
Integer and Polynomial Factoring Ideas

CS498A: Undergraduate Project (UGP) report submitted to

Indian Institute of Technology Kanpur

Bachelor of Technology

in

Computer Science and Engineering

by

Rishabh Batra

(170568)

Under the supervision of

Dr. Nitin Saxena

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Winter Semester, 2020-21

December 8, 2020

DECLARATION

I certify that

(a) The work contained in this report has been done by me under the guidance of

my supervisor.

(b) The work has not been submitted to any other Institute for any degree or

diploma.

(c) I have conformed to the norms and guidelines given in the Ethical Code of

Conduct of the Institute.

(d) Whenever I have used materials (data, theoretical analysis, figures, and text)

from other sources, I have given due credit to them by citing them in the text

of the project and giving their details in the references.

Date: December 8, 2020 (Rishabh Batra)

Place: Kanpur (170568)

i

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

KANPUR - 208016, INDIA

CERTIFICATE

This is to certify that the project report entitled “Integer and Polynomial Fac-

toring Ideas” submitted by Rishabh Batra (Roll No. 170568) to Indian Institute

of Technology Kanpur towards no/partial fulfilment of requirements for the award of

degree of Bachelor of Technology in Computer Science and Engineering is a record

of bona fide work carried out by him under my supervision and guidance during

Winter Semester, 2020-21.

Dr. Nitin Saxena

Date: December 8, 2020 Department of Computer Science and

Engineering
Place: Kanpur Indian Institute of Technology Kanpur

Kanpur - 208016, India

ii

http://www.iitk.ac.in

Abstract

Name of the student: Rishabh Batra Roll No: 170568

Degree for which submitted: Bachelor of Technology

Department: Computer Science and Engineering

Project title: Integer and Polynomial Factoring Ideas

Project supervisor: Dr. Nitin Saxena

Month and year of Project submission: December 8, 2020

A very important open problem in Computer Science is getting an efficient algorithm

for factoring integers. Almost all the currently used methods of security work on the

assumption that integer-factoring is hard. But it was shown by Shor that integer

factoring is possible efficiently on a Quantum Computer. In this project, we try to

explore some classical approaches for efficient integer factoring.

The problem of polynomial factoring also has been widely studied in computer sci-

ence and has widespread applications. There are known efficient algorithms for

factoring polynomials over finite fields [Ber68]. But the question of factoring poly-

nomials over rings is a much harder question. In this report, we studied previous

efforts of efficiently factoring polynomials mod pk and tried to extend the results.

We also studied about the Hilbert’s Nullstellensatz problem (and its extension to

mod pk and how it could help in factoring polynomials).

iii

Acknowledgements

I am deeply indebted to Dr. Nitin Saxena for giving me this opportunity to work

under him; this project would have been nothing short of impossible had he not

guided me for this project and helped me to complete . I thank him for being

patient with me and also for the frequent discussions we had, which were extremely

edifying. I would also like to thank my family members for the incredible and

unconditional support they bestowed upon me during the span of this project.

A part of this work was done in collaboration with Sayak Chakraborti and Diptajit

Roy. I would like to thank Ashish Diwedi for helpful discussions on ideas for factoring

polynomials.

iv

Contents

Declaration i

Certificate ii

Abstract iii

Acknowledgements iv

Contents v

1 Introduction 1

2 Preliminaries 3

2.1 Preliminaries . 3

2.1.1 Representative Roots . 3

2.1.2 Quotient Ideal . 4

2.1.3 Gauss Quadratic Sums . 4

2.1.4 B-near prime ideals . 5

3 Integer Factoring-Previous work 6

3.1 Main Ideas of APR algorithm . 6

3.2 Tools used . 7

3.3 Probablisitic Version of the APR Algorithm 8

3.3.1 Preparation . 8

3.3.2 Extraction . 9

3.3.3 Consolidation step . 11

3.4 Ideas for Calculating the Power residue symbol efficiently 12

3.4.1 Principalisation Algorithm: 12

3.4.2 Evaluation Algorithm: . 12

3.4.3 Reduction . 13

4 Integer Factoring-New Ideas 14

4.1 Extension of APR ideas for factoring integers 14

4.2 Factoring n=pq using ideas of Automorphisms in Cyclotomic Fields . 15

v

Contents vi

4.3 Factoring n=pq using Gauss Quadratic sums 17

5 Polynomial Factoring Ideas-Previous Work 19

5.1 Main Results . 20

5.1.1 Reduction of Factoring to Root-Finding 20

5.1.2 Reduction to Root-finding modulo Fp[x]/〈φak〉 22

5.1.3 Finding roots of E ′(y0, y1) modulo 〈p, φ4a〉 23

5.1.4 Algorithm to find Roots of E(y) 24

5.2 Wrapping up the theorems . 25

5.2.1 Theorem 5.1 . 25

5.2.2 Theorem 5.2 . 25

6 Polynomial Factoring-New Ideas 26

6.1 Using Multivariate Representative Roots 26

6.2 Relation to HN . 27

Bibliography 29

References . 29

Chapter 1

Introduction

A very famous and important open problem in Computer Science is getting an

efficient algorithm for factoring integers. Almost all the currently used methods of

security and cryptography (eg RSA) work on the assumption that integer-factoring

is hard. But it was shown by Shor that integer factoring is possible efficiently on a

Quantum Computer. In this, we try to explore some classical approaches for efficient

integer factoring. We describe a paper [APR83] that gives a probabilistic primality

test and our efforts to modify that algorithm to factorise integers. We also describe

ideas of using automorphisms and endomorphisms of cyclotomic fields to factorise

integers and how bivariate extensions for solving the problem may help.

Polynomial factorization has been a famous question in the fields of mathematics

and theoretical computer science. There has been extensive work in this area and

various factoring algorithms over various fields are present, for e.g. over finite fields

[Ber68] , over rationals , number fields, p-adic fields etc. However factorization in

rings of the form Zpk [x] becomes increasingly difficult. Given a univariate integral

polynomial f(x) and a prime power pk , with p prime, efficient algorithms are not

known. In this report, we study the previous work done in the area of factoring

polynomials mod pk and try to come up with ideas to extend it.

We describe an algorithm [DMS19] which solves the problem of factorization for

k ≤ 4, i.e., this paper solves this problem upto modulo p4 (gives factorization modulo

p2, p3 and p4) and states the problems faced for modulo p5 with increased number

of variables. If mod p, the factorisation was into co-prime factors then Hensel’s

1

Chapter 1: Introduction 2

lemma could have been used. So the only case that needs to be dealt with is when

f is power of an irreducible polynomial modulo p. This is solved by reducing this

problem to ”root finding” over some other idea. Our goal is to try to extend these

ideas to factorisation mod pk for k ≥ 5 We also give how our problem of factoring

polynomials mod pk related to extending the Hilbert’s Nullstellensatz problem.

Chapter 2

Preliminaries

2.1 Preliminaries

2.1.1 Representative Roots

Rings of the form Z/〈pk〉[x] for some prime p and integer k ≥ 1 are not unique fac-

torization domains and hence polynomials of degree d can have more than d roots

(infact exponentially many are possible). [JBQ13] devised a compact datastructure

for this to represent these exponentially many roots in polynomial space, which was

further used in [DMS19].

Representative roots are roots of a polynomial written in the form a + pi∗ which

means that all the roots have the form a + piy for every y ∈ Zpk−i−1 . The symbol

∗ represents the entire ring y ∈ Zpk−i−1 and a is a p-adic integer. This can be seen

as a compact datastructure to represent exponentially many values (exponential in

log p). For a in the form a0 + a1p + a2p
2 + . . . ai−1p

i−1 for some aj’s ∈ Zp then we

have the set of representative roots as

Sa = {a0 + a1p+ a2p
2 + . . . ai−1p

i−1 + y1p
i + y2p

i+1 + · · ·+ yk−ip
k−1|yj ∈ Zp}

We will consider ∗ as an entire ring, R and the following convention of writing will

be followed:

3

Chapter 2: Preliminaries 4

• u+ {∗} = {u+ ∗}, u{∗} = {u∗}∀u ∈ R

• c+ {a+ b∗} = {(a+ c) + b∗}, c{a+ b∗} = {ca+ cb∗}∀a, b, c ∈ R

2.1.2 Quotient Ideal

Given two ideals I and J of a commutative ring R, we define the quotient of I by J

as [DMS19],

I : J := {a ∈ R|aJ ⊂ I} (2.1)

Claim 1 (Cancellation): Suppose I is an ideal of ring R and a, b, c are three

elements in R. By definition of quotient ideals, ca ≡ cb mod I iff a ≡ b mod I : 〈c〉.
Claim 2:Let p be a prime and φ ∈ (Z/〈pk〉)[x] be such that φ 6≡ 0 mod p. Given

an ideal I := 〈pl, φm〉of Z[x],

1.I : 〈pi〉 = 〈pl−i, φm〉, for i ≤ l, and

2.I : 〈φj〉 = 〈pl, φm−j〉 for j ≤ m.

Proof: We prove part 1. Part 2 is similar.If c ∈ 〈pl−i, φm〉 then there exists c1, c2 ∈
Z[x], such that,c = c1p

li + c2φ
m. Multiplying by pi, we get pic = c1p

l + pic2φ
m =⇒

c ∈ I : 〈pi〉
For reverse direction, suppose c ∈ I : 〈pi〉, then then there exists c1, c2 ∈ Z[x], such

that,pic = c1p
l + c2φ

m. Since i ≤ l and p 6 |φ, pi|c2. So c = c1p
l−i + (c2

pi
)φm =⇒ c ∈

〈pl−i, φm〉.

2.1.3 Gauss Quadratic Sums

Let p be an odd prime number and a an integer. Then the Gauss sum modulo p,

g(a; p) [Wiki], is the following sum of the pth roots of unity:

g(a; p) =

p−1∑
n=0

e
2πian2

p =

p−1∑
n=0

ζan
2

p , ζp = e
2πi
p .

The exact value of the Gauss sum, computed by Gauss, is given by the formula

g(1; p) =

p−1∑
n=0

e
2πin2

p =

√
p if p ≡ 1 (mod 4),

i
√
p if p ≡ 3 (mod 4).

Chapter 2: Preliminaries 5

g(1; p)2 =
(
−1
p

)
p was easy to prove and led to one of Gauss’s proofs of quadratic

reciprocity. However, the determination of the sign of the Gauss sum turned out to

be considerably more difficult and even Gauss could only establish it after several

years’ work.

2.1.4 B-near prime ideals

We define the concept of B-near prime ideals which are necessary for our algorithms

for power residue computation:

B-near prime numbers- A natural number N is said to be B-near prime if

N = p
∏k

i=1 pi with pi ≤ B, p′is can be repeated.

B-near prime ideals-Ideal a of R is called B-near prime if its norm N(a) is B-near

prime.

Advantage of B-near prime ideals-They are efficiently recognisable and com-

putable in poly-time when B is polynomially bounded by the degree n=[K:Q]. Also,

their factorization can be computed efficiently.

Chapter 3

Integer Factoring-Previous work

We describe the main ideas from the paper [APR83] and how we tried to extend

these further. We will

The paper gives an algorithm for primality testing, which I will call APR algorithm

from now. We tried to modify it for factoring. Given n, the [APR83] algorithm

decides in time (logn)c log log log n (nearly polynomial time) whether it is prime or

composite. It works on principles of Power residue computations on cyclotomic

fields and consists of many pseudo-primality tests such that if n passes all the tests,

its factors lie in a small, explicit set.

3.1 Main Ideas of APR algorithm

Let I be a set of primes. A Euclidean prime with respect to I is a prime q such that

q-1 is sqaure free and every prime factor of q-1 lies in I. In the algorithm, we try

to find a small set of initial primes I=I(n) (={p1, p2, ...}) such that the product of

Euclidean primes(denoted by q1, q2, ...) exceeds
√
n.

Let tq be a primitive element of the field Fq. Then Indq(x) is the smallest non-

negative integer for which x = t
Indq(x)
q mod q

For a possible r (≤
√
n) dividing n, we want to find r mod q for each Euclidean

6

Chapter 3: Integer Factoring Ideas 7

prime q. As the product of these Euclidean primes is greater than r, we can get r

from the above using Chinese Remaindering. So we try to find Indq(r) for every

Euclidean prime q which would give us r mod q for each q.

For this, we try to calculate Indq(r) mod p for each initial prime p dividing q-1.Now

the size of the multiplicative group F ∗q is q-1. So by Chinese Remaindering would

give us Indq(r) mod (q-1) which is the same as Indq(r).

So our goal- Try to know Indq(r) mod p for each initial prime p dividing q-1. This

would give us r.

Transition data- For a fixed initial prime p, we find ”transition data” relating

Indq(r) mod p for all q such that p divides q-1 such that if one of them is known,

the others can be calculated in terms of it. The transition data is obtained by using

some ”mock residue symbols” (which are related to pth power residue symbols) and

”Extraction lemma”.

3.2 Tools used

Cyclotomic field of a prime p - Its irreducible polynomial over Q is φp(x) =

xp−1 + xp−2...x + 1 . We know φp(x) factorises mod q into equidegree irreducible

factors of degree f = order of q in (Z/pZ)*

The polynomial φp(x) factors mod q as φp(x) =
∏g

i=1 hi(x) mod q where hi(x) are

distict monic polynomials of degree f which are irreducible mod q and g=p−1
f

We now consider power residue symbols in the special case where q is a rational

prime and p — q-1. Let t = tq be a primitive root for q. Then

φp(x) =
∏p−1

i=1 (x− t(
q−1
p

)i mod q (here we use the fact that t(
q−1
p

) is a primitive pth

root of unity)

So we have ”canonical” prime Q lying over (q) in Z[ζp] as

Q = (q, ζp − t(
q−1
p

))

Now, (x
Q

)
p

= x
q−1
p (Here size of Q is easily seen to be q)

Chapter 3: Integer Factoring Ideas 8

= tIndq(x)
q−1
p = ζ

Indq(x)
p modQ

Thus knowing (x
Q

)
p

for the canonical prime Q is equivalent to knowing Indq(x) mod

p, which was our goal.

Jacobi Sums: If Q is a prime of Q(ζp) not dividing (p) and a,b ∈ Z then the Jacobi

sum is defined as:

Ja,b(Q) =
∑′

(xQ)

p−a(1−x
Q

)
−b
p

where the sum is over a set of coset representatives of

z[ζp]/Q other than 0,1 mod Q. The prime factorisation of (Ja,b(Q)) is given by the

following theorem

Theorem 3.1. [APR83] Suppose a,b ∈ Z with ab(a+b) 6= 0 mod p. For u ∈ Z, define

θ(u)a,b = [a+b
p
u]− [a

p
u]− [b

p
u] (it is either 0 or 1), then

(Ja,b(Q)) =

p−1∏
n=1

σ−1u (Q)θa,b(u)

Theorem 3.2. [APR83] If p > 2, there exist a, b in Z such that ab(a + b)6= 0 mod

p and we define

θ̂a,b =

p−1∑
u=1

θa,b(u).u−1 6= 0 mod p where u−1 is inverse of u mod p.

Proof: Note that for 1 < u < p - 1, we have [u
p
] = 0 and [p−1

p
u] = u− 1

Then

p−2∑
m=1

θ̂m,1 =

p−2∑
m=1

p−1∑
u=1

([
m+ 1

p
u]− [

m

p
u]).u−1 =

p−1∑
u=1

[
p− 1

p
u].u−1

=

p−1∑
u=1

(u− 1).u−1 = p− 1 6= 0mod p

So there exists atleast one good pair (a,b) = (m,1) for m=1,2...p-2

3.3 Probablisitic Version of the APR Algorithm

3.3.1 Preparation

In the preparation step, we define the initial primes and calculate the transition

data. We first compute f(n), the least square-free natural number such that

Chapter 3: Integer Factoring Ideas 9

∏
q−1|f(n),q∈primes

q > n
1
2

We define initial primes for n to be the prime factors p of f(n) and the Euclidean

primes for n to be the primes q for which q − 1|f(n)

It is shown that f(n) ≤ (logn)co log log log n for all large n

Note it can be easily seen that the time taken to compute f(n) will be of the order

f(n)c . We then compute and fix a primitive root tq for each Euclidean prime q and

check that n is not divisible by p or q.For each initial prime p > 2, find a, b ∈ Z

such that 0 < a, b < p,

θ̂a,b =

p−1∑
u=1

θa,b(u).u−1 6= 0 mod p

Compute a ”Jacobi sum” Jp(q) for each initial prime p and Euclidean prime q with

p|q − 1 as follows:

If p = 2, put Jp(q) = −q
If p > 2, let Jp(q) = −Ja,b(Q) where a,b are from previous step

We have (Jp(q), r)λ=1

Then for each p,we factor n into ideals in Z[ζp] as it would happen if n was prime.

We attempt to do this as follows. Let f be the order of n in (Z/pZ)∗ , put g = (p -

1)/f, and try to factor φp(x) =
∏g

i=1 hi(x) mod n

where each hi(x) ∈ Z[x] is monic and has degree f. If n is in fact prime, then with

high probability of success φp(x) can be so factored mod n using Berlekamp

3.3.2 Extraction

The mock residue symbol 〈 α
Q
〉p is defined as :

〈 α
Q
〉p = ζ ip ≡ α

NQ−1
p mod Q if such a congruence holds

〈 α
Q
〉p= 0 otherwise

For each initial prime p and each Euclidean prime q with p|q − 1, compute the

mock residue symbols 〈Jp(q)
Qi
〉p for i=1..g for ideals Qi found during factorisation of

the previous section.. If any of the Mock Residue Symbols is 0, declare n to be

COMPOSITE.

Chapter 3: Integer Factoring Ideas 10

For each initial prime p, if the mock residue symbols for p are not all equal to

1, choose some nontrivial one, 〈γ/Q)p, and make it the distinguished symbol cor-

responding to the prime p. If they are all 1, we compute mock residue symbols

〈γ/Qi〉p for γ’s chosen at random in Z[ζp], until one is found to be not 0 or 1 and

designate it the distinguished symbol.

(The algorithm may diverge here, but if n is prime the probability of an arbitrarily

chosen γ working is roughly (p - 1)/p, so a very high probability)

For each pair p, q with p|(q − 1), compute the exponents mi,q such that

〈 γ
Q
〉mi,qp = 〈Jp(q)

Qi
〉p

Lemma 3.3. Extraction Lemma[APR83]

Let Q and Q1 be ideals of Z[ζp] such that p 6 |NQ = NQ1 and let R,R1 be conjugate

prime ideals dividing Q and Q1 respectively.

Suppose there is some γ ∈ Z[ζp] such that 〈 γ
Q
〉p 6=0 or 1

Then 〈 γ
Q
〉mp = 〈 α1

Q1
〉p (A)

implies (γ
R

)mp = (α1

R1
)p (B)

Proof : Let valuations vp(t) is defined as the largest integer k such that pk|t.
Now the initial hypothesis is that γ

NQ−1
p ≡ ζjp mod Q, j 6= 0 mod p

Reducing this to mod R we have, γ
NQ−1
p ≡ ζjp mod R, j 6= 0 mod p

So we have vp(NR− 1) > vp(
NQ−1
p

) as NR− 1 is the order of (Z[ζp]/R)∗

First suppose R = R1. Then reducing the relation (A) mod R and using NR = NR1

we obtain

γ
NQ−1
p m ≡ 〈 γ

Q
〉mp = 〈 α1

Q1
〉p = α

NQ−1
p mod R

Let T be a primitive root of R. Then T (mInd(γ)−Ind(α)NQ−1
p = 1 mod R. But order of

T is NR−1. So NR−1|(mInd(γ)−Ind(α)NQ−1
p

. This implies p|(mInd(γ)−Ind(α)

from the first equation of the proof.

This in turn means the following is true (we replace Q with R in the previous equa-

tion)

T (mInd(γ)−Ind(α)NR−1
p = 1 mod R

which gives γ
NR−1
p m ≡ α

NR−1
p mod R which is what we required (this is equation B).

The case in which R 6= R1 can easily be reduced to the above case and hence Ex-

traction lemma is also true in this case.

Chapter 3: Integer Factoring Ideas 11

The Extraction Lemma and the relations among the mock residue symbols allow

us to compute many power residue symbols in terms of one unknown one, via the

following calculation.

Suppose r is a prime number dividing n and p > 2 be an initial prime. Suppose 〈 γ
Q
〉

is the distinguished symbol corresponding to p. Knowing this mock residue symbol

does not allow us to compute the power residue symbol (γ/(r,Q))p, but there are

only p possibilities for it.

Now (Jp(q)
r

)p = (r
Jp(q)

)p(Jp(q), r)λ = (r
Jp(q)

)p

Now (r
Jp(q)

)p =

p−1∏
i=1

(
r

σ−1u Q
)
θa,b(u)
p =

p−1∏
i=1

σ−1u (
r

Q
)
θa,b(u)
p ==

p−1∏
i=1

(
r

Q
)
u−1.θa,b(u)
p = (

r

Q
)
θ̂a,b(u)
p

Also, (Jp(q)
r

)p =

g∏
i=1

(
Jp(q)

r,Qi

)p =

g∏
i=1

(
γ

r,Q
)mi,qp = (

γ

r,Q
)
∑g
i=1mi,q

p

Now θ̂a,b(u) is invertible. So (
r

Q
)p = (

γ

r,Q
)
θ̂a,b(u)

−1
∑g
i=1mi,q

p

Thus if (
γ

r,Q
)p = ζkp then Indq(r) ≡ k.θ̂a,b(u)−1

g∑
i=1

mi,q mod p

This shows that the value of (γ/(r,Q))p completely determines each Indq(r) mod p

for every Euclidean prime q with p|q − 1. [APR83]

3.3.3 Consolidation step

Main Idea for consolidation is that if p1, ...pd are the initial primes and 〈 γi
Qi
〉pi are

the corresponding distinguished symbols found in Preparation Step, then for each

prime factor r of n, there are integers k1, .., kd such that (
γi

ri, Qi

)pi = ζkpi i for i=1...d

By the Chinese Remainder Theorem there is a single integer k defined modulo
∏
pi,

such that (
γi

ri, Qi

)pi = ζkpi for i=1...d

For each k, 1 ≤ k ≤ f(n) =
∏
pi, we assemble and test a possible divisor r= r(k) of

n.

Check whether r(k)|n. If it does and r(k) 6= 1 or n, declare n composite and halt.

Otherwise continue with the next value of k. If none of these divide, we declare n

to be prime. For if n is composite it must have a prime factor r ≤ n
1
2

Chapter 3: Integer Factoring Ideas 12

3.4 Ideas for Calculating the Power residue sym-

bol efficiently

The idea of calculating the power residue symbol efficiently was introduced in

[dBP17]. We briefly describe the algorithm that they introduced in which (α
b
)
m

is calculated in 3 stages:

• Principalization- Reducing computation of (α
b
)
m

to (α
β
)
m

for some β ∈ b

• Reduction(Optional)- Reduce computation of (α
β
)
m

for large α, β ∈ K to (αi
βi

)
m

fo smaller αi, βi ∈ K

• Evaluation-Computing (αi
βi

)
m

directly using prime density results

3.4.1 Principalisation Algorithm:

The main idea used here is to use random sampling relatively small elements to get

a B-prime ideal which can be efficiently factorized. Then using this previous fac-

torization and the reciprocity of residue symbols, we can reduce the power residue

computation to a simpler power residue computation.

3.4.2 Evaluation Algorithm:

Power Residue(αo, β)

Note:(αiγ
m

β
)
m

= (αi
β

)
m

This property is used here

The idea behind evaluation is to repeatedly choose a random γ and set α = αoγ
m

until α mod β has a small representative α̂ that generates a B near-prime ideal.

We then use reciprocity to reduce (α0

β
)
m

to calculation of U(αo, β) and (β
α

)
m

(which

can be done by the factorisation of B-near prime ideals).

Chapter 3: Integer Factoring Ideas 13

3.4.3 Reduction

- This is optional. Usually done when in (α
β
)
m

either one(case A) or both (case B)of

α, β are large.

In case A, assume α is much larger than β. Here compute LLL-reduced basis Mβ of

ideal (β) and reduce α mod Mβ. The reduced α is hoped to have similar size as β.

In case B, both inputs are large, say with bitsize g(n)>6n where n=[K:Q]. Consider

the lattice L={(γ1, γ2) ∈ OK x OK |γ1a − γ2 ∈ (β) }. This lattice has discriminant

N(β) and dimension 2n. Applying LLL, we get a short vector (γ1, γ2) ∈ O2
Kwith√

||γ1||2 + ||γ2||2 ≤ 2nN(β)
1
2n ≈ 2n||β|| 12 ≈ 2

g(n)+2n
3 ≤ 2

2g(n)
3 ≈ ||β|| 23

where it is assumed heuristically that ||β|| ≈ N(β)
1
n and ||β|| ≈ 2g(n)

Now γ1α = kβ + γ2 So we can write (γ1
β

)
m

(α
β
)
m

= (γ2
β

)
m

Or (α
β
)
m

= (γ2
β

)
m

(γ1
β

)−1
m

.

So computation of power residue symbol is reduced to computation of 2 power

residue symbols with smaller imput. This process can be some repeatedly to reduce

the size of input forming a recursion tree.

This gives us an efficient method of calculating the power residue symbols.

Chapter 4

Integer Factoring-New Ideas

4.1 Extension of APR ideas for factoring integers

We know from the paper that transition data is obtained by using some ”mock

residue symbols” (which are related to pth power residue symbols) and ”Extraction

lemma”. We tried to replace the use of ”mock residue” symbols by actual residue

symbols which can be computed using the ideas of the previous section. But we saw

that the particular form of mock residue symbols is essential for the extraction lemma

to work which wont be possible with actual residue symbols. So the ”Extraction

lemma” in its current form can’t be used with actual residue symbols. So we tried

some modifications to the extraction lemma but they were not efficient.

Now the APR algorithm works on the following idea:

if our number (n=rr’ for prime r, r′) was passing all pseudo primality tests, it gives

an explicit factor of n (ie, r or r’). Passing the pseudo primality tests would depend

on the initial primes we take. So we try to select a ”good” set of initial primes such

that the pseudo-primality tests are passed .

Another thing we claim from the extraction lemma is that in APR algorithm, with

high probability, none of the mock residue symbols would be 0 (and hence the

algorithms tries to find an explicit factor of n=rr’) if the behaviour of r and r is

indistinguishable in terms of the mock-residue symbols. So our claim was that if

ordp(r)|ordp(n) and ordp(r
′)|ordp(n) for all the initial primes p, we would be able to

14

Chapter 4: Integer Factoring- New Ideas 15

factorise n. Basically, if n=rr’ (for distinct primes r,r’) then we clain that factoring

would succeed as long as their algorithm steps are ”identical mod r and mod r’ ”.

So our idea is we start with lots of initial primes p, and form lots of Euclidean primes

q and find a ”good” set of primes such that the behaviour of APR mod r and mod r’

is same, and then run the APR-algo for this set which should factorize n. But doing

this using brute force would lead to a huge time complexity which would make our

algorithm inefficient. Thus we need to think of a clever way of selecting the initial

primes.

4.2 Factoring n=pq using ideas of Automorphisms

in Cyclotomic Fields

Let R = (Z/nZ). By Chinese remaindering, we see that R
∼
= (Z/pZ) x (Z/qZ).

Now as p and q are primes, we see that (Z/pZ) and (Z/qZ) are fields. Now we

want cyclotomic extensions of these fields. So we work in R/(φr(x)) where φr(x) =

xr−1 + xr−2...x + 1 for some prime r. Again by Chinese remaindering, we see that

R/(φr(x))
∼
= (Z/pZ)/(φr(x)) x (Z/qZ)/(φr(x)) . Thus we see that the ring in

which we work can be seen as the product of two cyclotomic extensions of a field.

(Z/pZ)/(φr(x)) can also be represented by Fp(ζr). The intuitive reason for this

is that in this cyclotomic extension of Fp, powers of x are the r-th roots of the

polynomial xr − 1. Hence x can be thought of as ζr, ie, the r-th primitive root of

unity.

First we see what kind of automorphisms can be present in a cyclotomic extension:

σ ∈ Aut(Fp(zetar)) iff σ : ζr 7→ ζ ir for some i coprime to r. The reason for this is

that any automorphism σ can only map ζr to another root. (This can also be seen

using the Frobenius automorphism. Any automorphism σ : ζr 7→ ζp
i

r which gives

the same set of automorphisms as above). This gives that the only automorphisms

possible in this cyclotomic extensions are x 7→ xi

Chapter 4: Integer Factoring- New Ideas 16

Claim- If we get any map φ in (Z/nZ)/(φr(x)) that is an automorphism in one of

the decomposed cyclotomic fields/rings but not in the other , then we will be able

to factor n = pq

The reason is that since φ is an automorphism in only one of the cyclotomic extension

(WLOG, say (Z/pZ)/(φr(x))) but not in the other field, we see that:

φ(ab)− φ(a)φ(b) would be zero mod p but not not q.

So we can take gcd(n,φ(ab)− φ(a)φ(b)) to get p and hence factorise n=pq.

Also we see that any such map φ would be different from x 7→ xi. So our aim is

to find a map φ different from x 7→ xi that is an automorphism in the decomposed

field. (We can also see that if such a map exists using counting argument. Also if

we are able to find such a map, another way to factor n would be to take the gcd of

the coefficients with n, as atleast some coefficient would have a non-trivial gcd with

n in this case).

We tried to use interpolation ideas to set up equations to find such an automorphism

(different from xi). Idea- set-up eqns like a(x) = x2, a(x6) = x4 and their swaps and

then get the resultant polynomial using interpolation and see if it behaves as an

automorphism. But on checking carefully, we saw that the interpolation idea in

univariate field extension is problematic, as you don’t have access to ζ. We only

have ’x’ and even though x can be thought of as the r-th root of unity, it behaviour

is different from that of ζ.

For eg., suppose we have r=7 such that we have ζ7 = 1 and we set up an equation

a(x) = x2, a(x6) = x4. Then a(ζ) = ζ2 ⇒ a(ζ6) = ζ12 = ζ5 6= ζ4. so the two eqns

are inconsistent. So our goal is that somehow we need BOTH ζ and x to play this

strategy. We think that bivariate extension of the field should help in this case and

we are currently exploring these.

Using python code, we also tried to see the pattern that the Frobenius morphism

gives in the decomposed field such that we are able to find an algorithm for inter-

polation. We took particular value of p. I took p=13 = -1 mod 7 so that we get

(F 2
p)3.Here(x7 − 1)/(x− 1) = (x2 + 3x+ 1)(x2 + 5x+ 1)(x2 + 6x+ 1).

Objective: To find an a(x) other than xi which gives an automorphism

Chapter 4: Integer Factoring- New Ideas 17

A pattern we noticed was this: For a(x) = xi in the original ring, x 7→ xi in the

decomposed fields too but it also can introduce swaps.

In simple words, say I get an element e=(3x, x, 0) (these components are using

Chinese remaindering). Then with a(x) = x2, e maps to (0, 3x2, x2) and with a(x) =

x3, e maps to (x3, 0, 3x3) and so on. So we think that to get a φ(x)other than xi, we

need to find a map such that (x, x, x) maps to say (x, x2, x) Instead of say (x2, x2, x2)

or something similar. This gives us insight into what kind of automorphisms in the

decomposed field can help.

4.3 Factoring n=pq using Gauss Quadratic sums

We had the following idea for factorizing n=pq using Gauss sums. We know that

for an odd number p g(1; p)2 =
(
−1
p

)
p. The idea is to pick a random prime s.

Define r = s2 such that φr is irreducible mod p and mod q. We know that with high

probability this would be true.

Also s2 = 1 mod 4, so r = 1 mod 4. Now we compute the gauss sum g(1;r)

in the ring R = (Z/nZ)(ζr) = (Z/nZ)[x]/(φr(x)) where φr is the r-th cyclotomic

polynomial. So g(1; r) =
√

(s2) = s or −s. Also with high probability, we can

assume that p and q have different quadratic residuositues mod r. WLOG assume

that (p/r)=1 and (q/r)=-1. Then we compute the gcd(g-s,n). Then we know that

as g =
√
r, we claimed that with high probability g = s mod p but g 6= s mod q

due to our quadratic residuosity assumptions. So the gcd (g-s, n) should give us a

non-trivial factor of n=pq. ANother way would be see the coefficients of g to get a

factor

So our algorithm was as follows:

•• Input n=p.q. Randomly pick prime r =1 mod 4. [r= polylog(n)]

• By Gauss theorem: g2 = r. Here g is the Gauss Quadratic sum.

• With high probability (r/p)=(p/r)=1 AND (r/q)=(q/r)=-1.

• By (1) and cyclotomic-ring: g(x)2 = r mod 〈p, φr(x)〉. By (2) : g(x) ∈ Fp.

• By (1) and cyclotomic-ring: g(x)2 = rmod〈q, φr(x)〉. By (2): g(x) /∈ Fq.

Chapter 4: Integer Factoring- New Ideas 18

• By (3)-(4): g(x) mod 〈n, φr(x)〉 written in reduced form, has some coefficient

that factors n, by gcd.

We wrote a code for this and saw that the algorithm was not giving the gcd correctly

and hence not factoring n. The reason we saw for this is that g(x) ∈ Fp was not

coming out to be true. It was not giving a number. The reason for this was as follows,

we know that as (r/p)=(p/r)=1, φr(x) mod p has atleast 2 factors (say f1 . . . fk) as

the number of factors are even. Then for g(x) to be a number mod 〈p, φr(x)〉, we

would need g(x) mod fi to all give the same sign (ie, the Gauss sum should give

the same sign in the decomposed field’s). But we saw that the signs were not all

same. Instead half of these gave + signs and half of these gave - signs which led to g

not being a number mod 〈p, φr(x)〉. This creates a problem so that our algorithm

cannot factorise n=pq.

Chapter 5

Polynomial Factoring

Ideas-Previous Work

We first present previous work done in this and our efforts to extend it. We present

a report of[DMS19]. The main idea in this paper for factorization modulo pk for

some prime k is by using ROOT-FIND algorithm introduced in [JBQ13] and further

modified in [DMS19]. For the polynomial factoring into coprime factors modulo p

it can be easily lifted using Hensel Lifting [BS66] to modulo pk for any k. So we

consider only the hard case when f(x) mod p is a perfect power of some irreducible,

i.e. f(x) ≡ φe mod p for an irreducible polynomial φ(x) ∈ Z[x]. The given method

works on factorizing it in the ring (Z/pkZ)[x] by reducing it to root-finding of a

bivariate polynomial E(y), with coefficients of y in Z[x], in the ring (Z[x]/〈pk, φak〉)[y]

for some a ≤ e.

Theorem 5.1. [DMS19] Given a prime p, k ≤ 4 and a univariate polynomial f(x)

with integral coefficients. Then f(x) mod pk can be efficiently factored and tested

for irreducibility in randomized poly(deg(f), log p) time.

Theorem 5.2. [DMS19] Given a prime p, an integer k ≤ 4 and a univariate poly-

nomial f(x) which is the power of an irreducible modulo p and g is a factor of f mod

p, we can count all the factors g̃ (which are lifts of g) of f mod pk (or decide that

it is irreducible) and represent them in a compact datastructure.

19

Chapter 5: Polynomial Factoring Ideas-Previous Work 20

Proof idea for Theorem 5.1: We only consider the hard case, ie, assume that f(x),

of degree d satisfies f(x) ≡ φ(x)e mod p for some irreducible integral polynomial φ

and deg(φ)e ≤ d. Otherwise we can easily use Hensel’s lifting to find a factorization.

So we have f of the form φe + pf ′ for some polynomial f ′(x) ∈ (Z/〈pk〉)[x]. The

factors of f will be of the form φa−py for y ∈ (Z/〈pk〉)[x]. The idea of this approach

is so divide f(x) by h(x) and binomially expand 1
1−x = 1 + x + x2 + x3 + . . . and

using this, we can reduce the problem of factorization to that of root finding in

bigenerated ideal which in the case of p4 can be efficiently found.

Proof idea for Theorem 5.2: We want to find, for each a < e, polynomials of the

form g̃(x) ≡ φa mod p such that it lifts to modulo pk and divides f in Zpk . For a

fixed a we can find all y’s modulo pk−1 from the proof of theorem 1, which can be

obtained from the modification to the root find algorithm. Then we can sum over

all the a’s for which it lifts.

5.1 Main Results

5.1.1 Reduction of Factoring to Root-Finding

In this subsection, we describe a polynomial E(y) which will help in finding a factor

of f ≡ φe + pl mod pk which is h ≡ φa− py mod pk where a ≤ e/2. This is true as

if g is a polynomial such that f ≡ gh mod pk, then looking modulo p we will have

exactly one of them contributing to the power of φ less than or equal to e/2. We

choose this factor as h.

Throughout the rest of this report we denote Z[x]/〈pk, φak〉 as R and Z[x]/〈p, φak〉
as R0. Now we define the polynomial E(y) ∈ R[y] as

E(y) = f(x)(φa(k−1) + φa(k−2)py + φa(k−3)(py)2 + · · ·+ φ(py)k−2 + (py)k−1) (5.1)

We now reduce the factoring f(x) modulo pk to root-finding of E(y) modulo the

bi-generated ideal 〈pk, φak〉.

Chapter 5: Polynomial Factoring Ideas-Previous Work 21

Theorem 5.3. Reduction Theorem[DMS19]

Given two polynomials f(x) ≡ φe + pl mod pk and h(x) ≡ φa − py mod pk for

a ≤ e, we will have h(x) as a factor of f(x) if and only if E(y) ≡ 0 mod 〈pk, φak〉
(i.e. y is a root of E(y) in R), for notations as defined above.

Now if we denote y = y0 + py1 + p2y2 + . . . pk−1yk−1, the next lemma reduces the

precision of y.

Lemma 5.4. [DMS19] If y = y0 + py1 + p2y2 + . . . pk−1yk−1, then every element of

the set y0 + py1 + . . . pk−3yk−3 + pk−2∗ is a root of E(y) modulo 〈pk, φak〉.
Proof: Notice that in the expansion of E(y) all the y’s that are present are multiplied

by p, which implies yk−1 will have coefficient divisible by pk, which is 0 in R. Also

for yk−2, all the terms of the form (py)i for i ≥ 2 do not contribute as they are

zero in R. The only remaining term is f(x)φa(k−2)py. Now f(x)φa(k−2) ≡ φe+ak−2a

mod 〈p, φak〉 which also vanishes modulo 〈pk, φak〉, as e ≥ 2a.

Next we can have this following modification of the root-find algorithm discovered

in[JBQ13]. This modification in due to [DMS19]

Theorem 5.5. [DMS19] Given a bivariate polynomial g(y) ∈ R0[y], let Z ⊂ R0 be

the root set of g(y). Then Z can be written as the disjoint union of atmost degy(g(y))

many representative pairs (a0, i0), a0 ∈ R0, i0 ∈ R0. These representative roots can

be found in randomized poly- time.

For the next subsection and the rest of the report we fix k = 4. Similar techniques

can be applied for k = 2, 3 as well.

Chapter 5: Polynomial Factoring Ideas-Previous Work 22

5.1.2 Reduction to Root-finding modulo Fp[x]/〈φak〉

In this subsection we reduce root finding modulo 〈p4, φ4a〉 to root finding in R0 =

Fp[x]/〈φ4a〉. We consider E(y) ≡ 0 mod 〈p4, φ4a〉 as

f × (φ3a + φ2apy + φa(py)2 + (py)3) ≡ 0 mod 〈p4, φ4a〉

Putting y = y0 + py1, as it only depends on these two coordinates, we obtain the

equation

f × (φ3a + φ2ap(y0 + py1) + φap2(y20 + 2py0y1) + (py)3) ≡ 0 mod 〈p4, φ4a〉

We now attempt to solve this modulo 〈p3, φ4a〉. Now y1 is is redundant modulo

this ideal by considering f ≡ φe mod p and using the fact that e ≥ 2a. So we

will have some representative roots of y0 of the form a0 + φi0∗, but only for some

selected values of ∗ the lifting will be possible. So we intend to find y0’s such that

a0 + φi0y0 + py1 are roots of E modulo 〈p3, φ4a〉. The next lemma establishes this.

Lemma 5.6. (Reduction to Characteristic p)[DMS19] We can efficiently find a

unique set S0 of representative pairs (a0, i0), a0 ∈ R0, i0 ∈ N such that

E((a0 + φi0y0) + py1) = p3E ′(y0, y1) mod 〈p4, φ4a〉

for E ′(y0, y1) ∈ R0[y0, y1] depending on the representative root pair. Also we will

have:

1. |S0| ≤ 2. If the algorithm fails to find any such E ′ then E(y) ≡ 0 mod 〈p4, φ4a〉
has no solutions

2. E ′(y0, y1) = E1(y0) + E2(y0)y1 where E1(y0), E2(y0) ∈ R0[y0], E1 is a cubic in

y0 and E2 is a linear in y0

3. For every root y ∈ R of E(y) ≡ 0 mod 〈p4, φ4a〉, ∃(a0, i0) ∈ S0, and (a1, a2) ∈
R×R such that y = a0 + φi0a1 + pa2 and E ′(a1, a2) ≡ 0 mod 〈p, φ4a〉

Chapter 5: Polynomial Factoring Ideas-Previous Work 23

5.1.3 Finding roots of E ′(y0, y1) modulo 〈p, φ4a〉

Now we are given with a bivariate polynomial E(y0, y1) modulo 〈φ4a〉 in Fp[x] which

is of the form E1(y0) + E1(y0)y1. The idea is to go over all r, 0 ≤ r ≤ 4a and find

y0 such that

• E1(y0) has valuation over φ greater that or equal to r

• E2(y0) has valuation over φ exactly r

The next lemma shows that this contains all the solutions.

Lemma 5.7. [DMS19] A pair (u0, u1) ∈ R × R satisfies an equation of the form

E1(y0) + E2(y0)y1 ≡ 0 mod 〈p, φ4a〉 if and only if valφ(E1(u0)) ≥ valφ(E2(u0)).

Proof: Let r = valφ, r ∈ {0, 1, . . . 4a}. Then we will have u1 ≡ −E1(u0)/φr

E2(u0)/φr
mod 〈p, φ4a−r〉.

Conversely if r′ = valφ(E1(u0)) < valφ(E2(u0)) ≤ 4a then for every u1 we will have

valφ(E1(u0) + u1E2(u0)) < 4a which means this cannot be zero modulo 〈p, φ4a〉.

Hence we can efficiently find all representative pairs for y0, at most 3, such that

E1(y0) has valuation over φ as exactly r. The next lemma shows that we can filter

these y0’s such that E2(y0) has valuation exactly r over φ.

Lemma 5.8. x Given a linear polynomial E2(y0) ∈ R0[y0] and an r ∈ {0, 1 . . . 4r −
1}, let (b, i) be a representative root pair modulo 〈p, φr〉. Considering the quotient

polynomial E ′(y0) = E2(b + φiy0)/φ
r, if E2(y0) does not vanish identically modulo

〈p, φ〉, then there is exactly one θ ∈ R0/〈φ〉 such that E2(θ) ≡ 0 mod 〈p, φ〉, and

this θ can be efficiently computed.

Proof: We assume E2(y0) is of the form u+vy0. Now since u+vy ≡ 0 mod 〈p, φr〉
and y0 is a variable, we will have valφ(u) ≥ r and valφ(v) ≥ r. Considering cases

when

• valφ(u) ≥ r and valφ(v) = r, we will have E2(θ) ≡ 0 mod 〈p, φ〉 only when

θ = −(u/φr)
(v/φr)

mod 〈p, φ〉

Chapter 5: Polynomial Factoring Ideas-Previous Work 24

• valφ(u) = r and valφ(v) > r, E2(θ) will not be zero modulo 〈p, φ〉 for any θ in

R0/〈φ〉

• valφ(u) > r and valφ(v) > r, then we will have some greater value of r.

Thus in this way θ can be efficiently computed.

5.1.4 Algorithm to find Roots of E(y)

With these aforementioned lemmas and theorems we present the algorithm to find

roots of E(y) modulo 〈p4, φ4a〉 of Z[x][DMS19]

Theorem 5.9. [DMS19] The output of Algorithm 1 (set Z - Z0) contains exactly

those y0 ∈ R0 for which there exist some y1 ∈ R0, such that, y = y0 + py1 is a root

Chapter 5: Polynomial Factoring Ideas-Previous Work 25

of E(y) in R. We can easily compute the set of y1 corresponding to a given y0 ∈ Z
- Z0 in poly(deg f, log p) time. Thus, we efficiently describe (and exactly count) the

roots y = y0 + py1 + p2y2 in R of E(y), where y0, y1 ∈ R0 are as above and y2 can

assume any value from R.

5.2 Wrapping up the theorems

5.2.1 Theorem 5.1

The only non trivial case is when f is a power of an irreducible mod p. In this case,

we can assume φa − py is a factor of f(x) and use Algo 1 to check if this is possible

or not. We do this for all a ≤ e
2

and hence is a polytime algorithm.

5.2.2 Theorem 5.2

As g is a factor of f mod p, we know g = ṽφ(x)a where ṽ is a unit. Any lift of this to

mod p4 is of the form g̃(x) = v(x)(φ(x)a − py) mod p4 for a unit v(x) ∈ (ṽ + p∗) ⊂
(Z/〈p4〉)[x]. Any such g̃(x) maps uniquely to g1(x) = v(x)−1g̃ = (φ(x)a − py)

mod p4. So we only need to consider lifts of φ(x)a mod p

Now any lift of φ(x)a mod p which is a factor of f is of the form φ(x)a − py(x)

mod p4 for a polynomial y(x) ∈ (Z/〈p4〉)[x]. From the previous discussion, this can

be done in poly time using root finding in a different ring (using previous reductions)

for all a ≤ e/2

For a > e/2 replace b := e− a ≤ e/2 which can be solved as before.

Chapter 6

Polynomial Factoring-New Ideas

We describe some efforts made by us during this project to extend the existing

results for factorising and the problems that we faced.

6.1 Using Multivariate Representative Roots

Claim: If we can generate representative roots mod 〈xl, pk〉 , then we could induc-

tively extend this process inductively from k to k+1.

Proof: Our aim is to find roots mod 〈xl, pk〉 of a given polynomial g . We know we

can find representative roots mod 〈xl, p〉 from before. Let the representative root

that we get be r. (we treat this representative root as a multivariate)

So we can write g(r) = α.xl + β.p Here α, β are polynomials in multiple variables.

Now we want this to be 0 mod 〈xl, pk〉 . So this reduces to finding roots of β mod

〈xl, pk−1〉

This method works well for the extending k=1 to k=2. But for higher k’s (say

k=3), we would need representative roots of multivariates mod 〈xl, p〉. Now finding

a single root of such an equation over multivariate is possible but there is no such

known method for finding multivariate representative roots in the previous case. So

this is where this idea fails.

26

Chapter 6: Polynomial Factoring-New Ideas 27

For eg. an elliptic curve y2 = x3 + 1 mod p, we can easily find a ”root”... but no

efficient algorithm (or even representation is known for multivariate case. In fact in

this case, it seems that there are just way too many isolated roots to list (each root

roots seems its own representative).

Our aim is to find an efficient representation and algorithm for finding representative

roots in the multivariate case.

Another thing that we explored was trying to reduce powers of x in the previous

idea as compared to powers of p.

6.2 Relation to HN

We tried to extend the previous idea of treating the representative roots as multi-

variates to the following. We tried to think of representative root as:

Representative root r :=
∑

i,j uij.x
i.pj; where uij belong to the field Fp. Now we

to tried set g(r) = 0 mod 〈pk, xl〉 to get a variety in constant-vars. This we thought

could be solved using HN ideas.

So we considered the following algorithm:

• We need (φa − pY) dividing f(x) mod 〈pk, φ(x)l〉; where (f = φe mod p).

• Using this reduction we first find E(Y) (as done previously using binomial

expansion); then we directly get the variety from: E(
∑

ij Yij.p
i.φ(x)j) = 0

mod 〈pk, φ(x)l〉. (the variety is obtained by comparing the coefficients of powers

of x, the RHS has all of them as 0)

• This variety is in vars Yij. You want these roots in the finite field Fp[z]/〈phi(z)〉.

• Use Hilbert’s Nullstellensatz related ideal computations to test whether this

ideal is empty.

However we noticed that HN reduction is faulty. For eg., from a0 +p.a1 = 0 mod p2

we can deduce: a0 = 0 mod p and a0/p+ a1 = 0 mod p. But we can’t say: a1 = 0

mod p. This stops simple reduction from HN mod pk to HN mod p. Hence factoring

Chapter 6: Polynomial Factoring-New Ideas 28

deg=4 polynomial f(x) mod p2 using this idea of reduction to HN in poly(log p)-time

is open.

In simple terms, the problem is that when we try to reduce the HN mod pk to HN

mod p , we do not get a single instance of HN mod p but a large (exponential)

number of possibile instances for HN mod p which can’t be solved efficiently. We

are considering ideas from algebraic geometry to solve these.

So we see that if we are able to solve HN mod pk efficiently, we will be able to factor

polynomials mod pk efficiently for any k which is our goal (and an open question

right now).

Bibliography

[APR83] Leonard M. Adleman, Carl Pomerance, and S. Robert. On distinguishing

prime numbers from composite numbers. Annals of Mathematics, 1983.

[Ber68] Elwyn R Berlekamp. Factoring polynomials over finite fields. Algebraic

Coding Theory., 1968.

[dBP17] Koen de Boer and Carlo Pagano. Calculating the power residue symbol

and ibeta. ISSAC, 2017.

[DMS19] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. Efficiently factoring

polynomials modulo p4. ISSAC, 2019.

[JBQ13] Gregoire Lecerf Jeremy Berthomieu and Guillaume Quintin. Polynomial

root finding over local rings and application to error correcting codes.

Applicable Algebra in Engineering, Communication and Computing,, 2013.

29

	Declaration
	Certificate
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Preliminaries
	2.1.1 Representative Roots
	2.1.2 Quotient Ideal
	2.1.3 Gauss Quadratic Sums
	2.1.4 B-near prime ideals

	3 Integer Factoring-Previous work
	3.1 Main Ideas of APR algorithm
	3.2 Tools used
	3.3 Probablisitic Version of the APR Algorithm
	3.3.1 Preparation
	3.3.2 Extraction
	3.3.3 Consolidation step

	3.4 Ideas for Calculating the Power residue symbol efficiently
	3.4.1 Principalisation Algorithm:
	3.4.2 Evaluation Algorithm:
	3.4.3 Reduction

	4 Integer Factoring-New Ideas
	4.1 Extension of APR ideas for factoring integers
	4.2 Factoring n=pq using ideas of Automorphisms in Cyclotomic Fields
	4.3 Factoring n=pq using Gauss Quadratic sums

	5 Polynomial Factoring Ideas-Previous Work
	5.1 Main Results
	5.1.1 Reduction of Factoring to Root-Finding
	5.1.2 Reduction to Root-finding modulo Fp[x]/ak
	5.1.3 Finding roots of E'(y0, y1) modulo p, 4a
	5.1.4 Algorithm to find Roots of E(y)

	5.2 Wrapping up the theorems
	5.2.1 Theorem 5.1
	5.2.2 Theorem 5.2

	6 Polynomial Factoring-New Ideas
	6.1 Using Multivariate Representative Roots
	6.2 Relation to HN

	Bibliography
	References

