : F → Fn be a hitting set generator

for the class of width r, n-variate, d-degree ROABPs with degree of HSG Γ, deg(Γ) =:

T (r, n, d). Then, one can design a hitting set generator Ψ : F→ Fn for the sum A+B in(
n2n · T (2r3, n, d)

)O(1)
time such that deg(Ψ) =

(
n2n · T (2r3, n, d)

)O(1)
.

Proof. We start with a non-zero input polynomial A + B. Suppose we know the cor-

rect variable order of A: (y1, . . . , yn) and the correct layer where B violates dependency

equation of A, say the yk layer. Invoke HSG Γ with appropriate parameters to get HSG

G1 : F → Fk−1 for (k − 1)-variate, width ≤ r ROABPs and HSG G2 : F → Fn−k for

(n−k)-variate, width ≤ r2(r+1) ROABPs as used in Claim 8.3.2 and Claim 8.3.3 respec-

tively. Let Φ : F3 → Fn := (G1, yk,G2) be the concatenation of the two HSGs. We now

show that if we guessed the correct order and layer, then Φ is an HSG for A+B, that is,

A+B(Φ) ̸≡ 0.

Claim 8.3.2 and Claim 8.3.3 together prove that B(Φ) violates a dependency equation

of A(Φ) in the yk layer. In other words A(Φ) is an ROABP of width r, in the variable

order (t1, yk, t2), where t1, t2 are the seed variables of G1,G2 respectively. At the same

time, (8.9) points out that B(Φ) does not have width r ROABP in the same variable

order. Thus, (A+B)(Φ) = A(Φ) +B(Φ) ̸≡ 0.

Let us now work with unknown variable order. For Claim 8.3.2 to hold, we only need

to ‘guess’ the prefix set {y1, . . . , yk} and the variable yk. For each k ∈ [n], we go over all

k-sized subsets of [n], and try k choices of yk for each subset. The number of possibilities

is at most
∑n

k=1 k
(
n
k

)
=
∑n

k=1 n
(
n−1
k−1

)
≤ n2n−1. We try Φ for each guess. For the Φ

corresponding to correct guess of prefix and variable yk, the above argument guarantees

that Φ is an HSG for A+B. Thus, we get a collection G of candidate HSGs, one for each

guess, with |G| ≤ n2n such that one of them is guaranteed to work. Using Lemma 6.2.7,

we get a single generator Ψ′ : F4 → Fn, which we can redefine to a single-seed generator

Ψ : F→ Fn for A+B using Lemma 6.2.9.
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We now calculate the degree of HSG Ψ in terms of degree of the HSG Γ for a single

ROABP. Observe that deg(Φ1) = T (r, k−1, d) and deg(Φ2) = T (r2(r+1), n−k, d). Thus,

deg(Φ) = max{deg(Φ1), deg(Φ2)} ≤ T (2r3, n, d).

Now, degree for the single generator Ψ′ using Lemma 6.2.7 is

deg(Ψ′) = max{deg(Φ), |G|} = max{T (2r3, n, d), n2n}.

Thus, by Lemma 6.2.9, degree of the single-seed generator Ψ is

deg(Ψ) ≤
(
n2n · T (2r3, n, d)

)O(1)
.

The time complexity for designing Ψ is also similarly bounded.

Using the efficient HSG designed for a single constant-width, log-variate ROABP in

Lemma 8.2.8, we get an efficient HSG for sum of two such ROABPs below.

Corollary 8.3.5. Let P be a set of n-variate polynomials over a field F, computed by a

sum of two ROABPs, each of width r and degree d in unknown variable order. Then,

blackbox PIT for P can be solved in poly(d, rn) time.

Proof. We have HSG Φ for single ROABP of width r with deg(Φ) = poly(d, rn) using

Lemma 8.2.8. Now, by Lemma 8.3.4, we have HSG Ψ for P with deg(Ψ) = poly(d, 2n, r3n) =

poly(d, rn). Thus, deg(f(Ψ)) for some f ∈ P is also poly(d, rn). By evaluating f(Ψ) on

deg+1 points, we can check non-zeroness of f(Ψ). This gives blackbox PIT for f .

8.3.2 Sum of c ROABPs

Let the input be sum of c polynomials A1(x), A2(x), . . . , Ac(x), each of individual degree

d, computed by ROABPs of width r. Again, we will assume the variable orders for each

ROABP to be different, lest we reduce to a smaller sum instance. The simple recursive

strategy used in [GKST17] is to reduce it to an instance of sum of two ROABPs. Let

A := A1 and B := A2 + . . . + Ac. Suppose A has r-width ROABP in some unknown
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variable order (y1, y2, . . . , yn). Thus, we get dependency equations for A, as in (8.4). If

the input sum is non-zero, then B will not follow some dependency of A.

Note that unlike the sum of two ROABPs case, B is not computed by a single ROABP

of width r. This is not a cause of worry, as we shall see now. Define Q := B(u,b) −∑
a∈ spank(A) γb,a ·B(u,a), where u := (y1, . . . , yk). Since B = A2 + . . .+Ac, we get

Q =
c∑

i=2

(
Ai(u,b) −

∑
a∈ spank(A)

γb,a ·Ai(u,a)

)
. (8.10)

Now each Ai(u,a) and Ai(u,b) have ROABPs of width r individually, by Lemma 6.4.3.

Thus, for each of the c− 1 summands in (8.10), we have an ROABP of width r(r+1), by

Lemma 6.4.4. We apply prefix map/generator Φ1 on first k−1 variables and get analogous

dependency equations for A(Φ1), B(Φ1) (and Q(Φ1) ̸≡ 0) as in Claim 8.3.2.

Q(Φ1)(tb11 y
b2
k )

=
c∑

i=2

(
Ai(Φ1)(tb11 y

b2
k )
−

∑
a∈ span2(Ai(Φ1))

γb,a ·Ai(Φ1)(ta11 y
a2
k )

)
. (8.11)

In (8.11), each of the c− 1 summands has an ROABP of width r2(r+1) ≤ 2r3 (See proof

of Claim 8.3.3). This effectively reduces the problem, of designing suffix map/generator

Φ2, to an instance of blackbox PIT for sum of c− 1 ROABPs of width O(r3), which can

be solved recursively. We formalize this process in the following lemma.

Lemma 8.3.6 (Sum of c). Let A1(x), A2(x), . . . , Ac(x) be c polynomials of individual

degree d, each computed by an ROABP of width r. Let Γ : F → Fn be a hitting set

generator for the class of width r, n-variate, d-degree ROABPs with degree of HSG Γ,

deg(Γ) =: T (r, n, d). Then, one can design a hitting set generator Ψ : F→ Fn for the sum∑c
i=1Ai(x) in

(
2n · T (2cr3c , n, d)

)O(c)
time, with deg(Ψ) =

(
2n · T (2cr3c , n, d)

)O(c)
.

Proof. We prove by induction on c. Base case for c = 2 has been proved earlier in

Lemma 8.3.4. Suppose A = A1 has the unknown variable order (y1, . . . , yn) where yi =

xπ(i) for each i ∈ [n]. Let yk be the first layer where B = A2 + . . . + Ac deviates from

A. Suppose we have correctly guessed the variable order and the variable yk. Then, we

employ HSG G1 : F→ Fk−1 for first k−1 variables as used in Claim 8.3.2 and we get (8.6)

for A while we get (8.11) for B =
∑c

i=2Ai. Since B violates dependency equation of A,
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(8.11) is non-zero polynomial, which can be computed as a sum of c−1 ROABPs of width

≤ 2r3. By induction hypothesis, we can design a (single-seed) HSG G2 : F → Fn−k for

Q(Φ1)(tb11 y
b2
k )

, which acts on the remaining (n − k) variables, and preserves non-zeroness

of the polynomial. Thus, altogether Φ : F3 → Fn := (G1, yk,G2) will preserve non-zeroness

of A + B, since A(Φ) will satisfy all its dependency equations but B(Φ) would continue

to violate one. This implies (A+B)(Φ) ̸≡ 0 when A+B ̸≡ 0.

Now, suppose the variable order is unknown. Then, observe that we only need to guess

the prefix subset of variables and the correct variable yk in it. We simply brute-force search

for them. In other words, for each k-sized subset of [n] and for each variable as yk, we

apply Φ. Thus, we get a set of candidate generators G of size |G| ≤ n2n such that for

any non-zero A + B, there is some generator Φ ∈ G for which (A + B)(Φ) ̸≡ 0. Using

Lemma 6.2.7, we can combine the generators into a single generator Ψ′ : F4 → Fn. Using

Lemma 6.2.9, we get a single-seed generator Ψ : F→ Fn for
∑c

i=1Ai.

Now, we calculate deg(Ψ). Observe that

deg(G1) = T (r, k − 1, d) ≤ T (r, n, d)

deg(G2) =
(
2n−k · T (2c−1r3

c
, n− k, d)

)O(c−1)

≤
(
2n · T (2cr3c , n, d)

)O(c−1)

deg(Φ) ≤
(
2n · T (2cr3c , n, d)

)O(c−1)

deg(Ψ′) ≤
(
2n · T (2cr3c , n, d)

)O(c−1)

deg(Ψ) ≤ (d · n2n)O(1) ·
(
2n · T (2cr3c , n, d)

)O(c−1)

≤
(
2n · T (2cr3c , n, d)

)O(c)

The first step follows since G1 is HSG for single ROABP. Degree of G2 is given by induction

hypothesis. Degree of Φ is simply the maximum between deg(G1) and deg(G2). Degree of

Ψ′ is calculated using Lemma 6.2.7. Finally, by Lemma 6.2.9, we get degree of Ψ.

Let S(c, r, n, d) denote the time complexity of constructing Ψ. Similar to the argu-

ment above, we get the following recursive formula for designing Ψ, where S(1, r, n, d) =
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T (r, n, d)O(1) and

S(c, r, n, d) ≤ n2n · T (r, n, d) · S(c− 1, 2r3, n, d) .

As a solution, we get S(c, r, n, d) ≤
(
2n · T (2cr3c , n, d)

)O(c)
.

Finally after having developed all the machinery, we come to our main result of this

chapter — showing a reduction from designing a blackbox PIT algorithm for sum of

ROABPs to designing a blackbox PIT algorithm for a single ROABP.

Theorem 8.3.7 (Reduction to one). Let T (r, n, d) be the time complexity of a blackbox

PIT algorithm for a single ROABP of width r and degree d in n variables over any field

F. Then, blackbox PIT for sum of c-many ROABPs, each of width r and degree d in n

variables, can be solved in time T ′(r, n, d, c) =
(
2n · T (2cr3c , n, d)

)O(c)
over F.

Proof. The proof simply follows from Lemma 8.3.6 because of equivalence between hitting

set generator and blackbox PIT. That is, if we have an HSG of degree T (r, n, d) which

can also be constructed in the same time, then we have a poly(T (r, n, d)) time blackbox

PIT and vice versa. See Section 6.2 and [SY10, Lemma 4.1] for exact equivalence between

HSG and blackbox PIT.

Blackbox PIT for a single ROABP, over any field F, has time complexity (ndr)O(logn),

which is only quasi-poly time. In the log-variate setting, a dn = dO(log(rd)) (quasi-poly)

time algorithm for sum of ROABPs is already trivial via brute force derandomization

based on the Polynomial Identity Lemma. Thus, to extract a poly-time PIT for sum

using above theorem, we need poly-time blackbox PIT for single ROABP. We indeed get

one, when width r is constant and n = O(log d), in Lemma 8.2.8. This then gives us the

following corollary.

Corollary 8.3.8 (Sum of ROABPs). Let P be a set of n-variate polynomials, computed

by a sum of c-many ROABPs, each of width r and degree d. Then, blackbox PIT for P

can be solved in poly(dc, rnc3
c
) time.

Pranav Bisht
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Proof. Let f ∈ F[x] be an n-variate polynomial computed by sum of c ROABPs, each of

width r and degree d. Using Lemma 8.2.8, we have a blackbox PIT for a single ROABP

of width r in poly(d, rn) time. Now, in Theorem 8.3.7, set T (r, n, d) := poly(d, rn) to get

T ′(r, n, d, c) =
(
2n · d · rn3c

)O(c)
= poly(dc, rnc3

c
). This gives us blackbox PIT algorithm

for f with the required time complexity.

If we use blackbox PIT algorithm of [AGKS15] for single ROABP in Theorem 8.3.7,

we get another efficient PIT for the sum of ROABPs as a corollary below.

Corollary 8.3.9 (Improved Sum PIT). Let P be a set of n-variate polynomials computed

by a sum of c-many ROABPs, each of width r and degree d. Then, blackbox PIT for P

can be solved in poly(2cn · nc logn, dc logn, r3
c logn) time.

Proof. Using result of [AGKS15], we have a (ndr)O(logn) time blackbox PIT for a single

ROABP of width r and degree d in n variables. Therefore, we can set T (r, n, d) :=

(ndr)O(logn) in Theorem 8.3.7 to get a poly(2cn ·nc logn, dc logn, r3
c logn) time blackbox PIT

for border of sum of c ROABPs.

Remark. In a subsequent work, [GG20] improved the blackbox PIT for a single ROABP.

One can then also use that in conjunction with our Theorem 8.3.7 to get a further improved

blackbox PIT for sum of ROABPs in the log-variate regime. This has been stated as

Theorem 1.2 in [GG20] by citing an earlier version of Theorem 8.3.7 in this work.

8.4 PIT for Border

In this section, we give the reduction from PIT for border class of sum of c ROABPs to

PIT for a single ROABP (Theorem 8.4.1). Although a single ROABP is closed under

border, it is not clear if sum of constantly many ROABPs is equal to its border class. Let

A and B be two ROABPs of width w in different variable orders. Let f be a polynomial

computed in the border class of sum of two ROABPs. Then we can write g = f + ϵh,

where g is computed by A+B over F(ϵ). One might question whether f can be expressed

as f1 + f2, where f1 is computed in the border of A and f2 in the border of B. If this



133

were true, then f could also be computed by sum of two ROABPs since both f1 and f2

individually would be computable by ROABPs of width w as stated in Lemma 6.5.1. But

this line of thought is false for the following reason. Note that the polynomial g which

approximates f is computed by sum of two ROABPs A+B over F(ϵ). In the edge weights

of A, there maybe coefficients involving ϵ in denominator which get canceled only in the

sum but stay individually, and therefore f is not directly expressible as f1 + f2, where

both f1and f2 are individually computable in the border class of single ROABP.

Moreover, g = A + B over F(ϵ) may not have a single ROABP of same width over

F(ϵ), since width can blow up exponentially, as stated in Fact 8.1.1. Thus, border of sum

of ROABPs cannot be directly expressed as border of a single ROABP of similar width.

Hence, in all likelihood, the border class of sum of c ROABPs is more powerful than the

class of sum of c ROABPs. This makes it an interesting candidate for the PIT question.

In Theorem 8.4.1, we solve it along the same lines as Theorem 8.3.7 by showing an efficient

reduction from PIT of border of sum to PIT of border of a single ROABP (in log-variate

regime). We are able to achieve this because the proof technique of Theorem 8.3.7 is

compatible with border, essentially because at the core they rely on rank based measure

of Nisan’s width characterization.

Theorem 8.4.1 (Reduction for border). Let T (r, n, d) be the time complexity of a blackbox

PIT algorithm for a single ROABP of width r in n variables and degree d over any field

F. Then blackbox PIT for border of sum of c ROABPs, each of width r and degree d in n

variables, can be solved in time
(
2n · T (2cr3c , n, d)

)O(c)
over F.

Proof. Let f(x) be a polynomial in the border of A1 + A2 + . . . + Ac. That is, g(x, ϵ) =

f(x) + ϵ · h(x, ϵ), where g(x, ϵ) is computed by A1 + . . .+Ac over F(ϵ) and limϵ→0 g = f .

Our aim is to design an HSG Ψ for f(x) such that f ̸≡ 0⇒ f(Ψ) ̸≡ 0.

Let us first work over the function field F(ϵ). We follow a similar inductive strategy as

Lemma 8.3.6 for g. Let A = A1 and B := A2 + . . .+Ac. Assume A has width r ROABP

while f may not. Write f in the variable order of A. If f has an ROABP of width r in

the variable order of A, then the HSG from Lemma 8.2.8 will work in the promised time,

since border is closed for a single ROABP.
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By Lemma 6.4.2, if f cannot be written as ROABP of width r in variable order of

A, then there is a layer k, where f has width greater than r and hence f does not

follow the dependency equations of A in that layer1. Thus, there exists k ∈ [n], prefix u;

S ⊂ {0, 1, . . . , d}k; and constants {αa ∈ F[ϵ] | a ∈ S} such that

0 =
∑
a∈S

αa ·A(u,a) (8.12)

0 ̸=
∑
a∈S

αa · f(u,a) . (8.13)

The equality (8.12) above is derived from (8.4) by collecting all the terms on one side

and considering size of S to be at most r + 1. Similarly, (8.13) is derived by considering

dependency equations for f at layer k. Observe that here, unlike Lemma 8.3.6, we are

not working with B directly as in (8.5). This is because the inequality for B in (8.5)

may become an equality in the limit ϵ→ 0. Therefore, we work indirectly via f in (8.13)

because we are assuming input polynomial f = limϵ→0 g to be non-zero and use that to

derive a nontrivial relationship as shown below.

Recalling A+B = g = f + ϵ · h, we use (8.12) to deduce:

∑
a∈S

αa ·B(u,a) =
∑
a∈S

αa · f(u,a) + ϵ · h′

for the h′ ∈ F[ϵ,x] that depends on h. Without loss of generality, we can assume that ϵ

does not divide αa for some a ∈ S, because if it does divide all αa, then we can divide the

above equation by ϵ to get a new equation of the same form. Moreover, {f(u,a) | a ∈ S}

are linearly independent polynomials over F (equivalently over F(ϵ)) and |S| ≤ r + 1 in

the above equation.

Using α ≡ α(0) mod ϵ, we write down a nontrivial relationship

∑
a∈S

αa ·B(u,a) =
∑
a∈S

αa(0) · f(u,a) + ϵ · h′′ . (8.14)

It is nontrivial because its RHS does not vanish on setting ϵ = 0 and it remains well-

defined, while LHS is a sum of (c − 1) ROABPs over F(ϵ), each of width r(r + 1). If

1If no such layer exists, then f is in the border of a single ROABP of width r and we are done by
Lemma 6.5.1
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our input f = limϵ→0 g is non-zero, then LHS above must also be non-zero in the limit

ϵ → 0, by considering (8.14) in conjunction with (8.13). Thus, we reduce to the problem

of designing HSG for border of sum of c− 1 ROABPs.

Following the proof in Section 8.3, this reduces PIT of f to PIT of border of sum of

c − 1 ROABPs each of width O(r3) (via the prefix and suffix maps). This can be solved

recursively, till we reach border of a single ROABP of appropriate width. Since border of

single ROABP is same as ROABP by Lemma 6.5.1, we can call HSG of Lemma 8.2.8 with

appropriate parameters. The exact and formal details of unfolding the recursion are same

as that in the proof of Lemma 8.3.6.

Remark. Since the above theorem achieves the same time complexity as in Theorem 8.3.7,

our results for PIT of sum of c ROABPs extend to their border versions also. Thus, we

also get poly(dc, rnc3
c
) and poly(2cn ·nc logn, dc logn, r3

c logn)-time blackbox PIT algorithms

for the border class of sum of c ROABPs analogous to Corollary 8.3.8 and Corollary 8.3.9,

respectively. We will also get a new blackbox PIT for the border class with the time

complexity achieved in Theorem 1.2 of [GG20].

8.5 Discussion

We first discuss the proof techniques we employed in this chapter, followed by open prob-

lems.

Syntactic homogeneity for ROABP: Inspired by circuits we defined syntactic ho-

mogeneity for ROABP (Definition 8.2.2). We proved that if a degree-d homogeneous

polynomial has an ROABP of width-r, then it also has a syntactic homogeneous ROABP

of the same width, and in the same variable order (Theorem 8.2.4). Note that if one ap-

plies the usual homogenization trick, for circuits/ABP [SY10, Thm.2.2], then the ROABP

width blows up to O(rd2), making the width non-constant! Our new technique helps solve

blackbox PIT for a constant-width log-variate ROABP, but also seems independently in-

teresting. Moreover, Theorem 8.2.4 is independent of any restrictions on width or number
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of variables but we make use of these restrictions only in deriving efficient PIT algorithms.

Reduction from many to one: In Theorem 8.3.7, we gave a reduction from design-

ing a polynomial time blackbox PIT for sum of constantly many ROABPs to designing

a polynomial time blackbox PIT for a single ROABP, in the log-variate setting. This

reduction does not assume any restriction on width of ROABPs. This already gives us an

improvement over [GKST17] in Corollary 8.3.9. We need constant width in Corollary 8.3.8

only because poly-time blackbox PIT for an unbounded-width (log-variate) ROABP is yet

to be found.

Remark. In a recent subsequent work, [GG20, Thm. 1.1] constructed explicit hitting

sets of polynomial size for a single log-variate ROABP of width upto 2O(log d/ log log d) over

field F with char(F) = 0 or char(F) > d. In their second theorem, they directly call our

Theorem 8.3.7 to extend their result to sum of constantly many such ROABPs.

Comparison with [GKST17]: Previously, the sum of constantly-many ROABPs was

studied by [GKST17]. For this model, they give (ndr)O(log(ndr))-time blackbox PIT. We

improve the time complexity for this model with respect to width r and degree d parame-

ters by trading it with exponential dependence on number of variables. We get blackbox

PIT with time complexity 2O(n) · (ndr)O(logn) in Corollary 8.3.9. In the log-variate setting

alone, this is an improvement over [GKST17]. If we allow worse dependence on both

width and number of variables, then we show how to get down to polynomial dependence

on d in Corollary 8.3.8 by giving a poly(d, rn)-time blackbox PIT. For a comprehensive

comparison, see Table 8.1 with c = O(1).

[GKST17] viewed Nisan’s characterization in terms of characterizing dependencies

(Definition 6.4.1). They used this technique to get a reduction from sum of ROABPs

to a single ROABP. This main idea of using characterizing dependencies for reduction is

summarized at the start of Section 8.3.1 in this chapter. This is inherently a whitebox

reduction and indeed [GKST17] use it to give a poly(n, d, r)-time whitebox PIT for sum of

constantly-many ROABPs. For blackbox PIT, they give an indirect reduction, which takes

Pranav Bisht
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quasi-polynomial time. Moreover, instead of a hitting set for single ROABP, they require

something stronger, which a hitting set might not always provide. They need an efficient

shift that l-concentrates a single ROABP. A polynomial is said to be l-concentrated if

all of its coefficients are in the linear span of its coefficients corresponding to monomials

having variable support < l. They prove that this efficient shift also l-concentrates sum

of constantly-many ROABPs. This method yields a quasi-poly time reduction, since they

fix l to O(log s) (s is size of ROABP) and apply brute-force hitting set after the shift. The

main contribution of this chapter is to convert the whitebox reduction of [GKST17] to a

direct blackbox reduction, that from a hitting set for sum of ROABPs to a hitting set for

a single ROABP (Theorem 8.3.7).

Future Directions: In the context of this work and previous related works, a variety

of open problems arise:

• Design a poly(s)-time blackbox PIT algorithm for (log s)-variate, size-s ROABP.

This will also solve standard multivariate diagonal depth-3 model [FSS14]. Without

loss of generality, ROABP can also be assumed to be syntactically homogeneous

(Theorem 8.2.4 and Lemma 8.2.6).

• In Theorem 8.2.9, can we remove the restriction of degree-preserving sum? If so,

then that would solve diagonal depth-3 model (Lemma 6.4.5). Design a poly(rn, c, d)-

time blackbox PIT for sum of c ROABPs, each of width r computing an n-variate

polynomial of degree d.

• Bring down 2n dependence in Theorem 8.3.7 to poly(n). Currently, the dependence

on c is doubly exponential, both in this reduction and also in [GKST17]. One would

also like to bring it down to poly(c) or even just to single exponential like (ndr)O(c).

Pranav Bisht





Chapter 9

Conclusion

We discussed two fundamental problems in algebraic complexity theory in this thesis –

Polynomial factoring and identity testing. For polynomial factoring, we consider the class

of sparse polynomials, while for PIT we consider Σ[2]ΠΣΠ[ind-deg d] circuits and sum of

ROABPs. Our underlying theme was to make structural observations for these classes

and use them to derive the necessary algorithms.

We explored the problem of sparse multivariate factoring, in which we are asked to

completely factor a given sparse polynomial. We note that runtime of any factoring algo-

rithm here will be lower bounded by sparsity of factors, as we need to output the factors

in sparse representation itself. It is known that sparse polynomials can have dense factors

(see examples 1.2.1 &1.2.2). However these factors are sparse, when we consider individual

degrees to be constant. This brings us to the sparsity conjecture stated in Conjecture 1.2.3,

that s-sparse polynomials of constant individual degree have poly(s)-sparse factors. Mak-

ing progress towards the sparsity conjecture is the underlying motivation for Part-I of

this thesis. Moreover, [BSV20] showed that factor-sparsity bound also gives us a upper

bound on the run time of sparse factoring in the bounded individual degree regime (see

Lemma 3.4.1). Therefore, it suffices to prove sparsity conjecture to get poly-time sparse

factoring algorithm.

We proved the sparsity conjecture for the class of symmetric polynomials. For an

s-sparse, symmetric polynomial f of individual degree d, we showed a sparsity bound of
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sO(d2 log d) for any factor of f . This gives us the desired poly(s) bound for constant d. We

achieve this bound by observing that symmetric polynomials have somewhat ‘low’ min-

entropy and then using it with our structural result that all integral points in the Newton

polytope also have low min-entropy. The main open problem here of course is to prove

the sparsity conjecture for general sparse polynomials. We could ask a possibly simpler

question. Let f be an s-sparse polynomial of constant individual degree d such that f = ge

for some polynomial g, and a constant e. Then can one prove that g is poly(s)-sparse?

While we don’t fully solve this problem here, we in stead develop a poly(s)-time algorithm

to test whether f is of the form ge, for any e ∈ {2, . . . , d}. Another variant of the sparsity

conjecture is to show that the cofactor is sparse. i.e. Let f, h be two s-sparse polynomials

of constant individual degree d such that f = gh. Then is g spoly(d)-sparse? We were able

to show that g is sO(d log s)-sparse, when h is a multilinear polynomial.

In Part-II, we first give a poly-time blackbox PIT for Σ[2]ΠΣΠ[ind-deg d] circuits. This

model is more general than
∑[2] ∏∑∏[d] circuits, where the bottom

∑∏
computes polyno-

mials of constant total degree d, while in Σ[2]ΠΣΠ[ind-deg d] circuits the bottom
∑∏

com-

putes polynomials of constant individual degree d. We were able to design this PIT by

hitting appropriate resultants, where we made use of our structural result (Theorem 7.2.1),

which shows that sub-resultant of two sparse polynomials is a multiple of their GCD and

resultant of their co-prime parts. The main open problem here is to remove the individual

degree restriction and show (even whitebox) PIT for
∑[2] ∏∑∏

circuits.

In our second PIT result, we show a deterministic poly-time blackbox PIT for sum of

constantly-many, log-variate, constant-width ROABPs. We showed a direct reduction from

blackbox PIT for sum of ROABPs to blackbox PIT for a single ROABP. This reduction

is poly-time when number of variables is logarithmic in the input size and number of

summands is constant. We used this reduction in conjunction with our structural result on

syntactic homogeneity of ROABPs, to derive our poly-time blackbox PIT. Our reduction

also improves over the previous best PIT algorithm of [GKST17] in the log-variate regime.

An additional benefit of our reduction is that if one can show a poly-time blackbox PIT for

log-variate ROABPs, then one also gets a poly-time blackbox PIT for sum of constantly-
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many, log-variate ROABPs (without the width restriction). We note that blackbox PIT for

log-variate ROABPs is the main open problem here, which will also solve PIT for general

∑∧∑
circuits. The finer open problems related to each result above, are mentioned in the

Discussion section of each chapter.
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