A Short, Fast, Post-quantum Multivariate Digital Signature Scheme

Anindya Ganguly, Angshuman Karmakar, Nitin Saxena CSE, IIT Kanpur

IIT-ISM Dhanbad (virtual)

April-2024

Party B

Party A

Digital Signature

01011110100 ···

anindya_signature.png

Offline signatures are widely utilized for signing a variety of documents, such as contracts, checks, and legal forms

Mode Adobe Attps://www.adobe.com > sign > generate-signature :

How to create digital signatures | Adobe Acrobat Sign

SignWell https://www.signwell.com > online-signature

Anindya Ganguly

Free Online Signature Maker - Create eSignatures

Create a free downloadable online signature by drawing or typing. Easily produce handwritten signatures you can use on all of your online documents.

About featured snippets • III Feedback

Adobe https://www.adobe.com > sign > create-electronic-sign...

How to create an electronic signature online | Acrobat Sign 7 steps

- 1. In the email you received from the sender of the document to sign, click the link labeled "Cli..
- 2. Click on the "Click here to sign" field in the document to sign.
- 3. A pop-up window will open to let you create your electronic signature in the signature field

Signaturely https://signaturely.com > online-signature

Free Online Signature Generator (Type or Draw)

A signature generator (or signature maker/signature creator) is an online tool you can use to create an online signature to sign documents. You can draw or type ...

✓ DocuSign

Adobe

https://www.docusign.com > learn > how-create-digital...

How to create digital signatures

Smallpdf.com https://smallpdf.com > eSign PDF > How To eSign PDF : How to Create a Digital Signature Online The ease of copying a digitized handwritten signature makes it susceptible to forgery.

Digital signature provides *integrity* : message authentication, non-repudiation

Signature schemes: Wide applications

- Social Media/ UPI
- Legal docs/ degree certificates
- Electronic voting m/c
- NFT/ Blockchain

- Authentication/ Data privacy
- Protection against alteration
- Non-repudiated transfer of information
- Unobstructed channel of communication

Digital Signature: Math modelling

Design a secure signature

scheme

Lattices are crypto-friendly

quantum-safe constructions

Multivariate construction offers

short signature size

Quantum algorithms can efficiently

solve problems, e.g. like IFP, DL

Research community needs

diversity in hardness assumptions

Recent NIST submission has eleven

Design a secure signature scheme

Lattices are crypto-friendly

quantum-safe construction

Multivariate construction offers

short signature size

Quantum algorithms can

efficiently solve problems, e.g. like IF,

DL

Research community needs

diversity in hardness assumptions

Recent NIST submission has eleven

Design a secure signature scheme

Lattices are crypto-friendly

quantum-safe constructions

solve problems, e.g. like IFP, DI

Research community needs

Multivariate construction offers short signature size diversity in hardness assumptions

Recent NIST submission has eleven

Design a secure signature scheme

Lattices are crypto-friendly

quantum-safe constructions

Multivariate construction offers

short signature size

Quantum algorithms can efficiently solve problems, e.g. like IFP, DL

Research community needs
diversity in hardness assumptions

Recent NIST submission has eleven

Design a secure signature scheme

Lattices are crypto-friendly

quantum-safe construction

Multivariate construction offers

short signature size

Quantum algorithms can efficiently

solve problems, e.g. like IFP, DL

Research community needs

diversity in hardness assumptions

Recent NIST submission has eleven

Design a secure signature

scheme

Lattices are crypto-friendly

quantum-safe constructions

Multivariate construction offers short signature size Quantum algorithms can efficiently solve problems, e.g. like IFP, DL

Research community needs

diversity in hardness assumptions

Recent NIST submission has eleven multivariate candidates

VDOO: Cause of Happiness

- New design element: introduced diagonal layers
- Fastest: size of linear system is small, so Gaussian Elimination is efficient
- Secure: against all existing classical and quantum attacks
- Shortest: 96 bytes, which is one of the smallest signature size (including SPHINCS+, Dilithium, and Falcon)

Roadmap for Signature Design

Cryptography from Hard Problems pool

Hard problems	Example	Importance and drawbacks
Classical cryptography	RSA, ECDH, ECDSA, EdDSA	Small key and signature size. But quantum-insecure
Lattice-based cryptography	Crystals-dilithium , Falcon, NTRU	Large key size and signature size. Fast. Most crypto friendly
Multivariate cryptography	Rainbow, UOV, Mayo	Small signature, large key size , simple construction
Hash-based cryptography	SPHNICS+, XMSS	Small public key size, large signature size and slow
Code-based cryptography	BIKE, Classical McEliece	Complex structure. Syndrome decoding; slow
Isogeny-based cryptography	SIKE, SQISign	Small signature and public key size but significantly slow

Don't Put All Your Eggs In One Basket

Multivariate Cryptography

Multivariate Quadratic (MQ) Problem

Given a quadratic system of *m* homogeneous equations and *n* variables, find a solution in polynomial time.

Constructions based on MQ

Hidden Field Equation [Patarin-96; Tao, Petzoldt, Ding-21]

Oil-Vinegar-based construction [Kipnis, Patarin, Goubin-99]

ZKP-based construction (5-round identification, MPCitH) [CHR+, Fen-22]

NP-hard

Old Architecture

Oil-Vinegar map

Quadratic map
$$\mathcal{F} :: (f^{(1)}, \cdots, f^{(m)}) : \mathbb{F}_q^n \to \mathbb{F}_q^m$$

$$f^{(1)}(x_1, \cdots, x_{\nu}, \cdots, x_n) :: \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} \alpha_{i,j}^{(1)} x_i x_j + \sum_{i=1}^{\nu} \sum_{j=\nu+1}^{n} \beta_{i,j}^{(1)} x_i x_j = t_1$$

$$f^{(2)}(x_1, \cdots, x_{\nu}, \cdots, x_n) :: \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} \alpha_{i,j}^{(2)} x_i x_j + \sum_{i=1}^{\nu} \sum_{j=\nu+1}^{n} \beta_{i,j}^{(2)} x_i x_j = t_2$$

:

÷

:

:

$$f^{(m)}(x_1, \cdots, x_{\nu}, \cdots, x_n) :: \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} \alpha_{i,j}^{(m)} x_i x_j + \sum_{i=1}^{\nu} \sum_{j=\nu+1}^{n} \beta_{i,j}^{(m)} x_i x_j = t_m$$

Oil-Vinegar map

: :

÷

÷

Quadratic map
$$\mathcal{F} :: (f^{(1)}, \cdots, f^{(m)}) : \mathbb{F}_q^n \to \mathbb{F}_q^m$$

$$f^{(1)}(x_1, \dots, x_v, \dots, x_n) :: \sum_{i=1}^{v} \sum_{j=1}^{v} \alpha_{i,j}^{(1)} x_i x_j + \sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{i,j}^{(1)} x_i x_j = t_1$$

$$f^{(2)}(x_1, \dots, x_v, \dots, x_n) :: \sum_{i=1}^{v} \sum_{j=1}^{v} \alpha_{i,j}^{(2)} x_i x_j + \sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{i,j}^{(2)} x_i x_j = t_2$$

$$f^{(m)}(x_1, \cdots, x_{\nu}, \cdots, x_n) :: \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} \alpha_{i,j}^{(m)} x_i x_j + \sum_{i=1}^{\nu} \sum_{j=\nu+1}^{n} \beta_{i,j}^{(m)} x_i x_j = t_m$$

Oil-Vinegar map

Quadratic map
$$\mathcal{F} :: (f^{(1)}, \cdots, f^{(m)}) : \mathbb{F}_q^n \to \mathbb{F}_q^m$$

$$f^{(1)}(x_1, \cdots, x_{\nu}, \cdots, x_n) :: \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} \alpha_{i,j}^{(1)} x_i x_j + \sum_{i=1}^{\nu} \sum_{j=\nu+1}^{n} \beta_{i,j}^{(1)} x_i x_j = t_1$$

$$f^{(2)}(x_1, \cdots, x_{\nu}, \cdots, x_n) :: \sum_{i=1}^{\nu} \sum_{j=1}^{\nu} \alpha_{i,j}^{(2)} x_i x_j + \sum_{i=1}^{\nu} \sum_{j=\nu+1}^{n} \beta_{i,j}^{(2)} x_i x_j = t_2$$

÷

:

•

$$f^{(m)}(x_1, \cdots, x_v, \cdots, x_n) :: \sum_{i=1}^{v} \sum_{j=1}^{v} \alpha_{i,j}^{(m)} x_i x_j + \sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{i,j}^{(m)} x_i x_j = t_m$$

→ Signature Generation →

Private Key:

□ invertible linear map

$$\boldsymbol{S}: \mathbb{F}_q^m \to \mathbb{F}_q^m, \ \boldsymbol{\mathcal{T}}: \ \mathbb{F}_q^n \to \mathbb{F}_q^n$$

u quadratic map $\mathcal{F}: \mathbb{F}_q^n \to \mathbb{F}_q^m$

 $d \in \mathbb{F}_q^m \Longrightarrow_{\mathcal{S}^{-1}} w \in \mathbb{F}_q^m$

 $\boldsymbol{d} = \boldsymbol{\mathcal{H}}(\boldsymbol{msg})$

Private Key:

□ invertible linear map

$$\boldsymbol{\mathcal{S}}: \mathbb{F}_q^m \to \mathbb{F}_q^m, \ \boldsymbol{\mathcal{T}}: \ \mathbb{F}_q^n \to \mathbb{F}_q^n$$

 $\Box \quad \text{quadratic map} \ \mathcal{F}: \mathbb{F}_q^n \to \mathbb{F}_q^m$

$$w \in \mathbb{F}_q^m \Longrightarrow_{\mathcal{F}^{-1}} y \in \mathbb{F}_q^n$$

 $\boldsymbol{d} = \boldsymbol{\mathcal{H}}(\boldsymbol{msg})$

→ Signature Generation →

→ Signature Generation →

Private Key:

□ invertible linear map

 $\boldsymbol{\mathcal{S}}: \mathbb{F}_q^m \to \mathbb{F}_q^m, \ \boldsymbol{\mathcal{T}}: \ \mathbb{F}_q^n \to \mathbb{F}_q^n$

 $\Box \quad \text{quadratic map} \ \mathcal{F}: \mathbb{F}_q^n \to \mathbb{F}_q^m$

$$d \in \mathbb{F}_q^m \Longrightarrow_{\mathcal{S}^{-1}} w \in \mathbb{F}_q^m \Longrightarrow_{\mathcal{F}^{-1}} y \in \mathbb{F}_q^n \Longrightarrow_{\mathcal{F}^{-1}} x \in \mathbb{F}_q^n$$

 $\boldsymbol{d} = \boldsymbol{\mathcal{H}}(\boldsymbol{msg})$

→ Signature Generation →

 $\boldsymbol{d} = \boldsymbol{\mathcal{H}}(\boldsymbol{msg})$

Private Key:

□ invertible linear map

 $\boldsymbol{\mathcal{S}}:\mathbb{F}_q^m o \mathbb{F}_q^m, \ \boldsymbol{\mathcal{T}}:\ \mathbb{F}_q^n o \mathbb{F}_q^n$

Q quadratic map $\mathcal{F}: \mathbb{F}_q^n \to \mathbb{F}_q^m$

$$\overrightarrow{d} \in \mathbb{F}_{q}^{m} \Longrightarrow_{\mathcal{S}^{-1}} w \in \mathbb{F}_{q}^{m} \Longrightarrow_{\mathcal{F}^{-1}} y \in \mathbb{F}_{q}^{n} \Longrightarrow_{\mathcal{T}^{-1}} x \in \mathbb{F}_{q}^{n}$$

$$\overrightarrow{d} = \mathcal{H}(msg)$$

$$\overrightarrow{d} = \mathcal{H}(msg)$$

$$\overrightarrow{d} = \mathcal{H}(x)$$

$$\overrightarrow{d} = d'$$

$$\overrightarrow{f} = \mathcal{F}(x)$$

$$\overrightarrow{f} = \mathcal{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$$

$$\overrightarrow{f} = \mathcal{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$$

$$\overrightarrow{f} = \mathcal{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$$

VDOO: Design Rationale

Diagonal Layer

Vinegar Variables: First randomly fix $x_1, x_2, \dots, x_v \in_U \mathbb{F}_q$

:

$$f_1(x_1, x_2, \dots, x_{v+1}) = x_{v+1} \cdot l_1(x_1, x_2, \dots, x_v) + g_1(x_1, x_2, \dots, x_v) \quad \begin{array}{l}l_i \text{ is linear and}\\g_i \text{ is quadratic}\end{array}$$

$$f_2(x_1, x_2, \cdots, x_{\nu+2}) = x_{\nu+2} \cdot l_2(x_1, x_2, \cdots, x_{\nu+1}) + g_2(x_1, x_2, \cdots, x_{\nu+1})$$

$$f_d(x_1, x_2, \cdots, x_{v+d}) = x_{v+d} \cdot l_d(x_1, x_2, \cdots, x_{v+d-1}) + g_d(x_1, x_2, \cdots, x_{v+d-1})$$

:

quadratic

Why Diagonal Layer?

Diagonal Layer

$\gamma_1^{(1)} x_1 + c_1 = t_1$

$$\gamma_2^{(2)} x_2 + c_2 = t_2$$

: :

:

$$\gamma_N^{(N)} x_N + c_N = t_N$$

Time Complexity: O(N)

Oil Layer

$$\gamma_1^{(1)} x_1 + \gamma_2^{(1)} x_2 + \dots + \gamma_N^{(1)} x_N = t_1$$

$$\gamma_1^{(2)} x_1 + \gamma_2^{(2)} x_2 + \dots + \gamma_n^{(2)} x_N = t_2$$

: : :

: : :

$$\gamma_1^{(N)} x_1 + \gamma_2^{(N)} x_2 + \dots + \gamma_N^{(N)} x_N = t_N$$

Time Complexity: $O(N^3)$

Design Rationale			
	Goal: Find $x \in \mathbb{F}_q^n$, from $t = \mathcal{F}(x)$; $t \in \mathbb{F}_q^m$		
Layer: I	x_1, x_2, \cdots, x_v x_{v+1}, \cdots, x_{v+d}		
	$\gamma_{\nu+1}^{(1)} x_{\nu+1} + c_1 = t_1$		
	$\gamma_{\nu+2}^{(2)} x_{\nu+2} + c_2 = t_2$		
	: : :		
	: : :		
	$\gamma_n^{(d)} x_{\nu+d} + c_d = t_d$		

Design Rationale

 $x_{v+d+1}, \cdots, x_{v+d+o_1}$

:

:

Layer: II $x_{1}, x_{2}, \dots, x_{v}, \dots, x_{v+d} \qquad x_{v+d+1}, \dots$ $y_{v+d+1}^{(d+1)} x_{v+d+1} + y_{v+d+2}^{(d+1)} x_{v+d+2} + \dots + y_{v+d+o_{1}}^{(d+1)} x_{v+d+o_{1}} = t_{d+1}$ $y_{v+d+1}^{(d+2)} x_{v+d+1} + y_{v+d+2}^{(d+2)} x_{v+d+2} + \dots + y_{v+d+o_{1}}^{(d+2)} x_{v+d+o_{1}} = t_{d+2}$

:

:

$$\gamma_{\nu+d+1}^{(d+o_1)} x_{\nu+d+1} + \gamma_{\nu+d+2}^{(d+o_1)} x_{\nu+d+2} + \cdots + \gamma_{\nu+d+o_1}^{(d+o_1)} x_{\nu+d+o_1} = t_{d+o_1}$$

:

:

35

Design Rationale

Layer: III	$x_1, x_2, \cdots,$	$x_{v}, \cdots, x_{v+d}, \cdot$	\cdots , x_{v+d+o_1}	$x_{v+d+o_1+1}, \cdots, x_n$
	$\gamma_{v+d+o_1+1}^{(d+o_1+1)} x_{v+d+o_1+1}$	$_{1^{+1}} + \gamma_{\nu+d+o_{1}+2}^{(d+o_{1}+1)}$	$x_{v+d+o_1+2} + \cdots + \gamma$	$\sum_{n}^{(d+o_1+1)} x_n = t_{d+o_1+1}$
	$\gamma_{v+d+o_1+1}^{(d+o_1+2)} x_{v+d+o_1+1}$	$\gamma_{1+1}^{(d+o_1+2)} x$	$\zeta_{\nu+d+o_1+2} + \cdots + \gamma_1^{(d)}$	$(a_{n}^{(d+o_{1}+2)}x_{n} = t_{d+o_{1}+2}$
	:	:	:	
	:	:	:	
	$\gamma_{\nu+d+o_1+1}^{(m)}$	$\mathcal{L}_{\nu+d+o_1+1} + \gamma_{\nu+d+1}^{(m)}$	$x_{v+d+o_1+2} + \cdots -$	$+\gamma_n^{(m)}x_n = t_m$

Parameters

Security Level	Parameters (q, v, d, o_1, o_2) + salt	Signature Size (B)	Public Key (KB)
SL-1 (128-bit)	(16,60,30,34,36)	96	236
SL-3 (192-bit)	(256,100,30,40,40)	226	2437
SL-5 (256-bit)	(256,120,50,60,70)	316	8127

Chen, L., Moody, D., Liu, Y.: NIST post-quantum cryptography standardization. Transition 800, 131A (2017) ³⁸

Careful Cryptanalysis

Chabhi Kaha Hai.

Structural attacks -- Forgery

1. Kipnis-Shamir attack [KS98]

2. Intersection attack [Beullens-21]

- Simple attack [Beu22]
- 3. Rectangular min-rank attack [Beu21]
 - Combine (simple + rectangular min-rank) attack [Beu22]

Find an equivalent composition $\mathcal{P} = \mathcal{S}' \circ \mathcal{F}' \circ \mathcal{T}'$

Structural attacks -- Forgery

1. Kipnis-Shamir attack [KS98]

2. Intersection attack [Beullens-21]

- Simple attack [Beu22]
- 3. Rectangular min-rank attack [Beu21]
 - Combine (simple + rectangular min-rank) attack [Beu22]

Find an oil vector

VDOO is Secure

Parameter set	Simple attack	Combine attack	Intersection attack
Security level-I (128-bit)	134	136	141
Security level-III (192-bit)	207	194	229
Security level-V (256-bit)	270	264	293

Provable Security?

- Traditional MQ signature algorithms often depend on ad-hoc assumptions.
- While UOV Problem is well understood.
- The EUF-CMA security of VDOO signature scheme reduces to its EUF-KOA security.
- EUF-KOA security of VDOO scheme reduces to the hardness of UOV problem (+ VDOO problem).
- Implying: VDOO is EUF-CMA secure.

EUF-CMA:: Existential Unforgeability under Chosen Message Attack EUF-KOA:: Existential Unforgeability under Key Only Attack

Comparison

VDOO is Short and Fast

Algorithm	Sign size (B)	Public key size (KB)	Computational bottleneck in signing
VDOO	96	238	$GE_{(16,34)}+GE_{(16,36)}$
Mayo	387	1	<i>GE</i> _(16,65)
Rainbow	128	861	$GE_{(256,32)}+GE_{(256,48)}$
Unbalanced Oil-Vinegar	134	335	<i>GE</i> _(256,64)
QR-UOV	331	21	<i>GE</i> _(7,100)
TUOV	80	65	$GE_{(16,64)} + GE_{(16,32)}$
CE Coupsian alimination of a au			wrt SL 1 paramotors

 $GE_{(q,m)}$: Gaussian elimination of a system of m equations over \mathbb{F}_q

w.r.t. SL-1 parameters

Shortest among Standardized Signatures

Algorithms	Signature size (B)	Public Key size (B)
VDOO	96	23813
Crystals Dilithium	2420	1312
Falcon	666	897
SPHINCS+	7856	32
	w.r.t. SL-1 parameters	46

At the End...

Conclusion

- 1. VDOO offers 96 Bytes for 128-bit security level
- 2. Gaussian elimination is faster for VDOO central polynomial
- 3. No classical and quantum attacks are known
- 4. Thus, useful for practical purpose.

Future Scope

- 1. Can we further reduce public key size?
- 2. Can we prove the security in Quantum Random Oracle?
- 3. Implementation package?
- Physical/ side-channel attacks?

Anindya Ganguly CSE, IITK anindyag@cse.iitk.ac.in Angshuman Karmakar CSE, IITK angshuman@cse.iitk.ac.in

Nitin Saxena CSE, IITK nitin@cse.iitk.ac.in

Any Questions?

Anindya Ganguly CSE, IITK anindyag@cse.iitk.ac.in Angshuman Karmakar CSE, IITK angshuman@cse.iitk.ac.in

Nitin Saxena CSE, IITK nitin@cse.iitk.ac.in

Thank You!

