
On Hitting Sets for Special Depth-4

Circuits

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

Master of Technology

by

Pranav Bisht

Roll No. : 15111028

under the guidance of

Prof. Nitin Saxena

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

June, 2017

ii

iv

Abstract

We study the Polynomial Identity Testing (PIT) problem in this thesis. When the input

polynomial f ∈ F[x1, . . . , xn] of degree d, is given in the form of an arithmetic circuit of size

s, it asks for an efficient algorithm to test whether the polynomial is identically zero or not.

By efficient we mean, an algorithm that makes use of only poly(s, n, d) many F operations.

There are two versions of this problem. In a Blackbox PIT algorithm, we are allowed only

to evaluate the circuit on polynomially many points from Fn, and cannot ‘look’ inside the

circuit. Whereas in a whitebox PIT algorithm, we have access to the internal gates of the

circuit. Blackbox algorithms are more lucrative as they have interesting connections with

circuit lower bounds.

We give an efficient blackbox PIT algorithm for the special class of diagonal depth 4 circuits,

with top fan-in 3 and power gates having equal fan-in. We will motivate why studying and

solving this restricted model is worthwhile in the quest for the general PIT problem. We use

sparse PIT map to efficiently test whether fa1 + fa2 = fa3 , where f1, f2 and f3 are sparse

polynomials. The algorithm we give is tailor made for this model, as it uses the polynomial

analog of Fermat’s Last Theorem which has a similar equation setup for integers. While

attacking other more general instances of depth four circuits, we encountered and proved

following structural results also, which might be useful.

We explain a new form of rank concentration measure called cone closure. We observe that

a general polynomial under a random shift has a cone closed basis, and give a simple proof

for the same using the derivative operator. This derivative operator restricts this proof for

polynomials belonging to base fields with zero or large characteristic. For small characteristic

fields, we give a new meaningful definition for cone closure, as the old definition fails in this

regime. We make use of a clever transformation to prove cone closed basis here.

Lastly, for a given set of linearly independent polynomials, we question the linear indepen-

dence of their positive powers. We get the answer by proving a new theorem which tells

that the powers of these linearly independent polynomials will almost always be linearly in-

dependent. We give a quadratic upper bound on the number of exceptions. This property

has a surprisingly elementary proof, making use of the Wronskians.

vi

Acknowledgments

The first credit always goes to the teacher. I would take this opportunity to personally thank

my supervisor Prof. Nitin Saxena for grooming me so professionally. This work was possible

only with his insight and active participation. He sets the best example of how a disciplined,

punctual lifestyle is conducive to research. I learnt so much from his courses. And a special

mention to his fine sense of sarcasm, which will never cease to entertain me.

I would like to express my gratitude for my parents, who made me able to pursue a difficult

line as research, with their quality support, education and culture.

I cannot thank my seniors enough. Sumanta was and will always be my goto man for my

doubts. His grasp of the basics, and his clarity of exposition is amazing. I also thank Amit

Da, for his guidance and the great width of knowledge he shares. I thank the Department of

Computer Science and Engineering - the staff and the faculty members for granting students

great facilities and academic flexibility. Thank you, Prof. Raghunath Tewari for your theory

courses. I would also like to thank Neeraj Kayal, Michael A. Forbes, Rohit Gurjar and Arpita

Korwar for their surveys and PhD Thesis, which were my main source of learning in the field

of Polynomial Identity Testing. The precision and clarity of their writing was very helpful.

All the love for my dearest peers. Thank you Chandan, for being such a great friend. I

would not have survived here without our lazy discussions. Thanks for Pink Floyd and pool.

Thank you Ravi for being my partner in crime and defeating me in chess. Special thanks to

my two theory brothers - Ashish Dwivedi and Kartik Kale. I like Ashish for his true love for

mathematics, and his genuine, unadulterated nature. I hope we rock together in our PhD.

Working together in the same area with Kartik was insanely helpful. I am simply in awe of

his ability to understand so quickly, and doing complex proofs in his mind. I will miss your

presence during my PhD. I wish you all the happiness in the coming future.

Pranav Bisht

viii

Dedicated to

My father, whose simple and humble conduct of life inspires me.

The art of doing mathematics consists in finding that special case which contains all the

germs of generality.

– David Hilbert

Contents

Abstract vi

1 Notations 1

2 Introduction 3

2.1 Complexity Theory . 3

2.2 Arithmetic Circuits . 4

2.3 Arithmetic Complexity . 5

2.4 Polynomial Identity Testing . 6

2.5 Applications of PIT . 8

2.6 Our results . 9

3 Background 10

3.1 Formal Definitions . 10

3.2 Sparse PIT . 12

3.3 Depth Reduction . 13

3.4 Shifts and concentration . 14

xii

4 Special Diagonal Depth-4 PIT 18

4.1 Introduction . 18

4.2 Top fan-in 2 diagonal depth 4 . 19

4.3 Top fan-in 3 diagonal depth-4 . 20

4.4 Mason Stothers Theorem . 22

4.5 Conclusion and Future work . 25

5 Cone Closure 27

5.1 Introduction . 27

5.2 Coefficients in a randomly shifted polynomial 28

5.3 Cone closed basis . 30

5.4 Small characteristic case . 31

5.5 Conclusion and Future work . 35

6 Diagonal Circuits and Wronskian 36

6.1 Introduction . 36

6.2 Wronskian . 36

6.3 Main Theorem . 38

6.4 Conclusion . 42

7 Conclusion and Future Work 44

References 46

xiii

Chapter 1

Notations

Before we start, let us clear out certain terms and short hand notations, which we will

be using repeatedly throughout this work.

Throughout this thesis N will denote the set of non-negative integers. And we will use

the shorthand [n] to mean the set {1, 2, . . . , n}. We will not always write x1, x2, . . . xn,

but use x to mean the same. For example, F[x] means F[x1, x2, . . . , xn]. A point or

vector α ∈ Fn means (α1, α2, . . . , αn). We will say a vector ā = (a1, a2, · · · , an) ≤
another vector b̄ if a1 ≤ b1, a2 ≤ b2, · · · , an ≤ bn. In addition to that, ē! will be

the short for e1!e2! · · · en!,
(
ā
b̄

)
for
(
a1

b1

)(
a2

b2

)
· · ·
(
an
bn

)
, and F (x̄+ t̄) for F (x1 + t1, x2 +

t2, . . . , xn + tn). Also the partial derivative ∂t̄f̄ will mean ∂
t
f1
1 t

f2
2 ···t

fn
n

.

Whenever we say polynomial, we mean a multivariate polynomial ∈ F[x1, . . . , xn]

unless specified otherwise. By default n is the number of variables, s is the size of

arithmetic circuit computing it, and d is the total degree of the polynomial. A monomial

mē = x̄ē will mean xe11 x
e2
2 · · · xenn . Similarly, a polynomial f = c1x

e11
1 xe12

2 . . . xe1nn +

. . .+cmx
em1
1 xem2

2 . . . xemn
n can be written compactly as f =

∑
ē cēx̄

ē. coefff (x̄
ē) will be

used to denote the coefficient of monomial x̄ē in the polynomial f . We define degree

of a monomial as the sum of exponents of each variable occurring in that monomial.

Total degree of a polynomial is the maximum of all the monomial degrees. Individual

degree of a variable (degxi) in a polynomial is the maximum exponent of that variable

(xi) over all the monomials. Individual degree of a polynomial (ideg) is the maximum

1

Chapter 1. Notations 2

individual degree over all variables. More formally,

Total degree(f) = max

{
n∑
i=1

ei | ē ∈ Nn and coefff (x̄
ē) 6= 0

}
degxi(f) = max {ei | ē ∈ Nn and coefff (x̄

ē) 6= 0}

ideg(f) = max
{

degxi(f) | i ∈ [n]
}

Also note that by default, PIT stands for Polynomial Identity Testing, H for Hitting

Set, gcd for greatest common divisor, W for Wronskian, and log x for log2 x, unless

stated otherwise.

Chapter 2

Introduction

2.1 Complexity Theory

Today, everyone is aware of the power and usefulness of computers, which have touched

almost every field out there. It has become an indispensable part of our daily life, as

we delegate a number of our tasks to these machines. Computer science teaches, in

a broad sense, the art of problem solving while exploiting the computational power

of these machines. This is realized through algorithms, which simply speaking is a

sequence of rules and logical operations, meant to solve a problem. But our machines

have a limited memory, and we also want to be able to solve the problems efficiently.

Thus, resources of time and space are critical in design of a good algorithm. In the

field of Complexity Theory, we abstract out the nitty-gritty details, and question the

very limits of computation. We try to separate the easy or time efficient problems,

from the difficult or time consuming ones. But a thoughtful and informed person may

object that running an algorithm on a supercomputer will be much more efficient than

running the same algorithm on his personal computer. This is why we give a universal

mathematical model known as Turing machine, and we analyze the number of steps

Turing Machine takes in solving a problem, and classify the problems accordingly.

The complexity class P comprises all the problems that have a known deterministic

polynomial time algorithm, while the class NP is the collection of problems, for which

given a proof, its correctness can be verified in time polynomial to the size of input.

And the famous open problem whether P = NP ? is still haunting the researchers in

3

Chapter 2. Introduction 4

this field. We can say that this whole field is the output of different endeavours to

tackle this problem.

There are other models of computation as well - like Probabilistic Turing Machines,

Boolean circuits etc, which have their own resources based on which they classify

problems. We also have problems of algebraic nature, and it makes sense to have

an algebraic model defined for them. A natural algebraic object is polynomial, which

we can use to model a number of algebraic problems. For example, the problem of

checking whether a graph has a perfect matching, can also be put as whether the

determinant polynomial of its Tutte matrix is zero or not. Here, intuitively we wish

to measure the complexity of a polynomial. For example computing the polynomial

(x1 + 1)(x2 + 1) · · · (xn + 1) as a function is easier than substituting the values in

its fully expanded form which has 2n monomials. Thus, representation of polynomial

matters in determining its complexity.

2.2 Arithmetic Circuits

A very compact, natural and useful representation of polynomials is that of arithmetic

circuits. For a multivariate polynomial f ∈ F[x], it is formally defined as a directed

acyclic graph, where we have input nodes as variables and constants of the field, output

node(s) which computes the final polynomial f , and intermediate nodes are addition,

and multiplication nodes. The edges of graph are labeled with field constants (by

default 1).

x 1 y 2

+ +

+

×

+

−1

Figure 2.1: A circuit computing the polynomial x2 + y + 1

Chapter 2. Introduction 5

We can define size of an arithmetic circuit as the number of edges in the graph. Some

researchers like to define it as number of nodes in the graph, but we will follow the

former convention as it is more accurate in some situations. We define depth of circuit

as the number of edges in the longest path from a leaf node to output node. The

nodes are called gates of the circuit. In-degree of a gate is termed as fan-in, and out

degree as fan-out. An arithmetic circuit where each gate has fan-out = 1 is called

an arithmetic formula. The degree of a gate is the total degree of the polynomial

computed by that gate and degree of a circuit is the maximal degree of a gate, in the

circuit. It is important to note that degree of circuit may be more than the degree of

the polynomial computed by the circuit, as a sum gate may lead to cancellations of

the highest total degree monomials in the inputs of that gate.

2.3 Arithmetic Complexity

In the model of arithmetic circuits, the two main resources are size and depth. Based

on size, we define class VP as the family of circuits {Cn} computing polynomials such

that number of variables, degree and size of the circuit is polynomially bounded in n.

Observe that monomial x2n , can be computed by O(n) sized circuit, but it is not in

VP as the degree is exponential in n. This degree restriction is motivated for making

this class relatable to boolean classes. This class is arithmetic analog of P. Similarly,

we have the class VNP as the arithmetic analog of NP, which we will not define here.

Based on depth, we have classes of constant depth circuits like depth-2, depth-3 and

depth-4 circuits. Interested readers may read in detail about the definition, motivation

and interrelation of these classes in [SY10], [For14].

It should also be noted that the arithmetic circuit model is a non-uniform model, unlike

the Turing Machine model which is uniform as the transition function of a Turing

machine is independent of the size of input. There is a single Turing Machine for all

input sizes. But in the arithmetic model, we have different circuits for different number

of variables. Thus, one can cheat with non-uniformity to even compute undecidable

language using a constant sized circuit. Therefore, classes in this setting may not

be directly relatable to boolean world. Nonetheless, we have interesting lower bound

problems here.

Chapter 2. Introduction 6

2.4 Polynomial Identity Testing

This is the primary topic of this thesis work. Polynomial Identity Testing, PIT in short,

is simply testing whether a given multivariate polynomial is zero or not. This statement

is quite ambiguous, as it can be interpreted in various ways. One interpretation is that

the problem statement asks whether a polynomial f ∈ F[x] is zero when evaluated at

some point α ∈ Fn or decide if there is no such point? The search version for this

interpretation would be to find a point where the input polynomial is zero, or output

no if there is no such point. This is the commonly known, root finding problem. This

interpretation is not the concern of this thesis, rather we are interested in knowing

whether polynomial is always (identically) zero or not.

The definition of PIT, which we follow in this thesis is that, given an input polyno-

mial, determine whether coefficients of the all the monomials are zero or is there some

monomial in the input polynomial which has a non-zero coefficient? This question

may rather seem absurd, if the input polynomial is given in the form of a list of coeffi-

cients along with the corresponding list of monomials (which is the case in traditional

polynomial factorization questions), as one needs to only check whether the list of

coefficients has a non-zero entry or not. But the question becomes interesting when

the input polynomial is given in the form of an arithmetic circuit. If we take the same

example of polynomial f = (x1 +1)(x2 +1) · · · (xn+1), we can see that it has a simple

circuit and efficient PIT algorithm. But if we follow the brute force approach of simply

expanding out the polynomial, and checking if there is some non-zero coefficient, then

it will take exponential time, as it has exponential number of monomials. So, the

question of PIT is that given a polynomial in the form of circuit, test the zeroness of

polynomial in time polynomial in the size of circuit. We will define it more formally in

Chapter 3.

It is also important here to remark that, an identically non-zero polynomial over a

finite field, may evaluate to zero at all the points in the base field, yet as per this

definition we will consider the polynomial to be non-zero. For example, x2 + x is a

zero function over Z2, but still a syntactically non-zero polynomial as the coefficients

are non-zero. For infinite sized fields though, a polynomial evaluates to zero ∀α ∈ F
if and only if it is identically zero. This follows via simple inductive argument, and

the fact that a non-zero univariate polynomial of degree d over a field has at most

d roots. This problem to determine whether a given polynomial evaluates to zero on

Chapter 2. Introduction 7

all the points of the base field, is also known as Evaluates to Zero Everywhere (EZE)

problem and it is infact coNP-hard, as one can easily show a reduction from SAT to

EZE over F2. Simply convert a boolean formula by replacing x̄ with 1− x, x∧ y with

x · y, and x ∨ y with x + y + xy. Now, the formula is unsatisfiable if and only if

the corresponding polynomial evaluates to zero everywhere. On the contrary, PIT is

in coRP due to Schwartz-Zippel Lemma [Sch80]. coRP is a subclass of BPP which is

conjectured to be same as P. And the whole endeavour of this area is to derandomize

PIT so as to put it in P.

There are two versions of PIT problem - whitebox and blackbox.

• Whitebox PIT: In this setting, we are given the polynomial as an arithmetic

circuit, and we have full access to all the gates inside the circuit. For example

the circuit class
∏∑

, has an easy whitebox PIT algorithm. This class computes

polynomials of the form
∏k

i=1 li, where l′is are linear polynomials. For example

f = (x1+1)(x2+1) · · · (xn+1), belongs to this class. Since fields are by definition

integral domains, testing zeroness of
∏k

i=1 li reduces to testing zeroness of each

li, which can be done in time O(k· max fan-in of sum gate), which is polynomial

in size of the input circuit.

• Blackbox PIT: Here, we are given the polynomial as a blackbox arithmetic

circuit. That means, we are not allowed to look inside the circuit, but we only

have oracle access to the circuit, to evaluate it at any field point. The goal is to

give a PIT algorithm in time polynomial in the circuit size, while using the circuit

only for evaluations. Now blackbox PIT for
∏∑

circuit class will not be as trivial

as the whitebox PIT algorithm we described above. Whitebox PIT looks easier

than the blackbox setting, but till now for almost all the models where we have

a whitebox PIT algorithm, we also have a blackbox algorithm, with little worse

parameters in few cases. Blackbox PIT is equivalent to the concept of hitting

sets. Hitting sets is a collection of field points which suffice to test zeroness of

a circuit class. They are designed in a way that any non-zero polynomial must

evaluate to a non-zero value on at least one point in the hitting set, and if a

circuit evaluates to zero on all the points in the hitting set, then we mark it a

zero polynomial. Note that different non-zero polynomials of the same class may

hit a non-zero value on different points in the hitting set.

Chapter 2. Introduction 8

2.5 Applications of PIT

• Testing equivalence of two polynomials f, g can also be posed as a PIT ques-

tion of checking zeroness of the polynomial f − g. Many researchers find such

change of representation more useful, as they have now to deal only with a single

polynomial.

• As mentioned earlier also, the problem of deciding existence of perfect matching

in a graph efficiently can be seen as a question of finding efficient PIT algorithm

for the determinant polynomial of the graph’s Tutte matrix. The n × n Tutte

matrix A of a graph G = (V,E) with n vertices is defined as:

Ai,j =

xi,j if (i, j) ∈ E and i < j

−xj,i if (i, j) ∈ E and i > j

0 otherwise

Tutte proved in 1947 that the multivariate determinant polynomial of matrix

A is identically non-zero if and only if there exists a perfect matching in G.

This immediately gives a fast RNC randomized parallel algorithm, since PIT

has a randomized algorithm, and computing determinant has known fast parallel

algorithms. Mulmuley et al. [MVV87] showed using their famous isolation lemma

that even the search version of finding a perfect matching is in RNC. It is

still open to completely derandomize isolation lemma. Recently, Rohit Gurjar

(almost) derandomized Isolation Lemma for the case of planar bipartite graphs,

which puts the problem in quasiNC for such graphs.

• We know primality testing was one of the first problems that demonstrated the

power of randomized algorithms. The first deterministic primality testing algo-

rithm was the celebrated AKS Primality Testing [AKS04], which finally put the

problem in P. It was solved by formulating the problem as a PIT question. It was

observed that the univariate polynomial f = (x+1)n−(xn+1) is identically zero

if and only if n is prime (converse is evident from Frobenius endomorphism). In

AKS, the authors were able to give a poly(log n) time polynomial identity testing

algorithm by testing zeroness of f modulo few O(log n) degree polynomials.

• PIT also has interesting connections with lower bounds in arithmetic circuit com-

plexity. [KI03] proved that PIT ∈ P ⇒ NEXP 6⊆ P/poly or VNP 6= VP. [AV08]

Chapter 2. Introduction 9

showed that solving blackbox PIT (or hitting set) for a circuit class gives a hard

polynomial for that class. There is almost a converse also, that is finding a hard

function for the circuit class VP immediately gives a quasi polynomial hitting set

(or blackbox PIT) for that class. So, both the approaches are almost equivalent.

2.6 Our results

Chapter 4 gives polynomial time hitting set for the circuit class
∑3∧∑∏

, which is

the diagonal depth four model with top fan-in three, and power gates having equal

fan-ins. This uses the polynomial analog of Fermat’s last theorem, which is a direct

corollary from Mason Stother’s Theorem, which itself is the polynomial analog of abc

conjecture. We prove that sparse PIT algorithm which works for
∑∏

circuit class

also works in this model. We also show proof of Mason’s Theorem [Sto81, Mas84] for

the sake of completeness.

In Chapter 5, we first explain and motivate the concept of cone closure after applying

shift to a polynomial. Then, for the case of characteristic zero fields, we give a very

simple proof of the presence of cone closure in the least basis of coefficient space

obtained after applying a random shift to the variables of any polynomial. Then, we

extend the result for characteristic p fields.

In Chapter 6, we will observe an intriguing property about the linear independence of

powers of polynomials. We will prove that if a set of k polynomials is just pairwise

linearly independent, then their constant powers will be almost always mutually linearly

independent, except for at most
(
k−1

2

)
exceptions. This is an interesting structural

property we came across, and which has a very elementary proof using the tool of

Wronskians.

Chapter 3

Background

In this chapter, we briefly discuss few concepts, lemmas, and theorems which shall be

used in the results of subsequent chapters. Let us start with formal definitions of PIT

and hitting sets.

3.1 Formal Definitions

Definition 3.1 (Polynomial Identity Testing [For14]). Let C be a class of circuits

having size ≤ s, which compute polynomials in F[x1, . . . , xn] of degree < d. The PIT

problem for this class C asks for a deterministic algorithm to test whether a polynomial

fC , computed by a circuit C ∈ C, is identically zero or not. The algorithm is considered

efficient if it uses only poly(s,n,d) F operations.

If the algorithm uses the input circuit C, to only evaluate it at points in Fn, then it is

called a blackbox algorithm, and whitebox when it also considers the internal gates of

C.

Definition 3.2 (Hitting Set [For14]). Let C be a class of circuits having size ≤ s,

which compute polynomials in F[x1, . . . , xn] of degree < d. A hitting set H ⊆ Fn for

the circuit class C is a set of points such that if a circuit C ∈ C computes a non-zero

polynomial fC , then ∃α ∈ H such that f(α) 6= 0. The converse is trivial, that is, if C

computes a zero polynomial fC , then fC(α) = 0, ∀α ∈ H.

10

Chapter 3. Background 11

Thus, giving a poly(s, n, d) sized hitting set H for a circuit class C, gives an efficient

blackbox PIT for C. For an input circuit C ∈ C computing a polynomial fC , we just

evaluate fC on all the points in H. If there exists, a point α ∈ H such that fC(α) 6= 0,

then we output NON-ZERO, otherwise ZERO. Note that each evaluation takes at most

O(s) F operations. Thus, in total, we have a poly(s, n, d) time blackbox algorithm.

(In PIT setting, we assume that each F addition or multiplication takes unit time).

For univariate polynomials, a simple blackbox PIT algorithm is to pick any distinct

d+ 1 points from F, where d is the degree of polynomial. If the polynomial evaluates

to 0, on all the points, then it is zero, otherwise non-zero. And a trivial whitebox

algorithm for univariate polynomials would be to simply expand out the polynomial,

and check each coefficient. This can be done efficiently since maximum number of

monomials is d+ 1. However, these trivial algorithms fail for multivariate polynomials.

For example, a simple multivariate polynomial like x − y has infinite set of roots

S = {. . . , (−1,−1), (0, 0), (1, 1), . . . }. This means that we do not have a trivial

deterministic blackbox algorithm. As for the whitebox case, recall the fact that a

n-variate degree d polynomial has at most
(
n+d
d

)
many monomials which is quite large

for big values of n, d and thus simply expanding out the polynomial won’t also work.

Now, we will show that PIT has an efficient randomized algorithm, due to famous

Schwartz Zippel Lemma.

Lemma 3.3 (Schwartz-Zippel Lemma [Sch80]). Let f ∈ F[x1, . . . , xn] be a non-zero

polynomial of total degree d ≥ 0. Let S be any finite subset of F, and let α1, α2, . . . , αn

be elements selected independently, uniformly and randomly from S. Then

Prα1,...,αn∈S[f(α1, . . . , αn) = 0] ≤ d

|S|

This lemma has a simple inductive proof, where the base case n = 1 is true from

the fact that a univariate polynomial of degree d has at most d roots. And the

lemma generalizes this fact for multivariate polynomials. This immediately gives the

following randomized blackbox algorithm which puts PIT in coRP: Given a circuit

C computing a polynomial fC . Pick any arbitrary set S of size > d + 1. Pick a

random (α1, . . . , αn) ∈ Sn. If fC(α1, . . . , αn) = 0, then simply output ZERO else

output NON-ZERO. In other words, PIT is asking for an efficient derandomization of

Schwartz Zippel Lemma. A trivial derandomization is to check (d+ 1)n many points,

Chapter 3. Background 12

but that is inefficient for large values of n, d. This derandomization is formally stated

in the following lemma by N. Alon known as the combinatorial nullstellensatz.

Lemma 3.4 (Combinatorial Nullstellensatz [AT99]). Let f ∈ F[x1, . . . , xn] be a non-

zero polynomial of individual degree d. Let S be a set of distinct field values of size

> d. Then, there exists a point α ∈ Sn such that f(α) 6= 0.

3.2 Sparse PIT

We start with the simplest model first -
∑∏

. A circuit C of
∑∏

class computes a

polynomial fC , which is simply sum of monomials, where the number of monomials is

bounded by size of circuit C, say s. We call such a polynomial fC , a sparse polynomial.

The whitebox PIT for this class is trivial, since we simply collect coefficients of at most

s monomials. The Blackbox PIT is not so straightforward. But, as we will see, the

PIT for this model is very important and fundamental in this field.

Kronecker Map: Let f be a polynomial in F[x1, . . . , xn] with maximum individual

degree d, of sparsity m computed by a circuit C of size s . Then consider the poly-

nomial g = f(y, yd, yd
2
, . . . , yd

n−1
) ∈ F[y], where we substitute variable xi → yd

i−1
.

Observe that a monomial mē = c ·xe11 x
e2
2 . . . xenn will map to m′ē = c ·ye1+e2d+...+endn−1

.

This is same as viewing the exponent vector ē = (en, en−1, . . . , e1) in d-ary represen-

tation (en, en−1, . . . , e1)d. Therefore, two different monomials (two different exponent

vectors) will map to two different exponents of y, since each ei < d and d-ary repre-

sentation is unique. Also, the map leaves the constant term untouched, and is thus

oblivious of constants. Hence, PIT for a multivariate sparse polynomial f reduces to

PIT for a univariate polynomial g. But, note that the power to reduce number of

variables comes at the cost of increasing the degree. After the Kronecker substitution

of f , the maximum possible degree of g can be of the order dn. Therefore for PIT,

evaluating g at deg(g) + 1 many points is inefficient. But fortunately, we do not have

to evaluate at so many points as elicited by the following theorem.

Theorem 3.5 (Sparse PIT [Agr05, Sax09]). Let f be a non-zero polynomial in

F[x1, . . . , xn] with maximum individual degree d, and sparsity m. Then there exists

1 ≤ r ≤ (mn log d)2 such that, f(y, yd, yd
2
, . . . , yd

n−1
) 6= 0(mod yr − 1).

This immediately gives a blackbox algorithm which runs in time poly(s,m). For each

r ∈ [(mn log d)2], we compute d, d2, . . . , dn−1 mod r using repeated squaring and

Chapter 3. Background 13

evaluate the circuit at C(y, yd, . . . , yd
n−1

)mod (yr − 1). We declare f to be ZERO if

and only if all these evaluations are zero.

Another noteworthy point is that, sparse PIT map φ can be seen as a variable map for

whichever value of r ∈ [(mn log d)2] works out from Theorem 3.5. This makes φ a ring

homomorphism from F[x1, . . . , xn]→ F[y], and thus it preserves polynomial addition

and multiplication. Sparse PIT also has a plethora of other algorithms and proofs, for

which the interested reader is referred to [SY10, KS01, BHLV09]. The
∏∑

class has

an even simpler PIT algorithm, and we leave it for the readers to verify it themselves.

3.3 Depth Reduction

Next, we consider the depth-3 circuit class
∏∑∏

, which computes polynomials of

the type f = f1f2 . . . fk, where each fi is a sparse polynomial. Note that such a

polynomial f can be zero if and only if each fi is zero. Thus, the PIT for this class

reduces to PIT for
∑∏

class, which is the sparse PIT itself.

Now, consider the depth-3 circuit class
∑∏∑

, which computes polynomials of the

type f =
∑k

i=1

∏di
j=1 lij, where each lij is a linear polynomial in F[x1, . . . , xn]. PIT for

depth-3 model is still open, but it has been solved in the restricted cases: like depth-3

with constant top fan-in has a polynomial time PIT algorithm ([KS09, SS12, SS13]).

Set multilinear depth-3 and depth-4 models have quasi-polynomial time PIT algorithms

([ASS13, FSS14, AGKS13]). Multilinear depth-3 PIT is still open.

This gives us insight that depth-3 and depth-4 models are very general and capture the

complexity of PIT for general arithmetic circuits. This intuition is not misplaced, as was

proved by the depth-3 and depth-4 chasm results in [VSBR83, AV08, GKKS13]. Most

recently, it has been proved in [AFGS17] that even PIT for tiny diagonal depth four

circuit class (
∑k∧a∑∏b) in time poly(s, 2O(n+b), µ(a)) implies quasi-polynomial

PIT for VP circuit class, where n = O(log s), b = O(log s), and a is arbitrary small

non-constant. This motivates Chapter 4 of our thesis, in which we give polynomial

time PIT algorithm for
∑3∧a∑∏

circuit class, which is diagonal depth 4 circuit

with top fan-in 3 and where powering gates have equal fan-in a.
∧

gates are simply∏
gates where all inputs to the gate is a single input polynomial, variable or constant.

Chapter 3. Background 14

3.4 Shifts and concentration

In the past two decades, a lot of algebraic tools and techniques have been devised to

better understand the complexity of polynomials computed by some class of circuits. Xi

Chen et al. in their survey [CKW11] explain how partial derivatives can be employed

to give lower bounds and PIT for few circuit classes.

Another technique is that of faithful morphisms where we devise a homomorphism

φ : F[x1, . . . , xn] → F[y1, . . . , yk] that preserves a certain algebraic property of the

polynomials that belong to a certain class. The property to be preserved in the image

space should be such that it suffices to give an efficient hitting set for the polynomials

of that class. For example, sparse PIT map φ : F[x1, . . . , xn]→ F[y] in Theorem 3.5

preserves the non-equality of two monomials of a sparse polynomial. Similarly, it can be

shown that an efficient homomorphism φ that preserves gcd of two sparse polynomials,

will yield hitting set for the circuit class
∑2∏∑∏

, which is the depth four model

with top fan-in 2. Blackbox PIT for this model is still open while the whitebox PIT

for the tiny version of this model can be seen in [Kal17]. Use of faithful morphisms in

giving PIT algorithms can be studied in [SS12, BMS13, ASSS12].

The last and more important technique in context of this thesis is that of rank con-

centration. In [FSS14, ASS13, AGKS13] it has been shown that after applying a

shift to a polynomial computed by a ROABP (read once arithmetic branching program

which also subsumes the class of constant depth set multilinear circuits), the shifted

polynomial obtains the following property: The rank of its coefficients viewed as F-

vectors is concentrated in low support monomials. We will briefly discuss low support

concentration but the interested reader is refered to [For14, Gur16, Kor16] for detailed

explanation on ROABPs and low support concentration. We will also discuss about a

new form of rank concentration called cone size concentration, and its implications.

Low support concentration: Consider a polynomial f ∈ Fk[x], where the coefficients

are from a k dimensional vector space. By low support concentration in polynomial f ,

we mean that the coefficients of the low support monomials span the whole coefficient

space of the polynomial. Coefficient space is simply the span of the coefficients of the

monomials of f . Therefore a < l support concentrated polynomial f is non-zero if and

only if there is at least one monomial of support < l which has a non-zero coefficient.

Therefore for such cases, PIT reduces to PIT of low support monomials. We formally

define l-concentration now:

Chapter 3. Background 15

Definition 3.6 (l-concentration [Kor16]). The polynomial f ∈ Fk[x] is l-concentrated

if rankF {coefff x̄
ē | ē ∈ Nn, supp(ē) < l } = rankF {coefff x̄

ē | ē ∈ Nn }.

If a polynomial is l-concentrated, then its PIT reduces to PIT for a l variate polynomial.

Since maximum number of monomials is
(
l+d
l

)
which is O(dl). Therefore PIT of f can

be done in polynomial time if l is constant and quasi-polynomial time if l = O(log s).

In [AGKS15], the authors have shown O(log s) support concentration after a shift,

thus giving a quasi polynomial time hitting set for ROABPs and sum of constantly

many set multilinear circuits.

Mostly, the polynomial by itself is not low support concentrated, but becomes one

after a suitable efficiently designed shift. As a simple example, consider the polynomial

f = x1x2 . . . xn, which is not < n-concentrated, but becomes < 1−concentrated after

a simple shift xi → xi + 1. The new polynomial f ′ = (x1 + 1) . . . (xn + 1) has a non-

zero constant term 1. Also, note that a general polynomial f is zero if and only if the

shifted polynomial f ′ is zero, since shift is an invertible operation. Therefore PIT for

f is equivalent to PIT for f ′. Shifts are also used in factorization algorithms. Next,

we talk about a new form of rank concentration called, cone size concentration.

Cone size concentration: In the tiny models regime, the arity of polynomials is

restricted to O(log s), where s is the size of circuits. Note that a polynomial f with

this much arity will have at most quasi polynomial number of monomials, because(
n+d
d

)
= sO(log s), for n = O(log s) and d = O(s). Therefore, we need a strictly

polynomial sized hitting set for such models, because quasi-polynomial is already trivial.

This calls for a better measure than < log s support concentration. Cone size ≤ k-

concentration is one such measure. We start with basic definitions.

A monomial mā = ca x
a1
1 x

a2
2 . . . xann belongs in the cone of another monomial mb̄ =

cb x
b1
1 x

b2
2 . . . xbnn if x̄ā divides x̄b̄, or equivalently ā ≤ b̄, where ≤ is component wise.

We define cone for a monomial or equivalently for its exponent vector ē as:

cone(ē) = { f̄ ∈ Zn | 0̄ ≤ f̄ ≤ ē }

For example cone(xd) = { 1, x, x2, · · · , xd }, and cone(x2y) = { 1, x, x2, y, xy, x2y }.
And now we define cone size of a monomial as simply the number of monomials

Chapter 3. Background 16

which divide it, that is the number of monomials in its cone.

cs(ē) = |cone(ē)| =
∏
i∈[n]

(ei + 1)

Lemma 3.7 (cs concentration ⇒ Hitting set [AFGS17]). The number of monomials

of maximum arity n, and cone size ≤ k is O(2n · k2).

Proof. First, let us suppose the monomials have a fixed arity n, and we wish to upper

bound the cardinality of set I = {m | m has arity n and cone size(m) ≤ k}. Let

T (n, k) denote the cardinality of I. Observe that a monomial xe11 x
e2
2 . . . xenn of arity n

has cone size ≤ k if (e1 + 1)(e2 + 1) . . . (en + 1) ≤ k. Therefore,

T (n, k) =

∣∣∣∣∣
{

(e1, . . . , en) |
n∏
i=1

(ei + 1) ≤ k and ∀i, ei > 0

}∣∣∣∣∣
T (n, k) ≤ T

(
n− 1,

k

2

)
+ T

(
n− 1,

k

3

)
+ . . .+ T (n− 1, 1)

This recurrence relation has a simple inductive proof. Letting T (n, k) ≤ k2 works

because,

T (n, k) ≤ k2

22
+
k2

32
+ . . .+ 1

T (n, k) ≤ k2

(
−1 +

∞∑
i=1

1

i2

)

T (n, k) ≤ k2

(
π2

6
− 1

)
T (n, k) ≤ k2

This fixes |I| ≤ k2, where the monomials had arity exactly n. Now let J be the set of

all monomials of arbitrary arity ≤ n with cone size ≤ k. J = {m | cone size(m) ≤ k}.
This means |J | ≤ 2n · k2.

For, arity O(log s) polynomials, this translates to poly(s) sparsity. Thus, if we are able

to show rank concentration in the form of cone size ≤ poly(s)-concentration in such

polynomials, the question of PIT reduces to PIT of cone size ≤ poly(s) monomials

which further reduces to sparse PIT from the arguments in above lemma.

Chapter 3. Background 17

All this is good in theory, but one may ask, is cone size concentration even achievable?

Our result in Chapter 5 shows that on applying a random shift to a general polynomial

f ∈ Fk[x], we achieve cone size ≤ k concentration, which is strictly better than

the low support concentration. For the purposes of PIT, we need to construct a

deterministic, efficiently computable shift by exploiting the inherent structure of a

model. The usefulness of this measure has come to light in the recent result of

[AFGS17], where the authors achieve cone size concentration in diagonal depth 3

model by applying a basis isolating weight assignment shift, thus giving blackbox PIT

algorithm of complexity sd2O(n), which is polynomial for log s number of variables.

Chapter 4

Special Diagonal Depth-4 PIT

4.1 Introduction

A polynomial f computed by a
∑3∧a∑∏

circuit of size s is of the form f =

fa1 +fa2 +fa3 , where f1, f2, f3 have sparsity less than s, and powering gates have equal

fan-in a. So, the problem of identity testing of polynomial f asks to check whether

fa1 + fa2 = fa3 in blackbox and in time polynomial in input circuit size s. Most of the

PIT algorithms have a common trend. Design a map φ, which reduces the number of

variables (to constant, in most cases). Thus, the simple blackbox PIT algorithm is to

simply apply variable map φ, which significantly reduces the complexity of polynomial

and find a hitting set for it. For example, in our case we will apply sparse PIT to make

it a univariate polynomial of polynomial degree and test on degree + 1 many points.

All the effort in PIT goes mainly in proving why the map φ works. That is, to prove

C = 0⇐⇒ φ(C) = 0.

Originally, we were attacking two variations of depth four model. The first one is

the tiny depth four model
∑k∏a∑∏b which computes polynomials of the form

f =
∏a1

i=1 f1i + · · · +
∏ak

i=1 fki with added restrictions that total number of variables

is O(log s), and fan-in of bottom
∏

gate is b = O(log s), (in other words total degree

of each fji is bounded by O(log s)). The second variation we studied was the tiny

diagonal depth four circuit model
∑k∧a∑∏b which is same as tiny depth four model

with its restrictions, the only difference being the powering gate instead of top product

gate. We note that tiny diagonal depth four circuit reduces to tiny depth four circuit.

More precisely
∑2k∧a∑∏b reduces to

∑k∏a∑∏b, since fa1 + fa2 + fa3 + fa4 +

18

Chapter 4. Special Diagonal Depth-4 PIT 19

· · ·+ fa2k−1 + fa2k =
∏a

i=1(f1 +ω1f2) +
∏a

i=1(f3 +ω2f4) + · · ·+
∏a

i=1(f2k−1 +ωkf2k),

where ω1, · · · , ωk are some ath roots of -1 (not necessarily distinct).

Our result does not assume tiny restrictions in the diagonal depth four model, but it is

has two other restrictions — top fan-in 3, and equal fan-ins of powering gates. Also,

it requires that characteristic of the base field F does not divide a. In the subsequent

sections, we show an easy hitting set of
∑2∧a∑∏

, followed by our main result of

hitting set for
∑3∧a∑∏

. Kartik Kale in his MTech thesis [Kal17] gives the whitebox

PIT algorithm for tiny
∑2∏a∑∏b, which also covers only the whitebox PIT for tiny∑4∧a∑∏b, by the reduction argument discussed above.

For the
∑3∧a∑∏

case, we make use of Mason Stother’s theorem to show that the

variable reduction map of sparse PIT from Theorem 3.5 also works for this case. A

direct corollary of Mason’s theorem is the polynomial analog of Fermat’s Last Theorem.

We observed that the PIT problem for this case looked similar to FLT, and successfully

used that FLT theorem to show that a linear independence preserving variable map

suffices. Since, the sparse PIT map preserves linear independence of a constant number

of sparse polynomials, it suffices for this model. The detailed proof can be verified in

Section 4.3. Our main result is stated formally in the following theorem:

Theorem 4.1. Let f ∈ F[x] be a polynomial computed by a
∑3∧a∑∏

circuit of

size s, such that f = fa1 + fa2 + fa3 , where fi’s are of sparsity O(s). Then, there is

poly(s) sized hitting set for f .

4.2 Top fan-in 2 diagonal depth 4

First, we warm up with the simple problem of finding hitting set for the class of∑2∧a∑∏
circuits. One can skip this portion, and jump to Section 4.3 which

proves our main theorem, which is quite independent of the discussion here.

Lemma 4.2. Let f ∈ F[x] be a polynomial computed by a
∑2∧a∑∏

of size s,

such that f = fa1 + fa2 , where f1, f2 are of sparsity O(s). Then, there is poly(s) sized

hitting set for f .

Proof. Testing f = 0 can be rephrased as testing equivalence of polynomials fa1 , f
a
2 .

Note that though f1, f2 are sparse, fa1 , f
a
2 may not be sparse. Hence, sparse PIT map

cannot be trivially used. But we show that nevertheless, sparse PIT map will work,

Chapter 4. Special Diagonal Depth-4 PIT 20

which follows from the simple observation that fa1 = fa2 if and only if f1 = ωf2, where

ω is some ath root of unity. Note that if the base field does not contain primitive roots

of unity, then we are in a simpler case, where fa1 = fa2 if and only if f1 = f2. In other

words f1 must be proportional or linearly dependent on f2, for their ath powers to be

equal. Since, the sparse PIT map preserves proportionality, it suffices.

More formally, let ω1, · · · , ωa be the ath roots of unity. Then, if I can find a point α

such that ∀i ∈ [a], f1 − ωif2(α) 6= 0, then fa1 + fa2 (α) 6= 0. Let f1, f2 be of sparsity

s1, s2 respectively, and let H be the blackbox hitting set for f1 − ωif2, ∀i ∈ [a],

obtained in poly(s) time using sparse PIT map for the class of polynomials of sparsity

s1 + s2 = O(s). Then the same hitting set H will work for fa1 + fa2 because if

fa1 + fa2 6= 0, then ∀ωi, f1 − ωif2 6= 0 ⇒ we can find hitting set H in poly(s) time

such that ∃α and f1 − ωif2 6= 0, ∀i ∈ [a]⇒ fa1 + fa2 (α) 6= 0. For the converse side,

if fa1 + fa2 = 0, then ∀α ∈ H, fa1 + fa2 = 0 trivially. Note that the hitting set obtained

by sparse PIT map for the class of circuits of sparsity s1 + s2 is special for us, in the

sense that ∃ a single α ∈ H such that f1−ωif2 6= 0 for all ωi. This is because sparse

PIT map is only a variable map which is oblivious of constants (and does not look

inside the circuit), hence changing the constant ωi will not affect the PIT map.

4.3 Top fan-in 3 diagonal depth-4

In this section, we give proof of our main theorem, Theorem 4.1. First, let us state

the corollary of Mason Stother’s theorem which we will prove later in Section 4.4, but

will use it directly here in our proof.

Corollary 4.3 (FLT polynomial analog [Lan02]). Let a(t), b(t), c(t) ∈ F[t] be three

co-prime polynomials. If a(t)n + b(t)n = c(t)n with n > 2, and if characteristic of

base field F does not divide n, then a(t), b(t), c(t) are all constant polynomials.

First, let us directly state the simple PIT algorithm for this model, which is like every

other model. All the effort is in proving its correctness, which we will discuss in detail

afterwards.

Algorithm: Given input a
∑3∧a∑∏

circuit computing polynomial f of the form,

f = fa1 + fa2 + fa3 . Apply sparse PIT map Φ on f . Then f = 0⇐⇒ Φ(f) = 0. Check

whether Φ(f) = 0 in polynomial time. Output ZERO, if Φ(f) = 0, and NON-ZERO

otherwise.

Chapter 4. Special Diagonal Depth-4 PIT 21

Proof of Theorem 4.1. If f = 0, then Φ(f) = 0 trivially, since Φ is only a variable

map. Now, we need to prove that if Φ(f) = 0, then f = 0. As a preprocessing

step, assume a ≥ 3, because for a = 1, or 2, f itself will be sparse, and hence

sparsePIT map Φ will work. Also, for the sake of clarity, let f = fa1 + fa2 − fa3 , so that

f = 0 ⇐⇒ fa1 + fa2 = fa3 . This can be done safely as negative sign can be absorbed

inside the polynomial f3. Now, we prove the converse. Assume that Φ(f) = 0. Then,

since Φ is a ring homomorphism, it is additive and multiplicative. Thus,

Φ(f) = 0

Φ(fa1 + fa2) = Φ(fa3)

Φ(f1)a + Φ(f2)a = Φ(f3)a (4.1)

Now, we can use Corollary 4.3 since Φ(f1),Φ(f2),Φ(f3) are univariate polynomials,

and a > 2. But it may be the case that Φ(f1),Φ(f2),Φ(f3) are not co-prime which is

a condition required to apply Corollary 4.3. Suppose that they are not co-prime, say

Φ(f1) and Φ(f2) share a common factor, then the equality dictates that Φ(f3) must

also share the same factor. Let g = gcd(Φ(f1),Φ(f2),Φ(f3)). Then divide equation

Equation (4.1) by ga on both sides, to get

ga1 + ga2 = ga3 , where gi =
Φ(fi)

g
(4.2)

Now since, g1, g2, g3 are co-prime we can use Corollary 4.3 to deduce that all of g1, g2, g3

are constants. This means,

Φ(f1) = g · g1 ⇒ f1 = h1 · g1, where Φ(h1) = g

Φ(f2) = g · g2 ⇒ f2 = h2 · g2, where Φ(h2) = g

Φ(f3) = g · g3 ⇒ f3 = h3 · g3, where Φ(h3) = g

The above equations hold since Φ is F-algebra homomorphism, in particular Φ(constant

· polynomial) = constant · Φ(polynomial). Note that Φ(h1) = Φ(h2) = Φ(h3) ⇒
Φ(h1 − h2) = Φ(h2 − h3) = 0. Since h1 − h2 and h2 − h3 are also sparse, sparse

PIT map Φ gives that Φ(h1 − h2) = 0 ⇒ h1 − h2 = 0 ⇒ h1 = h2. Similarly,

Chapter 4. Special Diagonal Depth-4 PIT 22

h2 = h3 = h1 = h (say). This means

f = fa1 + fa2 − fa3
f = ha · (ga1 + ga2 − ga3)

f = 0 [From Equation (4.2)]

Thus Φ(f) = 0⇒ f = 0.

Note that we can construct Φ in poly(s) time which separates every pair of monomials

from the set which contains all the different monomials of sparse polynomials h1, h2, h3

together. Thus, a single map Φ for h1 +h2 +h3 will preserve zeroness or non-zeroness

of h1 − h2 and h2 − h3. Thus instead of preserving non-zeroness of fa1 , f
a
2 , f

a
3 which

would have been costly, we are just preserving non-zeroness of h1, h2, h3 or equivalently

f1, f2, f3 which suffices for this model.

4.4 Mason Stothers Theorem

For the sake of completeness, in this section, we will give the proof of Mason Stothers

Theorem and the consequent Corollary 4.3. Blackbox PIT for
∑3∧a∑∏

has already

been covered in Section 4.3. The theorem was reportedly discovered first by W. Wilson

Stothers in 1981, and rediscovered by R.C. Mason few years later. Mason Stother

Theorem is the proved polynomial version of famous ABC conjecture in number theory,

which is open till date.

Theorem 4.4 (Mason’s Theorem [Sto81, Mas84]). Let a(t), b(t), c(t) ∈ F[t] be

relatively prime polynomials over field F such that a+ b = c and not all of them have

vanishing derivative. Then,

max {deg(a), deg(b), deg(c)} ≤ deg(rad(abc))− 1

where rad(f) is the product of all distinct irreducibles of polynomial f (analogous to

radical of an integer).

We will cover Noah Snyder’s [Sny00] proof version of this theorem. First, consider this

lemma, which we shall use in the proof.

Chapter 4. Special Diagonal Depth-4 PIT 23

Lemma 4.5. [Sny00] Let f be a non-zero polynomial in K[x]. Then, deg(gcd(f, f ′)) ≥
deg(f)− deg(rad(f)).

Proof. Let f = ge11 g
e2
2 · · · g

ek
k , where gi’s are irreducibles. Then deg(f) = e1d1+e2d2+

· · ·+ ekdk, where di is degree of gi. Note that rad(f) = g1 · · · gk, and deg(rad(f)) =

d1 + · · ·+ dk. Now, taking formal derivative of f , we get

f ′ =
k∑
i=1

eig
ei−1
i g′i · g

e1
1 · · · g

ei−1

i−1 · g
ei+1

i+1 · · · g
ek
k

This implies that

ge1−1
1 ge2−1

2 · · · gek−1
k | gcd(f, f ′)

deg(gcd(f, f ′)) ≥ (e1 − 1)d1 + · · ·+ (ek − 1)dk

= e1d1 + · · ·+ ekdk − (d1 + · · ·+ dk)

= deg(f)− deg(rad(f))

Now, we are ready to prove Theorem 4.4.

Proof. Hypothesis gives,

a+ b = c (4.3)

a′ + b′ = c′ (4.4)

Multiply equation Equation (4.3) by a′ and subtracting it from Equation (4.4) multi-

plied by a, we get ab′−a′b = ac′−a′c. Similarly, we get ab′−a′b = cb′−c′b = ac′−a′c.
Let W = W (a, b) = W (a, c) = W (c, b) denote the value of these equal two dimen-

sional Wronskians. We claim that W 6= 0 since , if it were zero then ab′ = a′b⇒ a | a′,
since a, b are co-prime ⇒ a′ = 0. Similarly, then b′ = 0, c′ = 0 which contradicts our

hypothesis that at least one of a, b, c has a non-vanishing derivative. Hence, the Wron-

skian W is non-zero. Also, observe that gcd(a, a′), gcd(b, b′), gcd(c, c′) all divide W ,

Chapter 4. Special Diagonal Depth-4 PIT 24

and since these gcd’s are all co-prime, this implies that

gcd(a, a′) · gcd(b, b′) · gcd(c, c′) | W

deg(gcd(a, a′)) + deg(gcd(b, b′)) + deg(gcd(c, c′)) ≤ deg(W) (4.5)

Lemma 4.5 then gives the following:

deg(a)− deg(rad(a)) ≤ deg(gcd(a, a′)) (4.6)

deg(b)− deg(rad(b)) ≤ deg(gcd(b, b′)) (4.7)

deg(c)− deg(rad(c)) ≤ deg(gcd(c, c′)) (4.8)

We know that deg(rad(abc)) = deg(rad(a)) + deg(rad(b)) + deg(rad(c)), since a, b, c

are co-prime. Then, equations Equation (4.6), Equation (4.7), Equation (4.8) together

with Equation (4.5) implies

deg(a) + deg(b) + deg(c)− deg(rad(abc)) ≤ deg(W) (4.9)

Since, W = ab′ − a′b, we have that deg(W) ≤ deg(a) + deg(b) − 1. Therefore,

Equation (4.9) then implies

deg(a) + deg(b) + deg(c)− deg(rad(abc)) ≤ deg(a) + deg(b)− 1

deg(c) ≤ deg(rad(abc))− 1

Similarly,

deg(b) ≤ deg(rad(abc))− 1

deg(a) ≤ deg(rad(abc))− 1

This proves that max{deg(a), deg(b), deg(c)} ≤ deg(rad(abc))− 1

Finally, now we prove Corollary 4.3 which was the main tool we used in our PIT proof.

We restate it here for clarity.

Corollary 4.3 (FLT polynomial analog [Lan02]). Let a(t), b(t), c(t) ∈ F[t] be three

co-prime polynomials. If a(t)n + b(t)n = c(t)n with n > 2, and if characteristic of

base field F does not divide n, then a(t), b(t), c(t) are all constant polynomials.

Chapter 4. Special Diagonal Depth-4 PIT 25

Proof. We simply apply Mason’s Theorem [Sto81, Mas84] to the co-prime polynomials

a(t)n, b(t)n, c(t)n. Since the characteristic of F does not divide n, the polynomials

a(t)n, b(t)n, c(t)n have vanishing derivative only when a(t), b(t), c(t) have vanishing

derivative, in other words they are all constant. If they are not all constant, then the

equality is impossible to achieve as shown ahead. By Mason’s Theorem [Sto81, Mas84],

we get

max {deg(an), deg(b)n, deg(cn)} ≤ deg(rad(anbncn))− 1

n ·max {deg(a), deg(b), deg(c)} ≤ deg(rad(abc))− 1

Assume without loss of generality that deg(a) is maximum, then

n · deg(a) ≤ deg(a) + deg(b) + deg(c)− 1

3 · deg(a) ≤ deg(a) + deg(b) + deg(c)− 1 [since n ≥ 3]

deg(a) + deg(b) + deg(c) ≤ deg(a) + deg(b) + deg(c)− 1

0 ≤ −1

which is a contradiction. This completes the proof of our corollary. Note that the

equality can hold in case of field constants. This does not contradict Fermat’s Last

Theorem for integers, which requires a, b, c to be integers. For example in C[x],

13 + 23 = ω3, where ω is cube-root of 9. We have infinite such examples in C[x].

4.5 Conclusion and Future work

This section described blackbox PIT algorithms for diagonal depth four models with

top fan-in 2 and 3 with the additional restriction that powering gates have equal fan-in.

The first step would be to remove the equal fan-in restriction. But more importantly,

we wish to make the top fan-in flexible. First, solving for constant k, itself seems very

non-trivial. After that, solving for a general k, would imply solving PIT for the class

of VP circuits (a quasi-polynomial time algorithm), because of the depth four chasm

result due to [AV08]. But more recently, it has been shown in [AFGS17] that even

solving PIT for the so called tiny diagonal depth four model, namely
∑k∧a∑∏b

circuits in time poly(s, 2O(n+b), µ(a)) suffices to give quasiP PIT algorithm for VP

circuits, where µ is some function. We also have depth-3 chasm result, so one may

Chapter 4. Special Diagonal Depth-4 PIT 26

question the need of working on depth four models. It is simply because, depth four

model gives us more special instances to work on, and we hope that the tools and

insights used in solving these very special cases, give us a better insight for finding

the solution to the more general and difficult PIT models. The ultimate destination of

every researcher working in the field of PIT is, of course, to solve the problem for the

class of VP circuits.

Chapter 5

Cone Closure

5.1 Introduction

In this chapter, we explain the concept of cone closure and its form of occurrence

in a shifted polynomial. Here, we give only a structural result and not any PIT

algorithm, as we use a random shift. Though, we do explain its connection with

cone size concentration and hence with PIT. Derandomizing the shift in an efficient

way will yield a true PIT algorithm, which was recently done for diagonal depth-3

circuits in [AFGS17]. That result requires 0 or large characteristic fields. But here

we complete the notion of cone closure and prove its existence even for the small

characteristic fields. But the traditional definition fails for such fields, and thus, we

require a different definition of cone for such fields, which makes the resulting PIT less

efficient.

This chapter is notation heavy, and the reader is advised to look up Chapter 1 before

proceeding. First we talk about 0 or large characteristic fields. Recall the definitions

of cone, cone size and the connection of cone size with hitting sets from Section 3.4.

Here, we give an even stronger notion of cone closed basis. We say that a set S of

monomials is cone-closed if for every monomial m ∈ S, its cone is also present in S.

More formally,

∀ē ∈ S, cone(ē) ⊆ S

For example the set S1 = { 1, x, y, y2, xy, xy2, z, xz } is cone closed, while set S2 =

{ 1, x, y, xy, z, xz, xyz } is not, since yz /∈ S2 but yz ∈ cone(xyz).

27

Chapter 5. Cone Closure 28

5.2 Coefficients in a randomly shifted polynomial

Before we discuss the result for general multivariate polynomials, let us first consider

univariate polynomials to develop intuition for cone closure. Let F (x) ∈ Fk[x] be a

univariate polynomial of degree d. Let us shift the variable x by a formal variable t.

The notion of a shift by a random point and shift by a formal variable is equivalent.

Let F (x+ t) be the shifted polynomial over F(t)[x], where we include formal variable

t in the base field, and treat it as a constant.

F (x) =
d∑
i=0

zix
i

F (x+ t) =
d∑
i=0

z′i(t)x
i

where z′i(t) ∈ F(t) (field of fractions of F[t]). Derive the following relation between

the coefficients of F (x) and F (x+ t) by applying binomial theorem.

[
0!z′0 1!z′1 · · · d!z′d

]
=
[
0!z0 1!z1 · · · d!zd

]
·

1 0 0 · · · 0
t
1!

1 0 · · · 0
t2

2!
t
1!

1 · · · 0
...

...
...

. . .
...

td

d!
td−1

(d−1)!
td−2

(d−2)!
· · · 1

∂t(i!z

′
i) = (i+ 1)!z′i+1, ∀0 ≤ i ≤ d− 1

∂t(z
′
i) = (i+ 1)z′i+1

This has a strong implication. If z′0 = 0, then z′i = 0,∀i ∈ [d]. This means that if for

a polynomial F (x) ∈ Fk[x], the constant term (x-free term) in the shifted polynomial

F (x + t) = 0 then the shifted polynomial is identically zero (since all the coefficients

are 0), which means F (x) is identically zero. Again, the catch here is that the shift

by formal variable t means the constant term is itself a univariate polynomial in t,

infact of degree d again. But, the good thing is that the rank of the coefficient space

has become concentrated in the first term z′0. In other words, we achieve cone size

= 1 concentration. Therefore, PIT through this route is still randomized, but may

be derandomized more easily with this approach. Nonetheless, it is still an intriguing

property, which can also be seen from the Taylor series of F at point t.

Chapter 5. Cone Closure 29

Now, we proceed to the main multivariate case. Let us shift a general polynomial

randomly, and try to find relation among its coefficients. Let F (x̄) ∈ (Fk)[x̄] be a

non-zero polynomial with individual degree d. Let F ′(x̄+ t̄) be the shifted polynomial

where xi → xi + ti. Assume ch(F) = 0.

Let F (x̄) =
∑

0̄≤ē≤d̄

zē · x̄ē, where zē are coefficients ∈ Fk

F ′(x̄+ t̄) =
∑

0≤ē≤d̄

z′ē · x̄ē, where z′ē ∈ Fk(t̄)

Again by applying binomial expansion and collecting coefficients, we get:

ē! · z′ē =
∑
ē≤f̄≤d̄

(f̄ ! · zf̄) ·
t̄f̄−ē

(f − e)!

This implies that:

z′ē =

(
∂x̄ē

ē!
· F ′
)∣∣∣∣∣

x̄=0̄

=

(
∂x̄ē

ē!
· F

)∣∣∣∣∣
x̄=t̄

∂t̄f̄

f !
·
(
z′ē
)

=

(
∂x̄ē+f̄

e!f !
· F

)∣∣∣∣∣
x̄=t̄

=

(
ē+ f̄

)
!

e!f !
· z′ē+f̄

∂t̄f̄

f !
·
(
z′ē
)

=

(
ē+ f̄

ē

)
· z′ē+f̄ (5.1)

This means that the higher degree coefficient can be obtained by applying ∂ operator

on lower degree coefficient (which is in its cone). In other words two coefficients in the

shifted polynomial are related if there is a sub-monomial relationship between them.

Now, we use this result to prove an interesting theorem in the next section.

Chapter 5. Cone Closure 30

5.3 Cone closed basis

First, define a valid monomial ordering, say the simple lexical ordering (1 < x1 < x2 <

· · · < xn). We can consider a least basis of coefficients B in the shifted polynomial

based on this ordering (over F[t̄]. Just apply the greedy approach. First consider the

constant term coefficient, put it in the basis, then consider coefficient of next term as

per the lexical ordering, check if it is linearly independent on the coefficients already in

basis constructed till now, if not include it in the basis, otherwise not. Then consider

the immediate next term and so on.

Theorem 5.1. Let F (x̄) ∈ (Fk)[x̄] be a non-zero polynomial. Let F ′(x̄ + t̄) have

the least basis B over F(t̄), with respect to a monomial ordering, say lexical ordering

(x1 < x2 < · · · < xn). Then B is cone-closed.

Proof. Assume for the purpose of contradiction that B is not cone-closed. Then by

definition of cone-closure ∃z′ē ∈ B such that z′ē′ /∈ B for some ē′ < ē (strictly < in at

least one coordinate). This implies

z′ē′ ∈
〈
z′f̄ | f̄ <lex ē

′
〉
F(t̄)

Note that <lex is based on the monomial ordering. It does not imply that f̄ ∈ cone(ē′).

∂t̄ē−ē′ (z′ē′) ∈
〈
z′f̄ | f̄ <lex ē

′
〉
F(t̄)

+
〈
∂t̄ē−ē′

(
z′f̄

)
| f̄ <lex ē

′
〉
F(t̄)

∂t̄ē−ē′ (z′ē′) ∈
〈
z′f̄ | f̄ <lex ē

′
〉
F(t̄)

+
〈
z′f̄+ē−ē′ | f̄ <lex ē

′
〉
F(t̄)

, using Equation (5.1)

∂t̄ē−ē′ (z′ē′) ∈ 〈z′ū | ū <lex ē〉F(t̄)

(
Since f̄ <lex ē, f̄ + ē− ē′ <lex ē

)
z′ē ∈ 〈z′ū | ū <lex ē〉F(t̄) , using Equation (5.1)

This means z′ē is linearly dependent on lexically strictly smaller coefficients. By the

way basis is constructed this implies z′ē /∈ B which is a contradiction to our initial

assumption. Hence, B is cone-closed.

Corollary 5.2. F ′(x̄+ t̄) is (cs ≤ k)-concentrated.

Proof. F (x̄) 6= 0⇒ F ′(x̄+t̄) 6= 0⇒ at least one of the coefficients in the basis is non-

zero (in the shifted polynomial if all basis coefficients were zero then all the coefficients

which linearly depend on basis elements will be zero). Since the coefficients belong

Chapter 5. Cone Closure 31

to Fk(t̄), |B| ≤ k. This together with the fact that B is the least basis constructed

in greedy manner and is cone-closed implies (cs ≤ k)-concentration in the shifted

polynomial.

Corollary 5.3. F ′(x̄+ t̄) is log2 k -support concentrated.

Proof. Since it is cs ≤ k-concentrated. We wish to maximize s in the given equation∏
i∈[s](ei + 1) ≤ k, where ei ≥ 1. This will happen when ∀i, ei = 1. This gives

2s ≤ k ⇒ s ≤ log2 k.

B is cone-closed ⇒ (cs ≤ k)-concentration ⇒ (log2 k)-support concentration. And

each implication here is a strict one, that is the converses are not true. We leave it as a

nice exercise for the reader to verify it. Thus we have proved a structural property

strictly stronger than the log2 k-support concentration proved in [ASS13].

5.4 Small characteristic case

Note that the above proof will fail for the case where 0 < ch(F) = p < d, where d is

the individual degree of some variable in F , since ∂ operator will not work. In fact, a

general polynomial over small characteristic fields is not cone closed. We can observe

this from the following simple counterexample:

Let F (x) =

[
1

0

]
xp +

[
0

1

]
1

F ′(x) = F (x+ t) =

[
1

0

]
(x+ t)p +

[
0

1

]
1

F ′(x) =

[
1

0

]
xp +

[
1

0

]
tp +

[
0

1

]
1

F ′(x) =

[
1

0

]
xp +

[
tp

1

]
1

Note that coeffF ′(x
p) =

[
1

0

]
and coeffF ′(1) =

[
tp

1

]
both belong to basis B as they are

linearly independent over F(t) and span the coefficient space of F ′. But B is not cone

Chapter 5. Cone Closure 32

closed since xp ∈ B but the elements of its cone {xp−1, . . . , x} /∈ B. This calls for

an adjustment in the definition of cone and cone closure when the base field has small

prime characteristic. When a variable has degree < p in a monomial, after shifting it

will produce its old cone (cone as per the old definition). But the problematic case is

when degree > p.

After observing a number of examples, we give the following correction for character-

istic p fields: Consider prime powers of a variable to be unit or indivisible. We

write the power of any variable in p-ary representation. Let us first observe few exam-

ples before formally defining the new cone. Observe that for p = 2, shifting x40, we

get (x+ t)40 = (x+ t)32 · (x+ t)8 = (x32 + t32) · (x8 + t8) = (x40 + t8x32 + t32x8 + t40).

The binary representation of 40 yields 40 = 1.25 + 1.23. And the terms of x which we

get after shift are basically {x1.25
, x0.25}×{x1.23

, x0.23} = {x32, 1}×{x8, 1}. Now, for

p = 3, consider x20, where 20 = 2.32+2.30. Learning from the last example, we should

get the following powers of x after shift: {x2.32
, x1.32

, x0.32} × {x2.30
, x1.30

, x0.30} =

{x18, x9, 1} × {x2, x1, 1} = {x20, x19, x18, x11, x10, x9, x2, x, 1}. Note that these will

be the exact terms if we expand manually: (x + t)20 = (x + t)18 · (x + t)2 =

(x9 + t9)2 · (x+ t)2 = (x18 + 2t9x9 + t18) · (x2 + 2tx+ t2).

Formally, let the power of a variable xi appearing in a monomial be e =
∑m

i=0 aip
i,

where each ai lies in the range 0 ≤ ai < p (p-ary representation). Then for a

characteristic p field, we define (new) cone′ size of xe is cs′(xe) =
∏m

i=0(ai + 1).

And the new definition of cone′ is as follows:

cone′(xe) = {x(am).pm , x(am−1).pm , . . . , x0.pm} × . . .× {x(a0).p0

, x(a0−1).p0

, . . . , x0.p0}

Now, for general n variables, we define cone′(x̄ē) as cone′(xe11) × cone′(xe22) × . . . ×
cone′(xenn), and cs′(x̄ē) =

∏n
j=1 cs′(x

ej
j).

Now with this new definition of cone, we prove the same cone closure result as Theo-

rem 5.1 for characteristic p fields. Before, we do that, we need to find a substitute for

the ∂ operator which is not useful in this setting. We state the following lemma with-

out proof. Interested reader can look up [AFGS17] for a detailed analysis and proof.

Also from now on, we will say cone when we are talking about the old definition of

cone which works in 0 or large characteristic fields, and cone′, for small characteristic

fields.

Chapter 5. Cone Closure 33

Lemma 5.4. [AFGS17] Let F be a field of 0 or large characteristic and F (x̄) ∈ (Fk)[x̄]

be a non-zero polynomial. Let φ : F[x1, . . . , xn]→ F[t] be a variable map that keeps all

monomials of F in the image space of φ distinct. Then F ′ = F (x1 + φ(x1), . . . , xn +

φ(xn)) has a cone closed basis over F(t̄), with respect to the monomial ordering

induced by φ.

Recall that Kronecker map (Section 3.2) has the property that it keeps all monomials

of F distinct from each other. Moreover, it totally orders them. Shifting the variables

by any such map achieves cone closed basis in the shifted polynomial. Therefore

F ′(x̄, t) = F (x1 + t, x2 + td, x3 + td
2
, . . . , xn + td

n−1
) = F (x1 + φ(x1), . . . , xn +

φ(xn)), where d is the individual degree of F has a cone closed basis over 0 or large

characteristic fields. In fact, [AFGS17] show that even shifting by a basis isolating

weight assignment works. Now, we are ready to prove the main theorem of this section.

Note that in the above lemma also the field must have 0 or large characteristic, but in

the proof of next theorem, we will show that after applying a transformation we can

reduce small characteristic case to large characteristic case.

Theorem 5.5. Let F be a field of small characteristic p and F (x̄) ∈ (Fk)[x̄] be a non-

zero polynomial. If we shift F to get F ′(x̄, t̄) = F (x1 + t1, x2 + t2, . . . , xn + tn), then

F ′ has a cone′ closed basis over F(t̄), with respect to any given monomial ordering.

Proof. Let m be the largest power of p ≤ individual degree d of F . Apply shift on

F to get F ′ = F (x1 + t1, . . . , xn + tn). Then, we apply the transformation ψ on

F ′, which acts on the monomial xe11 x
e2
2 . . . xenn = xe1mp

m+...+e10p0

1 . . . xenmpm+...+en0p0

n

as follows:

xe1mp
m+...+e10p0

1 . . . xenmpm+...+en0p0

n

↓ψ

(ye1m1m . . . ye10
10) · · · (yenm

nm . . . yen0
n0)

Observe that ψ−1 is ψ−1 : yij 7→ xp
j

i . After applying transformation ψ on F ′, it is

same as shifting variables yij by tp
j

i . Observe that, if we first apply shift on F , and

then apply transformation ψ, we get the same polynomial as the one obtained after

first applying ψ, and then applying shift on variables yij 7→ yij + tp
j

i for i ∈ [n] and

j ∈ {0, 1, . . . ,m}. Formally, ψ(F (x̄+ t̄)) = F (ψ(x̄) + tp
j

i).

Chapter 5. Cone Closure 34

The nice property of the polynomial ψ(F (x̄ + t̄)) is that all the variables yij have

individual degree < p. Thus, we have reduced the small characteristic case to large

characteristic case, by applying the transformation ψ. In fact, ψ−1 is the Kronecker

map (where instead of individual degree, we have p in the exponents), which has

the property of reducing the number of variables and increasing the degree (Refer

Section 3.2). Contrary to that, ψ is the inverse Kronecker map, which increases the

number of variables but reduces the individual degrees.

Therefore, we can apply old cone closure result on the polynomial obtained. By

applying Lemma 5.4 on the polynomial ψ(F (x̄ + t̄)), we see that ψ(F (x̄ + t̄)) has a

cone closed basis. The shift yij 7→ yij + tp
j

i is same as shifting by Kronecker map since

individual degree of each variable yij < p. Now, we claim that (old) cone closure in

ψ(F (x̄+ t̄)) = F (ψ(x̄) + tp
j

i) implies (new) cone′ closure in F ′ = F (x̄+ t̄).

Claim 5.6. If ψ(F (x̄ + t̄)) has (old) cone closed basis, then F (x̄ + t̄) has a (new)

cone′ closed basis.

Proof. We will prove the contrapositive form of the implication. Suppose F (x̄ + t̄)

does not have a cone′ closed basis. Recall how the least basis is constructed which

was described in Section 5.3. First we pick a monomial of F (x̄ + t̄) in a greedy

manner as per the monomial ordering. If its coefficient is linearly independent to the

the coefficients present in the basis constructed till now, we add it to the basis. If it

is linearly dependent, we check the next monomial and so on.

The hypothesis of F (x̄+ t̄) not having a cone′ closed basis means that there exists a

monomial mē in the constructed basis B, such that at least one of its cone′ elements

does not appear in B. Now, consider the following monomial order for variables yij

of the polynomial ψ(F (x̄ + t̄)), where i ∈ [n], 0 ≤ j ≤ m. Across index i, we

keep the same monomial order as that followed by xi’s in F (x̄ + t̄). For example, if

x1 < x2 < . . . < xn, then y1j < y2j . . . < ynj, for all j in 0 ≤ j ≤ m. And across

index j, we will have the natural monomial order inspired from least significant bit to

most significant bit. That is, yi0 < yi1 < . . . < yim for all i ∈ [n]. Thus, yab < ycd

if and only if a < c (where < is as per the monomial order followed in F (x̄ + t̄)), or

a = c and b < d (where < is the usual strictly less than). This monomial order for

ψ(F (x̄+ t̄)) exactly preserves the monomial order followed while constructing basis B

Chapter 5. Cone Closure 35

for F (x̄+ t̄). Therefore, the basis B′ constructed for ψ(F (x̄+ t̄)) will be exactly

B′ =
{

coeffψ(F (x̄+t̄))(ȳij
f̄ij) | ȳij f̄ij = ψ(x̄ē) and x̄ē ∈ B

}
Therefore, the ψ image of the element which was not present in the cone′ of the

monomial mē will also not be present in the basis B′ which will contain ψ(mē). And

since individual degree of each variable yij in ψ(F (x̄+ t̄)) is < p, B′ is not (old) cone

closed.

Thus, existence of (old) cone closed basis together with Claim 5.6 implies that F (x̄+ t̄)

has a (new) cone′ closed basis. [End of proof of Theorem 5.5]

A brief look into the factorization algorithms over finite fields will tell that they also

face the problem of vanishing derivative due to small characteristics. The idea of

transformation ψ was inspired from the solution adopted in the factorization algorithms,

of seeing the polynomial f(x)p as f(xp) over Fp[x].

5.5 Conclusion and Future work

There are few important things we wish to remark here. By derandomizing the shift of

Theorem 5.1, we achieve cone size ≤ k-concentration which implies a polynomial sized

hitting set in the tiny regime, where support n is bounded by O(log s). k is usually the

top fan-in of the circuit, when we view diagonal depth 3 circuit as a polynomial over

Fk[x]. Note that we do not obtain a polynomial sized hitting set from (new) cone′

closed basis from the arguments stated in Lemma 3.7, because cone′ definition allows

high degree monomials. Nevertheless, it does not undermine the work done for small

characteristic case. It helped in completing the notion of cone closure as a structural

result over all fields.

The next step should be to obtain deterministic efficient shifts for various tiny models

in order to get blackbox PIT algorithms for the same. These will be conditional to the

characteristic of base field being 0 or large enough. Also, we need to get a new link

from cone closure to hitting set for small characteristic fields.

Chapter 6

Diagonal Circuits and Wronskian

6.1 Introduction

Let us start with a question. Suppose f1, f2, . . . , fk are k linearly independent poly-

nomials. What can we say about the linear independence of their powers? That is,

will f1
d, f2

d, . . . , fk
d be linearly independent, ∀d ∈ Z+? The answer is NO, one of the

counter examples being : x2 + y2, x2 − y2, xy which are linearly independent, but for

d = 2, they are dependent.

(x2 + y2)
2 − (x2 − y2)

2 − 4(xy)2 = 0

But in the next section we will see that there are very few such exceptional values of

d, and that most of the integral powers of linearly independent polynomials are also

independent (actually, our theorem requires even weaker condition that the polyno-

mials are not constant multiples of each other, that is, they are just pairwise linearly

independent).

6.2 Wronskian

One of the tools to study about linear independence of functions is the Wronskian

which is quite frequently used in linear algebra. It is a special determinant which was

first introduced by Józef Hoene-Wroński and named by Thomas Muir [MM03]. For n

36

Chapter 6. Diagonal Circuits and Wronskian 37

real or complex valued functions f1, f2, . . . , fn, which are n − 1 times differentiable,

the Wronskian W (f1, f2, . . . , fn) as a function is defined by

W (f1, f2, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) . . . fn(x)

f ′1(x) f ′2(x) . . . f ′n(x)
...

...
. . .

...

f
(n−1)
1 (x) f

(n−1)
2 (x) . . . f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣
If the functions are linearly dependent, then so are their derivatives (as differentiation

is a linear operation). This means the columns of the Wronskian matrix will be linearly

dependent and hence, the Wronskian vanishes. Thus, the Wronskian can be used

to show that a set of functions are linearly independent by showing that it is not an

identically zero polynomial. The converse is not true in general as pointed out by

Peano in 1889, but is true for analytic functions, specifically polynomials. That is the

vanishing of Wronskian implies that they are linearly dependent. But we only require

the first side in our proof.

For multivariate functions, we have the generalized Wronskian. For functions with

m variables x1, . . . , xm let

∆s =

(
∂

∂x1

)j1

· · ·

(
∂

∂xm

)jm

with j1 + · · ·+ jm ≤ s

W (f1, · · · , fn)(x) =

∣∣∣∣∣∣∣∣∣∣∣

f1 . . . fn

∆1(f1) . . . ∆1(fn)
...

. . .
...

∆n−1(f1) . . . ∆n−1(fn)

∣∣∣∣∣∣∣∣∣∣∣
Note that there are finitely many Wronskians produced based on which partial deriva-

tives you take. Also ith row has derivative of functions upto ith order (may not be

equal to i) for 0 ≤ i ≤ n− 1.

Lemma 6.1. [Wol89, BD10] If any of the Wronskians W (f1, f2, · · · , fn) does not

vanish identically then f1, f2, · · · , fn are linearly independent polynomials.

Proof. If f1, · · · , fn are linearly dependent, then so are ∆i(f1), · · · ,∆i(fn) for 1 ≤
i ≤ n − 1, since differentiation is a linear operation. Also polynomials are infinitely

Chapter 6. Diagonal Circuits and Wronskian 38

differentiable. Therefore all the Wronskians vanish for linearly dependent polynomials.

6.3 Main Theorem

Now, let us formally state the main theorem we wish to present.

Theorem 6.2. Let f1(x), f2(x), · · · , fk(x) be polynomials from F[x] which are pair-

wise linearly independent over F, then polynomials f1(x)d, f2(x)d, . . . , fk(x)d are lin-

early dependent for at most
(
k−1

2

)
values of d ∈ Z+.

Proof Idea: We will consider one of the Wronskian of powers of these polynomials,

that is, W (f1
d, · · · , fkd) where we will take the k − 1 partial derivatives with respect

to only a single variable, say x1. We will show that this Wronskian does not vanish

identically, and that it is a polynomial in F(x)[d], with its degree in d =
(
k−1

2

)
. And

thus it will have at most these many roots for d in F.

Now, we will break the complete proof into various lemmas. For the purpose of

simplicity and visualization, let us first see Wronskian for only 3 polynomials, that is

k = 3.

∆1(fi
d) = d.fi

d−1.fi
′

∆2(fi
d) = d.fi

d−1.fi
′′ + d.(d− 1).fi

d−2.(fi
′)

2

By splitting the determinant at the last row, we get

W (f1
d, f2

d, f3
d) =

∣∣∣∣∣∣∣∣
f1
d f2

d f3
d

∆1(f1
d) ∆1(f2

d) ∆1(f3
d)

∆2(f1
d) ∆2(f2

d) ∆2(f3
d)

∣∣∣∣∣∣∣∣
=∣∣∣∣∣∣∣∣

f1
d f2

d f3
d

d.f1
d−1.f1

′ d.f2
d−1.f2

′ d.f3
d−1.f3

′

d.(d− 1).f1
d−2.(f1

′)
2
d.(d− 1).f2

d−2.(f2
′)

2
d.(d− 1).f3

d−2.(f3
′)

2

∣∣∣∣∣∣∣∣
+

Chapter 6. Diagonal Circuits and Wronskian 39

∣∣∣∣∣∣∣∣
f1
d f2

d f3
d

d.f1
d−1.f1

′ d.f2
d−1.f2

′ d.f3
d−1.f3

′

d.f1
d−1.f1

′′ d.f2
d−1.f2

′′ d.f3
d−1.f3

′′

∣∣∣∣∣∣∣∣
=

d2.(d− 1).f1
d.f2

d.f3
d

∣∣∣∣∣∣∣∣
1 1 1
f1
′

f1

f2
′

f2

f3
′

f3(
f1
′

f1

)2 (
f2
′

f2

)2 (
f3
′

f3

)2

∣∣∣∣∣∣∣∣
+

d2.f1
d.f2

d.f3
d

∣∣∣∣∣∣∣∣
1 1 1
f1
′

f1

f2
′

f2

f3
′

f3

f1
′′

f1

f2
′′

f2

f3
′′

f3

∣∣∣∣∣∣∣∣
Lemma 6.3. Let f1(x), f2(x), · · · , fk(x) be polynomials from F[x1, . . . , xn] which

are pairwise linearly independent over F, then the degree of variable d, in the reduced

Wronskian polynomial W ′(f1
d, · · · , fkd) ∈ F(x)[d], is exactly

(
k−1

2

)
.

Proof. By reduced Wronskian polynomial, we mean the polynomial W ′ left after taking

out dk−1 common from the last k − 1 rows and f1
d.f2

d. · · · fkd from the Wronskian

W (f1
d, · · · , fkd).

W (f1
d, · · · , fkd) = dk−1.f1

d · · · fkd. W ′(f1
d, · · · , fkd)

W = 0 ⇒ W ′ = 0 (since d, f1, · · · , fk are all non-zero)

Therefore we only need to consider degree of d in W ′

W (f1
d, · · · , fkd) =

∣∣∣∣∣∣∣∣∣∣∣

f1
d f2

d · · · f3
d

∆1(f1
d) ∆1(f2

d) · · · ∆1(fk
d)

...
...

. . .
...

∆k−1(f1
d) ∆k−1(f2

d) · · · ∆k−1(fk
d)

∣∣∣∣∣∣∣∣∣∣∣

Chapter 6. Diagonal Circuits and Wronskian 40

Let the rows of W be numbered from 0 to k − 1. Then the contribution of row i in

degree of d in W = i.

degree of d in W =
k−1∑
i=0

i

degree of d in W ′ =
k−1∑
i=0

i − (k − 1)

=
k−2∑
i=0

i =
(k − 2)(k − 1)

2

=

(
k − 1

2

)

In Lemma 6.4, we will prove that coefficient of degree
(
k−1

2

)
term is indeed non-zero,

thus making it the actual degree of d in F(x)[d]

Lemma 6.4. Let f1(x), f2(x), · · · , fk(x) be polynomials from F[x1, . . . , xn] which are

pairwise linearly independent over F, then the wronskian polynomial W (f1
d, . . . , fk

d)

does not vanish identically.

Proof. Consider the polynomial ∆p(f1
d) (element at row p, column 0), where 0 ≤

p ≤ k− 1. Let us describe the unique term in this polynomial with the highest degree

of d. We claim that it will be
∏p−1

j=0(d − j) f1
d−p(f ′1)p. The proof will proceed by

induction on p. For the base case p = 1, it is straightforward. Suppose the claim

is true for p, and we wish to prove it for p + 1. Note that the highest degree term

in ∆p+1(f1
d) would come by differentiating the highest degree term in ∆p(f1

d) only.

And using induction hypothesis,

Highest degree term in ∆p+1(f1
d) =

(
p−1∏
j=0

(d− j) f1
d−p(f ′1)p

)′

=

p−1∏
j=0

(d− j)
{
f1
d−p.p.(f ′1)p−1.f ′′1 + (f ′1)p.(d− p).fd−p−1

1 .f ′1

}

Extracting the highest degree term from above expression we get,

(p+1)−1∏
j=0

(d− j) f1
d−(p+1)

(
f ′1
)p+1

Chapter 6. Diagonal Circuits and Wronskian 41

as expected for p+ 1. The calculations will be same for f2, · · · , fk. Now, for getting

the highest degree term in W (f1
d, · · · , fkd), we will split the determinant recursively

at highest degree terms in each row. The Wronskian which will have the highest degree

of d will be as follows:

=
k−2∏
j=0

(d− j)

∣∣∣∣∣∣∣∣∣∣∣

f1
d f2

d . . . fk
d

d.f1
d−1.f1

′ d.f2
d−1.f2

′ . . . d.fk
d−1.fk

′

...
...

. . .
...

f1
d−k+1

(
f ′1
)k−1

f2
d−k+1

(
f ′2
)k−1

. . . fk
d−k+1

(
f ′k
)k−1

∣∣∣∣∣∣∣∣∣∣∣

= dk−1.(d− 1)k−2 · · · (d− k + 2)1∣∣∣∣∣∣∣∣∣∣∣

f1
d f2

d . . . fk
d

f1
d−1.f1

′ f2
d−1.f2

′ . . . fk
d−1.fk

′

...
...

. . .
...

f1
d−k+1

(
f ′1
)k−1

f2
d−k+1

(
f ′2
)k−1

. . . fk
d−k+1

(
f ′k
)k−1

∣∣∣∣∣∣∣∣∣∣∣

= dk−1.(d− 1)k−2 · · · (d− k + 2).f1
df2

d . . . fk
d∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
f1
′

f1

f2
′

f2
. . . fk

′

fk
...

...
. . .

...(
f1
′

f1

)k−1 (
f2
′

f2

)k−1

. . .
(
fk
′

fk

)k−1

∣∣∣∣∣∣∣∣∣∣∣
(6.1)

Now we will prove that the determinant in Equation (6.1) is non-zero, thus proving

that the coefficient of highest degree term is non-zero.

Claim 6.5. fi, fj are pairwise linearly dependent if and only if
f ′i
fi

=
f ′j
fj

.

Proof. Observe that by pairwise dependence, we mean that fi is a constant multiple

of fj.

fi = c.fj c ∈ F

f ′i = c.f ′j (Differentiating on both sides)

f ′i
fi

=
f ′j
fj

Chapter 6. Diagonal Circuits and Wronskian 42

For the other side suppose,

f ′i
fi

=
f ′j
fj

f ′i .fj − f ′j.fi = 0

f ′i .fj − f ′j.fi
f 2
j

= 0(
fi
fj

)′
= 0

fi = c.fj

Since all our polynomials are pairwise independent,
f ′i
fi
6= f ′j

fj
. Therefore the determi-

nant appearing in Equation (6.1) is that of a Vandermonde matrix, and equal to∏
1≤i≤j≤k

(
f ′i
fi
− f ′j

fj

)
6= 0. Hence the coefficient of highest degree term in W (f1

d, · · · , fkd)
is non-zero and Wronskian is identically non-zero polynomial. [End of Lemma 6.4]

Proof of Main Theorem. Lemma 6.3 and Lemma 6.4 essentially state that

W (f1
d, · · · , fkd) is identically non-zero polynomial in F(x)[d], with degree bound of(

k−1
2

)
in d. This implies, it has at most

(
k−1

2

)
roots in F(x), and thus at most

these many roots in F also (since F ⊂ F(x)). Thus by Lemma 6.1 they will be linearly

independent for all other values of d. The same argument will hold for other identically

non-zero wronskians obtained when differentiation is carried out with some variable

other than x1.

6.4 Conclusion

Let us now try to see its connection with the PIT problem, because of which, we stum-

bled upon this result. Consider a polynomial which has a diagonal circuit representation

with top fan-in k, that is, it can be expressed as sum of powers of k polynomials. Let

F = fd1 + fd2 + · · · + fdk . If f ′is are not constant multiples of each other (pairwise

linearly independent), then by our Main Theorem 6.2, F will be identically zero for

very few constant values of d (at most O(k2)). This is because for all other values of

d, the Wronskian will not vanish identically and by standard Lemma 6.1, fd1 , · · · , fdk

Chapter 6. Diagonal Circuits and Wronskian 43

will be linearly independent, and hence their sum is non-zero. If it were not for these

exceptions, then the sparse PIT map could be extended to give a polynomial sized hit-

ting set for F . In that case, for the map to preserve non-zeroness of F , it would simply

suffice to preserve pairwise linear independence of all (fi, fj) pairs, which sparse PIT

map can do. Although this result does not immediately solve PIT for any model, it is

still a surprising structural result in itself, with a very simple proof, that uses only the

tool of Wronskian. Also, note that for the counterexample we took in the beginning,

x2 +y2, x2−y2, xy, our Main Theorem implies that d = 2 is the only identity possible.

(since
(
k−1

2

)
= 1 in this case). That means c1.(x

2 +y2)d+c2.(x
2−y2)d+c3.(xy)d 6= 0

for d > 2, and for any constant values of c1, c2, c3 not all zero.

Chapter 7

Conclusion and Future Work

This thesis is the result of endeavour to solve some special, yet very non-trivial instances

of Polynomial Identity Testing problem. We discussed briefly how solving PIT for

depth-4 or depth-3 models almost solves the general problem. Depth-4 model has a

lot of special cases to solve compared to depth-3 model. In Chapter 4, we give the

first polynomial time blackbox algorithm for one such special instance, which we call

diagonal depth-4 model with top fan-in 3. It essentially tells, that we can test zeroness

of a polynomial computed by a
∑3∧a∑∏

in polynomial time. The restrictions are

mainly the top fan-in = 3, and the power gates having equal fan-in a. The next

step in this line of work would be to remove the equal fan-in restrictions, but more

importantly, designing an efficient blackbox algorithm for any constant top fan-in. The

ultimate goal however, is to solve it for a general fan-in (diagonal depth-4), as it will

put PIT in quasiP. Also, there are plenty of other open models - multilinear depth-3,

arithmetic branching programs (ABPs), general depth-3 et cetera.

In Chapter 5, we explain a new measure of rank concentration, namely cone closure,

which we show is better than the older measure of low support concentration. We

prove the existence of a cone closed basis in a general polynomial on applying a random

shift. We complete the definition and proof of cone closed basis, also for the small

characteristic fields, which do not follow the traditional sense of cone closure. This is

mainly a structural result, which does not immediately give any PIT algorithm. But

this work was mainly motivated to provide cone closure as a tool or technique that

can be used to design PIT algorithms for various models. Recently, it was used in

44

Chapter 7. Conclusion 45

[AFGS17] to solve PIT for diagonal depth-3 circuits. It will be interesting to use it

similarly for other models also.

Lastly, we give another structural result in Chapter 6. It proves a very interesting

property that positive powers of linearly independent polynomials are also linearly in-

dependent most of the time. We prove that the number of powers d which can make

the polynomials fd1 , f
d
2 , . . . , f

d
k linearly dependent is upper bounded by O(k2). This

tells us that the density of identically zero polynomials among the polynomials com-

puted by diagonal circuits is very low. Although there are very few values of d where

fd1 + fd2 + . . . + fdk = 0, since we cannot pinpoint the exact values of d, we fail to

get a hitting set. Nevertheless, it is an interesting property which happens to have a

very simple proof, which we show using the Wronskians. It may have applications in

problems which are even outside the domain of PIT.

References

[AFGS17] Manindra Agrawal, Michael Forbes, Sumanta Ghosh, and Nitin Saxena.

Small hitting-sets for tiny arithmetic circuits or: How to turn bad designs

into good. Electronic Colloquium on Computational Complexity (ECCC),

24:35, 2017.

[AGKS13] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-

sets for low-distance multilinear depth-3. Electronic Colloquium on Com-

putational Complexity (ECCC), 20:174, 2013.

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-

sets for roabp and sum of set-multilinear circuits. SIAM Journal on Com-

puting, 44(3):669–697, 2015.

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators.

In International Conference on Foundations of Software Technology and

Theoretical Computer Science, pages 92–105. Springer, 2005.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals

of mathematics, pages 781–793, 2004.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial

hitting-set for set-depth-δ formulas. In Proceedings of the forty-fifth annual

ACM symposium on Theory of computing, pages 321–330. ACM, 2013.

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Sax-

ena. Jacobian hits circuits: hitting-sets, lower bounds for depth-d occur-k

formulas & depth-3 transcendence degree-k circuits. In Proceedings of

the forty-fourth annual ACM symposium on Theory of computing, pages

599–614. ACM, 2012.

46

Bibliography 47

[AT99] Noga Alon and M Tarsi. Combinatorial nullstellensatz. Combinatorics Prob-

ability and Computing, 8(1):7–30, 1999.

[AV08] Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four.

In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual

IEEE Symposium on, pages 67–75. IEEE, 2008.

[BD10] Alin Bostan and Philippe Dumas. Wronskians and linear independence. The

American Mathematical Monthly, 117(8):722–727, 2010.

[BHLV09] Markus Bläser, Moritz Hardt, Richard J Lipton, and Nisheeth K Vishnoi.

Deterministically testing sparse polynomial identities of unbounded degree.

Information Processing Letters, 109(3):187–192, 2009.

[BMS13] Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic inde-

pendence and blackbox identity testing. Information and Computation,

222:2–19, 2013.

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic

complexity and beyond. Foundations and Trends R© in Theoretical Computer

Science, 6(1–2):1–138, 2011.

[For14] Michael Andrew Forbes. Polynomial identity testing of read-once oblivi-

ous algebraic branching programs. PhD thesis, Massachusetts Institute of

Technology, 2014.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets

for multilinear read-once algebraic branching programs, in any order. In

Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Com-

puting, STOC ’14, pages 867–875, New York, NY, USA, 2014. ACM.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi.

Arithmetic circuits: A chasm at depth three. In Foundations of Computer

Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 578–587.

IEEE, 2013.

[Gur16] Rohit Gurjar. Derandomizing PIT for ROABP and Isolation Lemma for

Special Graphs. PhD thesis, Indian Institute of Technology Kanpur, 2016.

[Kal17] Kartik Kale. FPT algorithms for computing division, gcd and identity testing

of polynomials. Master’s thesis, Indian Institute of Technology, Kanpur,

2017.

Bibliography 48

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial

identity tests means proving circuit lower bounds. In Proceedings of the

thirty-fifth annual ACM symposium on Theory of computing, pages 355–

364. ACM, 2003.

[Kor16] Arpita Korwar. Polynomial Identity Testing and Lower Bounds for Sum of

Special Arithmetic Branching Programs. PhD thesis, Indian Institute of

Technology Kanpur, 2016.

[KS01] Adam R Klivans and Daniel Spielman. Randomness efficient identity testing

of multivariate polynomials. In Proceedings of the thirty-third annual ACM

symposium on Theory of computing, pages 216–223. ACM, 2001.

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing

for depth 3 circuits. In Foundations of Computer Science, 2009. FOCS’09.

50th Annual IEEE Symposium on, pages 198–207. IEEE, 2009.

[Lan02] Serge Lang. Algebra revised third edition. Graduate Texts in Mathematics,

1(211):ALL–ALL, 2002.

[Mas84] Richard C Mason. Diophantine equations over function fields, volume 96.

Cambridge University Press, 1984.

[MM03] Thomas Muir and William Henry Metzler. A Treatise on the Theory of

Determinants. Courier Corporation, 2003.

[MVV87] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as

easy as matrix inversion. In Proceedings of the nineteenth annual ACM

symposium on Theory of computing, pages 345–354. ACM, 1987.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the

EATCS, 99:49–79, 2009.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polyno-

mial identities. Journal of the ACM (JACM), 27(4):701–717, 1980.

[Sny00] Noah Snyder. An alternate proof of mason’s theorem. Elemente der Math-

ematik, 55(3):93–94, 2000.

[SS12] Nitin Saxena and Comandur Seshadhri. Blackbox identity testing for

bounded top-fanin depth-3 circuits: The field doesn’t matter. SIAM Journal

on Computing, 41(5):1285–1298, 2012.

Bibliography 49

[SS13] Nitin Saxena and Comandur Seshadhri. From sylvester-gallai configura-

tions to rank bounds: Improved blackbox identity test for depth-3 circuits.

Journal of the ACM (JACM), 60(5):33, 2013.

[Sto81] W Wilson Stothers. Polynomial identities and hauptmoduln. The Quarterly

Journal of Mathematics, 32(3):349–370, 1981.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of re-

cent results and open questions. Foundations and Trends R© in Theoretical

Computer Science, 5(3–4):207–388, 2010.

[VSBR83] Leslie G. Valiant, Sven Skyum, Stuart Berkowitz, and Charles Rackoff. Fast

parallel computation of polynomials using few processors. SIAM Journal on

Computing, 12(4):641–644, 1983.

[Wol89] Kenneth Wolsson. Linear dependence of a function set of m variables

with vanishing generalized wronskians. Linear Algebra and its applications,

117:73–80, 1989.

	Abstract
	1 Notations
	2 Introduction
	2.1 Complexity Theory
	2.2 Arithmetic Circuits
	2.3 Arithmetic Complexity
	2.4 Polynomial Identity Testing
	2.5 Applications of PIT
	2.6 Our results

	3 Background
	3.1 Formal Definitions
	3.2 Sparse PIT
	3.3 Depth Reduction
	3.4 Shifts and concentration

	4 Special Diagonal Depth-4 PIT
	4.1 Introduction
	4.2 Top fan-in 2 diagonal depth 4
	4.3 Top fan-in 3 diagonal depth-4
	4.4 Mason Stothers Theorem
	4.5 Conclusion and Future work

	5 Cone Closure
	5.1 Introduction
	5.2 Coefficients in a randomly shifted polynomial
	5.3 Cone closed basis
	5.4 Small characteristic case
	5.5 Conclusion and Future work

	6 Diagonal Circuits and Wronskian
	6.1 Introduction
	6.2 Wronskian
	6.3 Main Theorem
	6.4 Conclusion

	7 Conclusion and Future Work
	References

