
Divergence Aware Automated Partitioning of OpenCL
Workloads

Anirban Ghose,
Indian Institute of Technology,

Kharagpur
anirban.ghose@cse.iitkgp.ernet.in

Soumyajit Dey,
Indian Institute of Technology,

Kharagpur
soumya@cse.iitkgp.ernet.in

Pabitra Mitra
Indian Institute of Technology,

Kharagpur
pabitra@cse.iitkgp.ernet.in

Mainak Chaudhuri
Indian Institute of Technology,

Kanpur
mainak.chaudhuri@cse.iitk.ac.in

ABSTRACT
Heterogeneous partitioning is a key step for efficient mapping and
scheduling of data parallel applications on multi-core computing
platforms involving both CPUs and GPUs. Over the last few years,
several automated partitioning methodologies, both static as well as
dynamic, have been proposed for this purpose. The present work
provides an in-depth analysis of control flow divergence and its
impact on the quality of such program partitions. We characterize
the amount of divergence in a program as an important performance
feature and train suitable Machine Learning (ML) based classifiers
which statically decide the partitioning of an OpenCL workload for
a heterogeneous platform involving a single CPU and a single GPU.
Our approach reports improved partitioning results with respect to
timing performance when compared with existing approaches for
ML based static partitioning of data parallel workloads.

CCS Concepts
•Computing methodologies→ Supervised learning; •Computer
systems organization → Parallel architectures; Single instruc-
tion, multiple data; •Software and its engineering → Parallel
programming languages;

Keywords
Control Flow Divergence, OpenCL, Feature Extraction

1. INTRODUCTION
Heterogeneous computing platforms strive to deliver high per-

formance and energy efficient solutions for compute intensive ap-
plications. With the rise of GPGPUs(General Purpose Computation
on Graphic Processing Units), heterogeneous platforms comprising
GPU and CPU cores have become a necessity in diverse application
domains ranging from molecular physics to biomedical sciences.

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to al-
low others to do so, for Government purposes only.

ISEC ’16, February 18-20, 2016, Goa, India
c© 2016 ACM. ISBN 978-1-4503-4018-2/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2856636.2856639

For heterogeneous computing environments, the problem of op-
timally mapping a given computational workload to the underlying
processing elements leading to efficient resource utilization is non
trivial in general [1]. The optimality under question is with respect
to execution time of the workload. We provide a static partitioning
method for data-parallel OpenCL workloads targeted to heteroge-
neous platforms. Our method can be best described as a source-
to-source optimization framework built around the OpenCL run-
time system. OpenCL is a standardized device independent parallel
programming framework for heterogeneous platforms comprising
computing hardware with widely varying computational character-
istics e.g., general purpose (CPU), data parallel (GPU), task parallel
(CELL/B.E.) [2] etc.

Several static and dynamic methodologies exist that address the
problem of workload partitioning over platforms comprising CPUs
and GPUs. Dynamic methods perform work-load balancing of
computational resources at runtime [3, 4, 5]. From an application
perspective, dynamic methods are suitable for situations like on-
line scheduling where run time decisions can actually be effected
to alter the platform mapping of workloads. Static methods, on the
other hand are actually compilation strategies which are designed
to work without the knowledge of dynamic execution scenarios.
Static frameworks are based on prior off-line profiling of the tar-
get application [1, 6] or using mechanisms like machine learning
(ML) to predict near optimal program partitions based on static
program structure [7, 8, 9, 10, 11]. Our approach is along the lines
of machine learning based methodologies for static partitioning of
OpenCL workloads on heterogeneous systems comprising a single
CPU and a single GPU. We focus on the use of control-flow diver-
gence as an important deciding factor for program partitions. We
motivate the impact of divergence on program execution times and
the resulting optimal partitions as follows.

In a data-parallel program having multiple computation threads
executing in parallel, it may often be the case that the control path
followed by two threads actually differ post some program point.
The threads follow different execution paths if some branch condi-
tion is a function of the thread-id and the condition evaluates to true
for one thread and false for the other. In the OpenCL programming
model, such groups of work-items (i.e. OpenCL threads) concur-
rently execute the kernel (device specific code) on a device which
has support for vector processing. When a group of work-items en-
counter a conditional statement, work-items taking different paths
execute sequentially. Such instances of control flow divergence
may cause severe performance degradation as observed for the code

131

snippet below.
__kernel void divergent(__global float*A,int N){
int tid= get_global_id (0);
float sum=0.0;
int U=(tid+1)*N;
if(tid<N)
for(int i=tid;i<U;i++)
// if(tid%2==0)

sum+=pow(sin(A[i]),i);
}

The above code snippet is a slightly modified version of an arti-
ficial program used in [12]. Work-item tid will execute the loop
a variable number of times. The variable sum is updated with the
data value at position i which is calculated as the ith power of the
sine of the original data value in A. Let us now introduce a diver-
gent branch, say if(tid%2==0) inside the for loop. The presence
of this branch condition has a huge impact on the execution time.
Since, the branch condition is dependent on the thread-id, work-
items with even thread-ids will execute the mathematical function,
while the ones with odd ids will be stalled. The effect of stalling is
compounded as this check will be executed per iteration.

The generic device independent programming framework of OpenCL
provides us with the flexibility of engaging the CPU and GPU de-
vices in parallel by partitioning the set of global work-items. The
effect of control flow divergence on the execution performance of
such partitioned OpenCL programs is highlighted in Figure 1 for
the code segment we discussed earlier. A partition option repre-
sents the split ratio of the global work-item set across the CPU and
GPU devices in parallel. The X-axis depicts the split ratio with the
value (100:0) signifying full CPU and the value (0:100) signifying
full GPU execution.

Percentage split of execution
100:0 90:10 80:20 70:30 60:40 50:50 40:60 30:70 20:80 10:90 0:100

E
xe

cu
tio

n
T

im
e

(m
s)

200

300

400

500

600

700

800

900

Figure 1: Execution profile for different partition options.
The blue line (below) depicts the execution times for various

partition options of the program version without if(tid%2==0)
inside the for loop (i.e. the non-divergent program). The red line
(above) depicts the execution time profile for the divergent pro-
gram. We can observe that there is a considerable increase in ex-
ecution time for the divergent program when compared with the
non-divergent version. This is expected because of the sequen-
tial execution forced by control flow divergence. The programs
are similar in all other aspects (like arithmetic operations, barriers,
memory access etc) except for the conditional branch. What is in-
teresting is that the execution time for the divergent program does
not vary in a similar pattern when compared with the non-divergent
version across different partition options.

The non-divergent program will execute with minimum time for
the partition option (80:20) i.e. 80% of the computation is mapped
to the CPU while 20% of the computation is mapped to the GPU.
The divergent program executes efficiently for the partition (20:80).
This synthetic example perfectly illustrates the fact that the diver-

gent nature of control flow behavior plays an important role while
deciding the optimal partitioning of an OpenCL workload. The ex-
act reason behind this can be attributed to the difference in handling
of divergence by CPU and GPU architectures as well as the com-
plex inter-play of program features which actually decide what is
an optimal partition for a given data-parallel program.

The objective of this communication is to establish control-flow
divergence as a deciding factor in static partitioning of data-parallel
workloads and providing improved source-level program partition
optimizers. In recent times, there has been a lot of interest in apply-
ing machine learning based classification techniques for static pro-
gram partitioning. In such static methods, program features char-
acterizing execution time performance are extracted at compilation
time. Based on the derived feature vector, an optimal partition of
the program is predicted. With the same objective as well as work-
flow, we emphasize the inclusion of control flow divergence as an
important program feature. We extend the feature set reported in
[9] with control flow divergence and analyze the resulting improve-
ments in classification accuracy. We build upon an existing static
analysis method for divergence detection [13] and characterize con-
trol flow divergence as a performance feature in our ML based par-
titioning framework. The salient features of the contribution are as
follows.

1. We implement a tool-flow which comprises three modules
- a) a static analysis front-end for automatically extracting
static program features, b) a module for determining the op-
timal partition of an OpenCL workload and c) a machine
learning back-end which generates a classifier (i.e. the parti-
tioner) model using supervised learning techniques. Details
of the work-flow are described in Section 2.

2. We introduce the feature of control-flow divergence. We de-
velop an analysis pass on top of the Ocelot framework [14]
which computes the percentage of divergence of an OpenCL
kernel. Details are depicted in Section 3.

3. We train classifier models with and without the feature of di-
vergence and establish the fact that incorporating this feature
benefits the accuracy of the partition function learned by the
classifier. Experimental results are illustrated in Section 4.

In order to automate the tool-flow and accelerate the training pro-
cess, we additionally implement a partition generator that can syn-
thesize partitioned variants of OpenCL programs when a partition
ratio is specified. With respect to some given OpenCL program, a
partition variant is a functionally equivalent program with a differ-
ent ratio of workload sharing among GPU and CPU.

Our experiments convincingly establish that existing classifier
based static partitioning methods are not really effective for a large
class of control-flow intensive workloads and the inclusion of the
divergence feature provides real improvement in performance of
the predicted and synthesized partitioned program variants. The
non-triviality of the inclusion of the analysis can be further compre-
hended from our observations on program specific partition results
as discussed in Section 4. We conclude our paper with a summary
and scope for future work in Section 5.
2. WORKFLOW

A typical OpenCL program comprises two parts - a single threaded
host program which executes on the CPU and the kernel which is
data-parallel code to be executed on devices with support for vec-
tor processing. Data initialized in the host memory is first copied
to the different devices of the system. The host program can either
Just-in-Time-compile (JIT compile) the kernels or load the kernel
binaries directly on the devices. Since we perform static analysis of
kernel source, we adopt JIT mode of execution. The host generated
kernel binaries process the data copied on the respective devices.

132

Once the kernel processing is finished, the results are again copied
back to the host memory for further post-processing. The partition-
ing problem in the context of OpenCL programs entails splitting
the data defined in the host memory space in a fixed ratio into seg-
ments and distributing it across the devices of the heterogeneous
system. Our work is based on a single CPU-GPU system and so
the data space is split into two distinct segments in a fixed ratio.
We fix a resolution of 10 for classifying the different possible split
ratios into partition classes which are defined as follows.

Definition 1. The partition class of a program P is given by
an integer from the set D = {0, 1, 2, 3..., 10} which indicates the
split-ratio of the N-dimensional host data space of P across the
CPU and the GPU. If the partition class of P is considered as i
(0 ≤ i ≤ 10) then it signifies that the program P executes in CPU
for (100−i×10)% of its computation domain. The program executes
in GPU for the rest of the data space.
Allowing program partitions at too fine granularities do not make
much sense unless the input size for the programs are very large
so that the CPU-GPU data transfer overhead do not make nearby
partitions very difficult to disambiguate. Based on the notion of
partition classes, the formal problem statement is as follows.

Let F = 〈 f1, · · · , fn〉 denote a set of static features of a program
P to be mapped on a heterogeneous architecture comprising a CPU
and a GPU. The static program features of P are denoted by F(P) =

〈 f1(P), · · · , fn(P)〉. We intend to learn a classifier function C such
that C(F(P)) ∈ D where C(F(P)) is the predicted optimal partition
class of the program P.

Benchmark OpenCL applications

Host
Code

KernelAuxiliary
Libraries

FEATURE

PARTITION GENERATOR

Initialize
Generic
OpenCL

Template

Benchmark
Analysis
Module

Synthesize
Partition
Variants

Profile execution
time of all variants

CLASSIFIER
MODEL

SUPERVISED
LEARNING

FEATURE

New OpenCL Application

PARTITION GENERATOR

Synthesize Partition Variant

features

optimal

partition class

features

predicted

partition class

EXTRACTION

EXTRACTION

Figure 2: Flowchart for training and testing phases
The overall workflow for training a classifier model followed by

evaluating its quality is depicted in Figure 2. The individual com-
ponents of the figure are described as follows.

1. Benchmark OpenCL applications from various vendors are
chosen. These benchmarks typically contain OpenCL host
codes with problem specific auxiliary library routines and a
set of OpenCL kernels.

2. We create a Partition Generation framework for automati-
cally synthesizing the partition variants of OpenCL kernels.
For a given kernel P and a target partition class k ∈ D, the
partition generator synthesizes the desired program variant
belonging to the partition class k using automated source
level transformations. A similar automated single OpenCL
kernel partitioning framework has been reported in [10].

3. Static information pertaining to device code is extracted us-
ing Feature Extraction. We implement LLVM compiler [15]
passes in order to obtain the static program features char-
acterizing computation power, memory usage, problem size
and control flow behavior. We consider the entire feature set
reported in [8] which characterize the first three of the listed
properties. Additionally, we quantify the performance aspect
of control flow behavior by evaluating the percentage of di-
vergence and including it in the feature set.

4. Given a set B of popular OpenCL benchmarks, we create all
possible partitioned variants using the tool-flow described in
step 2. All the variants are executed in the target hetero-

geneous platform and profiled. The variant with the mini-
mum execution time is marked for every test program. In
that way we create a data-set comprising entries given by
{〈F(P), opt(P)〉 | P ∈ B} where opt(P) is the optimal parti-
tion of program P as found by execution time profiling of all
partition variants of P and F(P) is the feature vector of P as
computed using our front-end static analysis (Step 3). We
use this labelled training dataset and use Supervised Learn-
ing methods to generate a classifier model.

5. To evaluate the quality of the learned classifier model, parti-
tion classes predicted for unseen program instances are com-
pared with the optimal partition class values.

6. For a new program (< B), when the classifier predicts a par-
tition class, we use the Partition Generation Framework to
synthesize the desired partitioned variant.

In that way we have an automated source-level transformation tool
for optimizing OpenCL programs for execution in heterogeneous
platforms. As discussed earlier, in our tool, control-flow diver-
gence plays an important role in deciding the partition class and
the subsequent task of partition variant synthesis. We discuss the
properties of this program feature in detail as follows.

3. CONTROL FLOW DIVERGENCE
Procedures for handling divergence differ between CPU and GPU

architectures. In the performance perspective, this actually tran-
spires to optimal partitions being different for two programs having
similar static characteristics except for the amount of possible di-
vergence. While GPU architectures have dedicated hardware sup-
port for predicated execution, CPU architectures employ software
predication based approaches [16] for handling divergence. We ex-
emplify the difference in divergence handling by comparing the re-
spective assembly codes of the following code snippet.

__kernel void divergent(__global int *A,int N){
int tid=get_local_id(0);
int gid=get_global_id(0);
float x=A[gid];
if(tid<11){A[gid]+=sqrt(x);A[gid]*=3;}
else{A[gid]-=sqrt(x);A[gid]+=11;}

}

.LBB0_2: /*CPU*/
vpcmpgtd %ymm0,%ymm1,%

ymm5
vmovups (%edx),%ymm6
vsqrtps %ymm6,%ymm7
vaddps %ymm7,%ymm6,%ymm1
vmulps %ymm2,%ymm1,%ymm1
vsubps %ymm7,%ymm6,%ymm6
vaddps %ymm3,%ymm6,%ymm6
vblendvps %ymm5,%ymm1,%

ymm6,%ymm1
vmovups %ymm1, (%edx)

BB0_1: /*GPU*/
ld.global.f32 %f1,[%rd4];
sqrt.approx.f32 %f2,%f1;
mov.u32 %r4,10;
setp.gt.s32 %p1,%r3,%r4;
@%p1 bra BB0_2;
add.f32 %f3,%f2,%f1;
st.global.f32 [%rd4],%f3;
BB0_2:
sub.f32 %f6,%f1,%f2;
st.global.f32 [%rd4],%f6;
ret;

Figure 3: CPU and GPU Assembly Code

The corresponding CPU assembly and GPU PTX (Parallel Thread
Execution) codes are illustrated in Figure 3. In the CPU assembly
code, the square root, addition, subtraction and multiplication in-
structions (vpsqrtps, vpaddps, vpsubps and vpmulls) in both the if
and else blocks are executed and stored in registers %ymm1 and
%ymm6 respectively. The vpcmpgtd instruction computes the mask
vector. The function vblendvps selects the register value depend-
ing on the value of the mask vector and subsequently stores it in
the global array. This procedure forces the computations in both
the blocks to be executed. However, in the GPU assembly code
the respective computations in the blocks are performed by the cor-
responding threads only. The predicate %p1 is computed using
the setp instruction. The PTX branch instruction depends on this

133

predicate. The assembler sets a branch synchronization marker that
pushes the current mask vector on a stack inside each thread. In-
active work items for the if block are masked out and are not exe-
cuted. At the end of execution of a conditional block, the mask vec-
tor is popped, its bits are flipped and again pushed into the stack.
The remaining work items execute the other conditional block in
sequence. In contrast to the CPU, the SIMD threads in the GPU
execute the respective instructions that they are supposed to in the
conditional blocks. The CPU executes instructions in both the con-
ditional blocks for each thread.

Clang

LLVM Loop
Analysis

OpenCL kernel

LLVM IR

PTX
Ocelot

Branch divergence
static analysis pass

Loop
bound

statistics

Divergence
statistics

Figure 4: Framework for obtaining control flow features.
We now discuss how the features related to control-flow are com-

puted. The flowchart for obtaining control features is shown in
Fig. 4. We use clang[17] to compile OpenCL kernels to LLVM
IR. An LLVM compiler pass converts the LLVM IR to PTX (Paral-
lel Thread Execution) which is a virtual instruction set for general
purpose parallel programming. There exists a unique mapping be-
tween LLVM IR and PTX backend [18]. The LLVM IR is passed
to an LLVM loop analysis module which computes the iteration
count of each loop. For loops dependent on thread-ids, this count
is actually an upper bound. The PTX code generated is passed to
the Ocelot compiler framework. Ocelot includes a static analysis
proposed by [13] which iterates through all the branch instructions
in order to identify which of them are divergent. By invoking the
loop as well as the divergence analysis over a program, we iden-
tify the set L of loops, the bound ni for every loop li ∈ L, the
set B of branches. Also, we identify the set Bl = {(bi, li) | li ∈

L} ⊆ B of branches inside loops and the set Bdiv ⊆ B of divergent
branches. Hence, the worst-case static estimate of branch instruc-
tions which shall execute becomes

∑
bi∈Bl

ni+|B\Bl|. The static esti-
mate of diverging branch instructions which shall execute becomes∑

bi∈Bl∩Bdiv
ni + |Bdiv ∩ (B \ Bl)|. We thus obtain the total number of

potential branches as well as the percentage of divergence.
There exists other static analysis techniques for divergence de-

tection in data-parallel programs [19, 12, 16]. We employ the anal-
ysis reported in [13] because of improved precision and support
of the formal semantics of an SIMD execution model [20]. The
notion of processing elements operating in parallel and associated
operations on them constitute the basic foundation of the SIMD
execution model. The PTX representation provides the relevant in-
structions and constructs for the same making it the ideal choice for
static analysis pertaining to divergence.

Static estimates of divergence are naturally conservative. Such
conservative approximations can surely be refined using hybrid tech-
niques involving dynamic feature extraction. However, the present
work is only confined to a purely static method and in majority
scenarios, static estimates work fine for our approach as will be re-
vealed in the subsequent section. After computing the feature of
control flow divergence we move on to the training stage where we
train classifier models and evaluate their quality.

4. EXPERIMENTAL RESULTS
We evaluate the approach discussed so far on a heterogeneous

system consisting of an NVIDIA Tesla C2050 GPU clocked at

0.95 GHz and an Intel Xeon E5620 CPU clocked at 2.4 GHz with
Hyperthreading technology. We have used a total of 56 kernels
from various OpenCL benchmarks such as NVIDIA SDK[21], AMD-
APP SDK[22], Parboil[23] and Rodinia [24]. We generate 206
training data points for our dataset by varying the number of work
items and problem size. The work can be validated on any other
CPU-GPU system, only by repeating the training phase for that
platform.

We use the Weka toolkit [25] to train and evaluate our machine
learning models. For our evaluation method, we use the popular
leave one out cross-validation method to compute the accuracy.
We have trained a two-level hierarchical classifier using the entire
feature set with both Decision Trees (DT) and Radial Basis Func-
tion (RBF) networks initially. The first level of the hierarchical
classifier focuses on the two extreme ends of execution i.e., purely
GPU and purely CPU. If the predicted class is inconclusive, the
program is sent to the second level classifier. The second level
classifier is relatively complex and predicts one out of the eleven
partition classes for the corresponding program.

The leave one out cross-validation accuracies for the first level
DT and RBF classifiers are 83.71% & 89.23% respectively. For the
second level DT and RBF classifiers, these valuse are 75.68% &
80.84% respectively. The difference in the accuracy values of DT
and RBF may be attributed to the fact that the problem of finding
the optimal partition is hard with non-linearity of class boundaries.
In this regard, RBF networks are able to predict the class bound-
aries more efficiently than DT.

In order to establish the impact of divergence on the optimal pro-
gram partition, we now train two RBF classifiers, DIV and NDIV
which include and exclude the branch divergence feature respec-
tively. It may be observed from Table 1 that there is a considerable
difference between the accuracies of DIV and NDIV for both the
individual levels as well as the combined model.

Table 1: Classifier accuracy of various models
Models
↓

RBF network accuracy
Without Divergence With Divergence

CPU-GPU-Inconclusive 84.12% 89.23%
Partition CPU-GPU 66.37% 80.84%
Combined Model 64.31% 81.23%

A selected list of popular benchmark programs with varying de-
grees of divergence and different work-item sizes from our exper-
imental dataset is provided in Table 2 . Partition classes predicted
by NDIV and DIV , and the class representing the optimal partition
along with associated execution times for the benchmark programs
are also presented. Based on these experimental results, we discuss
the impact of branch divergence on the decision of the classifiers.

The kernels Histogram256 (100% divergence) and Histogram64
(75% divergence) present complex branching behaviour and a high
level of branch divergence. Histogram256 contains three distinct
for loops whose branch conditions are dependent on the thread-id
and are divergent. Histogram64 contains a relatively simpler struc-
ture with two divergent for loops and a divergent if statement
containing a non-divergent for loop. The classifier DIV correctly
predicts the optimal partition class value for both the programs. In
contrast, classifier N−DIV fails to understand the overhead caused
by the divergent branches in the programs and assumes that uni-
form computation is being done inside the loops, thereby mispre-
dicting it and leading to an increase in execution time.

For kernels with lower levels of divergence, the difference in par-
tition classes and execution times are considerably less among DIV
and NDIV . In such cases, the chances of misclassification due to
DIV is possibly as high as it is due to NDIV . The kernel BoxFilter-
Horizontal (16.67% divergence) is correctly mapped to the optimal

134

Table 2: Predicted execution time of divergent programs

Benchmark
OpenCL
kernels

Percentage
of
branch
divergence

No.
of

work
items

Prediction
by

NDIV

Prediction
by

DIV

Optimal
partition

Execution
time (ms)

Partition
class

Execution
time (ms)

Partition
class

Execution
time (ms)

Partition
class

nw_kernel2 (RODINIA) 34.20% 2048 7.33 5 5.6 8 5.6 8
splitSort (PARBOIL) 44.44% 664064 6.97 6 5.43 10 5.43 10

mb_sad_calc (RODINIA) 66.67% 2048 265.68 0 127.63 10 127.63 10
4096 290.35 6 133.45 10 133.45 10

lud_perimeter (RODINIA) 20% 2048 14.27 10 14.27 10 10.33 8
uniformAdd (PARBOIL) 100% 8389120 0.28 7 0.412 10 0.0.28 7

larger_sad_calc16 (PARBOIL) 100% 38404 7.74 10 7.74 10 7.74 10
20482 3.87 10 3.87 10 3.87 10

Histogram256 (NVIDIA) 100% 279680 2.05 0 0.33 10 0.33 10
Histogram64 (NVIDIA) 75% 279680 1.52 0 0.22 10 0.22 10

Reduction4 (NVIDIA) 62.5% 32768 0.018 10 0.018 10 0.018 10
65536 0.023 10 0.023 10 0.023 10

Reduction0 (NVIDIA) 50% 32768 0.029 10 0.029 10 0.029 10
65536 0.042 10 0.042 10 0.042 10

MatVecMulCoalesced1 (NVIDIA) 50% 157987120 103 0 45 10 45 10
SimpleConvolution (AMD) 50% 2097152 2.74 10 2.74 10 2.58 8
MatVecMulCoalesced0 (NVIDIA) 37% 157987120 62.16 0 49.13 10 49.13 10
HorizontalSAT0 (AMD) 50% 16777216 30.31 7 17.32 8 17.32 8

BoxFilterHorizontal (AMD) 16.67% 8388608 15.57 8 14.49 7 14.49 7
2097152 5.02 6 3.68 7 3.68 7

BoxFilterVertical (AMD) 16.67% 8388608 16.73 8 15.68 7 15.68 7
2097152 3.96 7 3.96 7 2.99 8

partition class for both the work-item sets by DIV while it is incor-
rectly predicted by NDIV . The kernel BoxFilterVertical (16.67%)
is correctly mapped to the optimal partition class for the first work-
item set by DIV , while it is incorrectly predicted by NDIV . For the
second work-item set, both the classifiers fail to classify correctly.

We now list cases where the feature of divergence fails to add
any insight or misguide the decision of the classifier. The deci-
sions inferred by both the classifiers for the reduction kernels - Re-
duction0 (62.5% divergence) and Reduction4 (50% divergence) are
similar. These kernels contain for loop structures with nested if
statements whose branch conditions depend on the thread-ids and
the induction variables of the for loop suggesting high levels of
divergence. However, the execution time for these programs are
determined primarily by the overhead due to use of synchroniza-
tion primitives (barriers) and the possibility of shared memory bank
conflicts. The feature of divergence does not provide any additional
insight here and both the classifiers for the kernels predict the op-
timal partition class values. The kernel large_sad_calc_16 (100%
divergence) contains one divergent if statement and one divergent
for statement. The branch condition associated with the for loop
is dependent on the thread-id and a variable which is computed
during runtime. The value of this variable evaluates to the size of
the work-group in this program. This scenario ensures that all the
threads in a work-group are active and there is no control flow di-
vergence. However the static analysis fails to detect this and labels
the branch as divergent. We observe that there is no change in the
decisions made by the two classifiers. Both the classifiers predict
the optimal partition class value 10 for this program, owing to the
high amount of regular computation present in the kernel favouring
GPU friendly execution. The kernel uniformAdd contains if state-
ments which are labelled as divergent but are actually not during
runtime. The classifier NDIV correctly assigns the program with
the optimal partition class value here, but the classifier model DIV
mispredicts as it is under the impression that the program is diver-
gent according to the static analysis. However, the computation
involved is much less and so the difference between program ex-
ecution times for different partition classes are not significant. As
suggested by the aforementioned accuracy measures, the classifier
DIV is incorrect in 18.77% cases for our experimental dataset and
this is primarily because of these specific class of test cases. The
classifier DIV is considerably accurate for other benchmark pro-
grams, especially highly divergent ones.

5. CONCLUSION
The work proposes a ML based static approach for partitioning

OpenCL programs and emphasizes the importance of incorporat-
ing control flow divergence in the feature set. The classifier pro-

duces considerably better partitioning results when divergence is
considered as a program feature. Future work includes refining
the feature of divergence by improving its precision over existing
methods. An interesting extension would be to investigate how
the partitioning will be influenced using modern CPU architectures
which have support for AVX instructions. We shall further inspect
the impact that divergence would have while scheduling multiple
OpenCL tasks in complex heterogeneous systems and design effi-
cient heuristics for the same.

6. REFERENCES
[1] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting

Parallelism on Heterogeneous Multiprocessors with Adaptive Mapping. In
Micro, pages 45–55. IEEE, 2009.

[2] Khronos OpenCL Working Group et al. OpenCL-The Open standard for
Parallel Programming of Heterogeneous Systems.
http://www.khronos.org/opencl, 2011.

[3] Vignesh T Ravi, Wenjing Ma, David Chiu, and Gagan Agrawal. Compiler and
Runtime Support for enabling Generalized Reduction Computations on
Heterogeneous Parallel Configurations. In ICS, pages 137–146, 2010.

[4] Prasanna Pandit and R Govindarajan. Fluidic Kernels: Cooperative Execution
of OpenCL Programs on Multiple Heterogeneous Devices. In CGO, page 273,
2014.

[5] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis,
Chunling Hu, and Keshav Pingali. Adaptive Heterogeneous Scheduling for
Integrated GPUs. In PACT, pages 151–162, 2014.

[6] Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa H. Meng.
Merge: A Programming Model for Heterogeneous Multi-core Systems. In
ASPLOS, pages 287–296, 2008.

[7] Zheng Wang and Michael FP O’Boyle. Partitioning Streaming Parallelism for
Multi-cores: A Machine Learning Based Approach. In PACT, pages 307–318,
2010.

[8] Dominik Grewe and Michael FP O’Boyle. A Static Task Partitioning Approach
for Heterogeneous Systems using OpenCL. In CC, pages 286–305, 2011.

[9] Dominik Grewe, Zheng Wang, and Michael FP O’Boyle. OpenCL Task
Partitioning in the Presence of GPU Contention. In LCPC, pages 87–101, 2011.

[10] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An
Automatic Input-Sensitive Approach for Heterogeneous Task Partitioning. In
ICS, pages 149–160, 2013.

[11] Yuan Wen, Zheng Wang, and Michael O’Boyle. Smart Multi-task Scheduling
for OpenCL programs on CPU/GPU Heterogeneous Platforms. In HIPC, 2014.

[12] Bruno Coutinho, Diogo Sampaio, Fernando Magno Quintao Pereira, and
W Meira. Divergence Analysis and Optimizations. In PACT, pages 320–329,
2011.

[13] Diogo Sampaio, Rafael Martins, Sylvain Collange, and Fernando
Magno Quintao Pereira. Divergence Analysis with Affine Constraints. In
SBAC-PAD, pages 67–74, 2012.

[14] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and
Nathan Clark. Ocelot: A Dynamic Optimization Framework for
Bulk-Synchronous Applications in Heterogeneous Systems. In PACT, pages
353–364, 2010.

[15] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO, pages 75–86, 2004.

[16] Ralf Karrenberg and Sebastian Hack. Improving Performance of OpenCL on
CPUs. In CC, pages 1–20, 2012.

[17] Clang: A C Language Family Frontend for LLVM. http://clang.llvm.org.
[18] Helge Rhodin. A PTX Code Generator for LLVM. Master’s thesis, Saarland

University, 2010.
[19] John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts, Mike

Murphy, Ziang Hu, and Wen-mei W. Hwu. Efficient Compilation of
Fine-grained SPMD-threaded Programs for Multicore CPUs. In CGO, pages
111–119, 2010.

[20] Craig A Farrell and Dorota H Kieronska. Formal Specification of Parallel
SIMD Execution. Theoretical Computer Science, 169(1):39–65, 1996.

[21] NVIDIA OpenCL SDK. http://developer.nvidia.com/opencl.
[22] AMD-APP SDK. http://developer.amd.com/tools-and-sdks/.
[23] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen

Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A
Revised Benchmark Suite for Scientific and Commercial Throughput
Computing. Center for Reliable and High-Performance Computing, 2012.

[24] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee,
and K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing.
In IISWC, 2009.

[25] Ian H Witten, Eibe Frank, Leonard E Trigg, Mark A Hall, Geoffrey Holmes,
and Sally Jo Cunningham. Weka: Practical Machine Learning Tools and
Techniques with Java Implementations. 1999.

135

