A Short, Fast, Post-quantum Multivariate Digital Signature Scheme

Anindya Ganguly, Angshuman Karmakar, Nitin Saxena CSE, IIT Kanpur

IIT-ISM Dhanbad
(virtual)
April-2024

Party A

Malicious person

Insecure channel

Party B

Computational power

Mathematically (hard?) problems

Digital Signature

01011110100 … anindya_signature.png

Offline signatures are widely utilized for signing a variety of documents, such as contracts, checks, and legal forms

```
MA\ Adobe hitps:IMww.adobe.com , sign , generate-signature ;
How to create digital signatures | Adobe Acrobat Sign
```

Signwell
hitps://luwwsignwell. com, online-signature :
Free Online Signature Maker - Creal
Free Online Signature Maker - Create eSignatures
Create a free downioadable online signature by drawing or typing. Easily produce handwritten
signatures you can use on all of your online documents.
(A) Adobe

How to create an electronic signature online \| Acrobat Sign
7 steps

1. In the email you received from the sender of the document to sign, click the link labeled - Cl .
2. Click on the -Click here to sign"- field in the document to sign.
3. A pop-up window will open to let you create your electronic signature in the signature field.
$=\begin{gathered}\text { Signaturely } \\ \text { nttps:/lsignatur }\end{gathered}$
$=$ nitps://signaturen
Free Online Signature Generator (Type or Draw)
A signature generator (or signature maker/signature creator) is an online tool you can use to
create an
onine signature to sign documents. You can draw or type.

\pm Docusign

How to create digital signatures
Creating a digital signature is easy - open the email with a request to digitally sign your
document. Click the link. Agree to electronic signing. . Click each...
E Smallpar.com

\square The ease of copying a digitized handwritten signature makes it susceptible to forgery.

Digital signature provides integrity : message authentication, non-repudiation

Signature schemes: Wide applications

- Social Media/ UPI
- Legal docs/ degree certificates
- Electronic voting m/c
- NFT/ Blockchain
- Authentication/ Data privacy
- Protection against alteration
- Non-repudiated transfer of information
- Unobstructed channel of communication

Digital Signature: Math modelling

KeyGen()

Secret key s

Signer
Output:
$\sigma \leftarrow \operatorname{Sign}(M, s)$

- Generate $s, V K \leftarrow \$ \mathcal{K}$

Transmit σ
Output:
$\{0,1\} \leftarrow \operatorname{Verf}(M, \sigma, V K)$

Motivation for multivariate

Design a secure signature scheme

Motivation for multivariate

\square Quantum algorithms can
efficiently solve problems, e.g. like IF,
DL

Motivation for multivariate

Lattices are crypto-friendly quantum-safe constructions

Motivation for multivariate

Research community needs diversity in hardness assumptions

Motivation for multivariate

Multivariate construction offers
short signature size

Motivation for multivariate

Design a secure signature scheme

Lattices are crypto-friendly quantum-safe constructions

Multivariate construction offers short signature size
\square Quantum algorithms can efficiently solve problems, e.g. like IFP, DL

Research community needs diversity in hardness assumptions
\square Recent NIST submission has eleven multivariate candidates

VDOO: Cause of Happiness

* New design element: introduced diagonal layers
* Fastest: size of linear system is small, so Gaussian Elimination is efficient
* Secure: against all existing classical and quantum attacks
* Shortest: 96 bytes, which is one of the smallest signature size (including SPHINCS+, Dilithium, and Falcon)

Roadmap for Signature Design

Problem pool

Old

Architecture

Do not put all your eggs in one basket

Careful cryptanalysis!

Design a fast, short quantumsafe signature

Cryptography from Hard Problems

Hard problems	Example	Importance and drawbacks
Classical cryptography	RSA, ECDH, ECDSA, EdDSA	Small key and signature size. But quantum-insecure
Lattice-based cryptography	Crystals-dilithium, Falcon, NTRU	Large key size and signature size. Fast. Most crypto friendly
Multivariate cryptography	Rainbow, UOV, Mayo	Small signature, Iarge key size, simple construction
Hash-based cryptography	SPHNICS+, XMSS	Small public key size, large signature size and slow
Code-based cryptography	BIKE, Classical McEliece	Complex structure. Syndrome decoding; slow
Isogeny-based cryptography	SIKE, SQISign	Small signature and public key size but significantly slow

Multivariate Cryptography

Multivariate Quadratic (MQ) Problem

- Given a quadratic system of \boldsymbol{m} homogeneous equations and \boldsymbol{n} variables, find a solution in polynomial time.

Constructions based on MQ

Hidden Field Equation [Patarin-96; Tao,Petzoldt,Ding-21]
Oil-Vinegar-based construction [Kipnis,Patarin,Goubin-99]
ZKP-based construction (5-round identification, MPCitH) [CHR+, Fen-22]

Oil-Vinegar map

Quadratic map $\mathcal{F}::\left(f^{(1)}, \cdots, f^{(m)}\right): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$

$$
f^{(1)}\left(x_{1}, \cdots, x_{v}, \cdots, x_{n}\right):: \sum_{i=1}^{v} \sum_{j=1}^{v} \alpha_{i, j}^{(1)} x_{i} x_{j}+\sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{i, j}^{(1)} x_{i} x_{j}=t_{1}
$$

$$
f^{(2)}\left(x_{1}, \cdots, x_{v}, \cdots, x_{n}\right):: \sum_{i=1}^{v} \sum_{j=1}^{v} \alpha_{i, j}^{(2)} x_{i} x_{j}+\sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{i, j}^{(2)} x_{i} x_{j}=t_{2}
$$

$$
f^{(m)}\left(x_{1}, \cdots, x_{v}, \cdots, x_{n}\right):: \sum_{i=1}^{v} \sum_{j=1}^{v} \alpha_{i, j}^{(m)} x_{i} x_{j}+\sum_{i=1}^{v} \sum_{j=v+1}^{n} \beta_{i, j}^{(m)} x_{i} x_{j}=t_{m}
$$

Oil-Vinegar map

Quadratic map $\mathcal{F}::\left(f^{(1)}, \cdots, f^{(m)}\right): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$

$$
\boldsymbol{f}^{(1)}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{v}, \cdots, \boldsymbol{x}_{n}\right):: \sum_{i=1}^{v} \sum_{j=1}^{v} \boldsymbol{\alpha}_{i, j}^{(1)} x_{i} x_{j}+\sum_{i=1}^{v} \sum_{j=v+1}^{n} \boldsymbol{\beta}_{i, j}^{(1)} x_{i} x_{j}=\boldsymbol{t}_{1}
$$

$$
\boldsymbol{f}^{(2)}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{v}, \cdots, \boldsymbol{x}_{n}\right):: \sum_{i=1}^{v} \sum_{j=1}^{v} \boldsymbol{\alpha}_{i, j}^{(2)} x_{i} x_{j}+\sum_{i=1}^{v} \sum_{j=v+1}^{n} \boldsymbol{\beta}_{i, j}^{(2)} x_{i} x_{j}=\boldsymbol{t}_{2}
$$

$$
\boldsymbol{f}^{(m)}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{v}, \cdots, \boldsymbol{x}_{n}\right):: \sum_{i=1}^{v} \sum_{j=1}^{v} \boldsymbol{\alpha}_{i, j}^{(\boldsymbol{m})} x_{i} x_{j}+\sum_{i=1}^{v} \sum_{j=v+1}^{n} \boldsymbol{\beta}_{i, j}^{(m)} x_{i} x_{j}=\boldsymbol{t}_{\boldsymbol{m}}
$$

Oil-Vinegar map

Quadratic map $\mathcal{F}::\left(f^{(1)}, \cdots, f^{(m)}\right): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$

$$
\boldsymbol{f}^{(1)}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{v}, \cdots, \boldsymbol{x}_{n}\right):: \sum_{i=1}^{v} \sum_{j=1}^{v} \boldsymbol{\alpha}_{i \underline{i j}}^{\left(\frac{1)}{}\right.} x_{i} x_{j}+\sum_{i=1}^{v} \sum_{j=v+1}^{n} \boldsymbol{\beta}_{i \overline{i j}}^{\left(\frac{1}{j}\right.} x_{i} x_{j}=\boldsymbol{t}_{1}
$$

$$
\boldsymbol{f}^{(2)}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{v}, \cdots, \boldsymbol{x}_{n}\right):: \sum_{i=1}^{v} \sum_{j=1}^{v} \boldsymbol{\alpha}_{i, j}^{(2)} x_{i} x_{j}+\sum_{i=1}^{v} \sum_{j=v+1}^{n} \boldsymbol{\beta}_{i, j}^{(2)} x_{i} x_{j}=\boldsymbol{t}_{2}
$$

$$
\boldsymbol{f}^{(m)}\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{v}, \cdots, \boldsymbol{x}_{n}\right):: \sum_{i=1}^{v} \sum_{j=1}^{v} \boldsymbol{\alpha}_{i-i}^{(\boldsymbol{m})} x_{i} x_{j}+\sum_{i=1}^{v} \sum_{j=v+1}^{n} \boldsymbol{\beta}_{i-j}^{(m)} x_{i} x_{j}=\boldsymbol{t}_{\boldsymbol{m}}
$$

Construct an Oil-Vinegar Polynomial

 Vinegar \times Vinegar

Construct a (random) Multivariate Polynomial

Multivariate Signature Scheme

$$
d=\mathcal{H}(\boldsymbol{m s} g) \quad \Rightarrow \text { Signature Generation } \Rightarrow\left\{\begin{array}{l}
\text { Private Key: } \\
\square \text { invertible linear map } \\
\boldsymbol{\delta}: \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}^{m}, \boldsymbol{J}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n} \\
\square \text { quadratic map } \mathcal{F}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}
\end{array}\right.
$$

Multivariate Signature Scheme

$$
d=\mathcal{H}(m s g)
$$

\rightarrow Signature Generation \rightarrow

Private Key:

- invertible linear map
$\boldsymbol{\mathcal { S }}: \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}^{m}, \boldsymbol{\mathcal { J }}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$
- quadratic map $\mathcal{F}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$

$$
w \in \mathbb{F}_{\boldsymbol{q}}^{m}=\Rightarrow_{\mathcal{F}^{-1}} y \in \mathbb{F}_{\boldsymbol{q}}^{n}
$$

Multivariate Signature Scheme

Private Key:

- invertible linear map
$\boldsymbol{\mathcal { S }}: \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}^{m}, \boldsymbol{\mathcal { J }}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$
$\boldsymbol{d}=\mathcal{H}(\boldsymbol{m s} \boldsymbol{g})$
\rightarrow Signature Generation \rightarrow
\square quadratic map $\mathcal{F}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$

$$
y \in \mathbb{F}_{q}^{n}=\Rightarrow_{\mathcal{J}^{-1}} x \in \mathbb{F}_{q}^{n}
$$

Multivariate Signature Scheme

Private Key:
\square invertible linear map
$\boldsymbol{\mathcal { S }}: \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}^{m}, \boldsymbol{\mathcal { J }}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$

- quadratic map $\mathcal{F}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$
$\longrightarrow d \in \mathbb{F}_{\boldsymbol{q}}^{m}=\Rightarrow \boldsymbol{s}^{-1} w \in \mathbb{F}_{\boldsymbol{q}}^{m}=\Rightarrow_{\mathcal{F}^{-1}} y \in \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}}=\Rightarrow_{\mathcal{J}^{-1}} x \in \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}}$

$$
\begin{gathered}
d=\mathcal{H}(\boldsymbol{m s g}) \\
d^{\prime}=\mathcal{P}(\boldsymbol{x})
\end{gathered}
$$

\leftarrow Verification \leftarrow
Verification/Public Key: $\mathcal{P}=\boldsymbol{\mathcal { S }} \circ \mathcal{F} \circ \mathcal{T}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{m}$

VDOO: Design Rationale

Diagonal Layer

Vinegar Variables: First randomly fix $\boldsymbol{x}_{\boldsymbol{1}}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{\boldsymbol{v}} \in_{\boldsymbol{U}} \mathbb{F}_{\boldsymbol{q}}$

$$
\begin{aligned}
& \boldsymbol{f}_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{v+1}\right)=\boldsymbol{x}_{v+1} \cdot \boldsymbol{l}_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{v}\right)+\boldsymbol{g}_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{v}\right) \quad \begin{array}{l}
l_{i} \text { is linear and } \\
g_{i} \text { is quadratic }
\end{array} \\
& \boldsymbol{f}_{2}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{v+2}\right)=\boldsymbol{x}_{v+2} \cdot \boldsymbol{l}_{2}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{v+1}\right)+\boldsymbol{g}_{2}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{v+1}\right)
\end{aligned}
$$

$$
f_{d}\left(x_{1}, x_{2}, \cdots, x_{v+d}\right)=x_{v+d} \cdot l_{d}\left(x_{1}, x_{2}, \cdots, x_{v+d-1}\right)+g_{d}\left(x_{1}, x_{2}, \cdots, x_{v+d-1}\right)
$$

Why Diagonal Layer?

Diagonal Layer

$$
\gamma_{1}^{(1)} x_{1}+c_{1}=t_{1}
$$

$$
\gamma_{2}^{(2)} x_{2}+c_{2}=t_{2}
$$

$$
\gamma_{1}^{(1)} x_{1}+\gamma_{2}^{(1)} x_{2}+\cdots+\gamma_{N}^{(1)} x_{N}=t_{1}
$$

$$
\gamma_{1}^{(2)} x_{1}+\gamma_{2}^{(2)} x_{2}+\cdots+\gamma_{n}^{(2)} x_{N}=t_{2}
$$

$$
\gamma_{N}^{(N)} x_{N}+c_{N}=t_{N}
$$

$$
\gamma_{1}^{(N)} x_{1}+\gamma_{2}^{(N)} x_{2}+\cdots+\gamma_{N}^{(N)} x_{N}=t_{N}
$$

Time Complexity: $\boldsymbol{O}\left(\boldsymbol{N}^{3}\right)$

Design Rationale

Design Rationale

Goal: Find $x \in \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{n}}$, from $\boldsymbol{t}=\mathcal{F}(\boldsymbol{x}) ; \boldsymbol{t} \in \mathbb{F}_{\boldsymbol{q}}^{m}$

Layer: I $\quad x_{1}, x_{2}, \cdots, x_{v} \quad x_{v+1}, \cdots, x_{v+d}$

$$
\begin{aligned}
& \gamma_{v+1}^{(1)} x_{v+1}+c_{1}=t_{1} \\
& \gamma_{v+2}^{(2)} x_{v+2}+c_{2}=t_{2} \\
& \vdots \\
& \vdots \\
& \vdots \\
& \gamma_{n}^{(d)} x_{v+d}+c_{d}=t_{d}
\end{aligned}
$$

Design Rationale

Design Rationale

Layer: II

$$
x_{1}, x_{2}, \cdots, x_{v}, \cdots, x_{v+d} \quad x_{v+d+1}, \cdots, x_{v+d+o_{1}}
$$

$$
\begin{array}{cc}
\gamma_{v+d+1}^{(d+1)} x_{v+d+1}+\gamma_{v+d+2}^{(d+1)} x_{v+d+2}+\cdots+\gamma_{v+d+o_{1}}^{(d+1)} x_{v+d+o_{1}}=t_{d+1} \\
\gamma_{v+d+1}^{(d+2)} x_{v+d+1}+\gamma_{v+d+2}^{(d+2)} x_{v+d+2}+\cdots+\gamma_{v+d+o_{1}}^{(d+2)} x_{v+d+o_{1}}=t_{d+2} \\
\vdots & \vdots \\
\vdots & \vdots \\
\gamma_{v+d+1}^{\left(d+o_{1}\right)} x_{v+d+1}+\gamma_{v+d+2}^{\left(d+o_{1}\right)} x_{v+d+2}+\cdots+\gamma_{v+d+o_{1}}^{\left(d+o_{1}\right)} x_{v+d+o_{1}}=t_{d+o_{1}}
\end{array}
$$

Design Rationale

Design Rationale

Layer: III

$$
x_{1}, x_{2}, \cdots, x_{v}, \cdots, x_{v+d}, \cdots, x_{v+d+o_{1}} \quad x_{v+d+o_{1}+1}, \cdots, x_{n}
$$

$$
\begin{aligned}
& \gamma_{v+d+o_{1}+1}^{\left(d+o_{1}+1\right)} x_{v+d+o_{1}+1}+\gamma_{v+d+o_{1}+2}^{\left(d+o_{1}+1\right)} x_{v+d+o_{1}+2}+\cdots+\gamma_{n}^{\left(d+o_{1}+1\right)} x_{n}=t_{d+o_{1}+1} \\
& \gamma_{v+d+o_{1}+1}^{\left(d+o_{1}+2\right)} x_{v+d+o_{1}+1}+\gamma_{v+2}^{\left(d+o_{1}+2\right)} x_{v+d+o_{1}+2}+\cdots+\gamma_{n}^{\left(d+o_{1}+2\right)} x_{n}=t_{d+o_{1}+2}
\end{aligned}
$$

$$
\gamma_{v+d+o_{1}+1}^{(m)} x_{v+d+o_{1}+1}+\gamma_{v+d+o_{1}+2}^{(m)} x_{v+d+o_{1}+2}+\cdots+\gamma_{n}^{(m)} x_{n}=t_{m}
$$

Parameters

Security Level	Parameters $\left(\boldsymbol{q}, \boldsymbol{v}, \boldsymbol{d}, \boldsymbol{o}_{\mathbf{1}}, \boldsymbol{o}_{\mathbf{2}}\right)+$ salt	Signature Size (B)	Public Key (KB)
SL-1 (128-bit)	$(16,60,30,34,36)$	96	236
SL-3 (192-bit)	$(256,100,30,40,40)$	226	2437
SL-5 (256-bit)	$(256,120,50,60,70)$	316	8127

Careful Cryptanalysis

Structural attacks -- Forgery

1. Kipnis-Shamir attack [KS98]
2. Intersection attack [Beullens-21]

- Simple attack [Beu22]

3. Rectangular min-rank attack [Beu21]

- Combine (simple + rectangular min-rank) attack [Beu22]

Find an equivalent composition

$$
\mathcal{P}=\boldsymbol{S}^{\prime} \circ \mathcal{F}^{\prime} \circ \mathcal{T}^{\prime}
$$

Structural attacks -- Forgery

1. Kipnis-Shamir attack [KS98]
2. Intersection attack [Beullens-21]

- Simple attack [Beu22]

3. Rectangular min-rank attack [Beu21]

- Combine (simple + rectangular min-rank) attack [Beu22]

Find an oil vector

VDOO is Secure

Parameter set Simple attack Combine attack Intersection attack

Security level-I (128-bit)	134	136	141
Security level-III (192-bit)	207	194	229
Security level-V (256-bit)	270	264	293

Provable Security?

> Traditional MQ signature algorithms often depend on ad-hoc assumptions.
> While UOV Problem is well understood.
> The EUF-CMA security of VDOO signature scheme reduces to its EUF-KOA security.
> EUF-KOA security of VDOO scheme reduces to the hardness of UOV problem (+ VDOO problem).
> Implying: VDOO is EUF-CMA secure.
EUF-CMA:: Existential Unforgeability under Chosen Message Attack
EUF-KOA:: Existential Unforgeability under Key Only Attack

Comparison

VDOO is Short and Fast

Algorithm	Sign size (B)	Public key size (KB)	Computational bottleneck in signing
VDOO	96	238	$G E_{(16,34)}+\boldsymbol{G E} E_{(16,36)}$
Mayo	387	1	$\boldsymbol{G E} \boldsymbol{(1 6 , 6 5)}$
Rainbow	128	861	$\boldsymbol{G E} \boldsymbol{E}_{(256,32)}+\boldsymbol{G} \boldsymbol{E}_{(256,48)}$
Unbalanced Oil-Vinegar	134	335	$G E_{(256,64)}$
QR-UOV	331	21	$\boldsymbol{G E} \boldsymbol{(7 , 1 0 0)}$
TUOV	80	65	$\boldsymbol{G E} \boldsymbol{E}_{(16,64)}+\boldsymbol{G} \boldsymbol{E}_{(16,32)}$

Shortest among Standardized Signatures

Algorithms	Signature size (B)	Public Key size (B)
VDOO	$\mathbf{9 6}$	$\mathbf{2 3 8 1 3}$
Crystals Dilithium	2420	1312
Falcon	666	897
SPHINCS +	7856	32

At the End...

Conclusion

Future Scope

1. VDOO offers 96 Bytes for 128-bit security level
2. Gaussian elimination is faster for VDOO central polynomial
3. No classical and quantum attacks are known
4. Thus, useful for practical purpose.
5. Can we further reduce public key size?
6. Can we prove the security in Quantum Random Oracle?
7. Implementation package?
8. Physical/ side-channel attacks?

Anindya Ganguly CSE, IITK
anindyag@cse.iitk.ac.in
Angshuman Karmakar CSE, IITK
angshuman@cse.iitk.ac.in

Nitin Saxena

 CSE, IITKnitin@cse.iitk.ac.in

Any Questions?

Anindya Ganguly

Angshuman Karmakar CSE, IITK

angshuman@cse.iitk.ac.in

Nitin Saxena

 CSE, IITKnitin@cse.iitk.ac.in

Thank You!

