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ABSTRACT

Active memory systems help processors overcome the
memory wall when applications exhibit poor cache behav-
ior. They consist of either active memory elements that
perform data parallel computations in the memory system
itself, or an active memory controller that supports address
re-mapping techniques that improve data locality. Both ac-
tive memory approaches create coherence problems—even
on uniprocessor systems—since there are either additional
processors operating on the data directly, or the processor
is allowed to refer to the same data via more than one ad-
dress. While most active memory implementations require
cache flushes, we propose a new technique to solve the co-
herence problem by extending the coherence protocol. Our
active memory controller leverages and extends the coher-
ence mechanism, so that re-mapping techniques work trans-
parently on both uniprocessor and multiprocessor systems.

We present a microarchitecture for an active memory con-
troller with a programmable core and specialized hardware
that accelerates cache line assembly and disassembly. We
present detailed simulation results that show uniprocessor
speedup from 1.3 to 7.6 on a range of applications and mi-
crobenchmarks. In addition to uniprocessor speedup, we
show single-node multiprocessor speedup for parallel active
memory applications and discuss how the same controller
architecture supports coherent multi-node systems called ac-
tive memory clusters.
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1. INTRODUCTION

One of the most significant challenges facing computer ar-
chitects today is overcoming the memory wall [26]. While
techniques like prefetching or improvements in the cache hi-
erarchy can reduce memory stall time, there remain classes
of applications that are not amenable to these methods and
have poor cache behavior. A promising approach to over-
coming the memory wall in these applications is the use of
active memory systems, where data-parallel computations
or scatter/gather operations invoked via address re-mapping
techniques are performed in the memory system to either off-
load computation directly or to reduce the number of pro-
cessor cache misses.

Both active memory approaches create coherence prob-
lems—even on uniprocessor systems—since there are either
additional processors in the memory system operating on
the data directly, or the main processor is allowed to refer
to the same data via more than one address. As we will dis-
cuss in Section 1.1, most active memory system approaches
require the programmer to insert cache flushes before in-
voking active memory operations to avoid correctness prob-
lems. Cache flush overhead on modern processors can be
large (typically requiring a trap to the operating system to
execute a privileged instruction or set of instructions) and
grows more costly as the number of cache levels increases.
Though user-level cache flushes may reduce this overhead,
either compilers must conservatively insert flushes to main-
tain correctness, or inserting flushes requires human inter-
vention. Further, this software cache-coherent programming
model via flushes faces even larger difficulties on popular
single-node multiprocessor servers (SMPs). With process
migration in a general-purpose SMP environment, even a
uniprocessor active memory application must flush all the
caches in the system to guarantee correctness, not just its
own. In addition, we will describe active memory techniques
that require coherence for correctness and for which flushes
of any kind are insufficient.

We propose an active memory system that leverages and
extends the hardware cache coherence protocol already pre-
sent on both uniprocessor (for coherent I/0O) and multipro-
cessor systems to provide improved performance on a range
of applications. Our focus in this work is on an active mem-
ory controller that supports address re-mapping techniques
to improve processor cache behavior, though the approach
does not preclude the future use of active memory elements
as well. The key to the approach is that the active mem-
ory controller not only performs the re-mapping operations
required, but also runs the directory-based coherence pro-



tocol and hence controls which mappings are present in the
processor caches. While many machines employ snoopy-
based coherence mechanisms, recent architectures [5, 18]
have abandoned bus-based snooping in favor of directories
because of the decrease in local memory access time and
the electrical advantages of point-to-point links between the
processor and the memory controller. Because we modify
only the memory controller, our technique works with com-
modity microprocessor and memory technologies. Further,
since we leverage the cache coherence mechanism, our active
memory techniques work transparently on either uniproces-
sor or multiprocessor systems.

It is the programmability of our active memory controller
combined with specialized hardware that accelerates cache
line assembly and disassembly that allows us to extend the
cache coherence protocol to improve “traditional” active
memory applications that perform matrix transposes and
sparse matrix operations. But this same flexibility allows
us to improve other classes of applications not usually ad-
dressed by active memory systems. In this paper, we also
show how we can improve applications that perform re-
peated linked-list traversals with techniques similar to those
in memory forwarding [19] (complete with the “safety net”),
but without the processor modifications suggested there.
Through detailed simulation of our active memory system
we show uniprocessor speedup from 1.3 to 7.6 across these
applications. In addition to uniprocessor speedup, we show
how our active memory controller improves the performance
of parallel applications on single-node multiprocessors, in-
cluding FFT and parallel reduction.

The rest of the paper is organized as follows. We compare
our approach to other active memory approaches in Sec-
tion 1.1. We describe examples of applications that can ben-
efit from active memory systems and our coherence-based
approach in Section 2. In Section 3, we detail the microar-
chitecture of our active memory controller and describe the
functionality of the architecture through illustrative exam-
ples. In Section 4 we discuss the applications and bench-
marks in our performance study, as well as our simulation
methodology. In Section 5 we present simulation results
of both uniprocessor and multiprocessor applications on our
active memory system compared to the same applications on
normal (non-active) memory systems. We also compare the
performance of our approach to that of using explicit cache
flushes, where it is possible to use flushes at all. In addition,
we examine the effect of technology scaling on our approach
as well as the performance of some of the microarchitectural
features of our active memory controller in isolation. In Sec-
tion 6 we discuss future work, and Section 7 summarizes our
approach and concludes the paper.

1.1 Reated Work

Previous work in active memory systems can be divided
into projects with active memory elements and those with
active memory controllers. The DIVA [8], Active Pages [25],
and FlexRAM [13] projects all involve active memory ele-
ments—adding processing capability to memory chips, cre-
ating so-called PIMs. The application focus of each of these
projects is on finding data parallel or streaming operations
that can be performed in the memory system, offloading
computation from the main processor. The FlexRAM pro-
ject has also shown speedup for SPEC applications [31, 34].
While our active memory systems approach supports active

memory elements, the focus of this paper is solely on our
active memory controller design. Both DIVA and FlexRAM
have programming models that require cache flushes when
communicating between the main processor and the active
memory elements. Active Pages initially required cache
flushes as well, but realized the critical role of coherence
in active memory systems [14] at the same time we did [20],
noting that coherence was a better mechanism than flush-
ing for Active Pages. However, the Active Pages project
examined coherence only as a mechanism for ensuring the
active pages acted on the latest copy of the data, and not
in support of the address re-mapping techniques discussed
here.

More closely related to this work is the Impulse memory
controller [2], which is a hard-wired memory controller that
supports a fixed set of address re-mapping techniques to
improve processor cache behavior. The Impulse controller
improves uniprocessor performance on some of the same ap-
plications we use in this paper, namely matrix transpose and
scatter /gather operations [36]. However, unlike our active
memory approach that leverages cache coherence, the Im-
pulse programming model requires cache flushes when tran-
sitioning between normal-space and active-space accesses.
The necessity of using cache flushes also complicates the use
of these techniques on multiprocessors even for uniprocessor
applications (as described earlier).

The main difference between our active memory approach
and others is that we leverage, integrate with, and extend
the existing hardware cache coherence protocol. With this
approach, our active memory controller transparently sup-
ports address re-mapping techniques on uniprocessor as well
as multiprocessor systems. To our knowledge, this paper is
the first to present multiprocessor results for applications
using active memory re-mapping techniques. In addition,
one of the goals of our approach is to use the flexibility
of our active memory controller to support new classes of
active memory operations like linked-list linearization, par-
allel reduction, and future applications as the area of active
memory systems matures.

2. ACTIVE MEMORY OPERATIONS

In this section we discuss the four classes of active mem-
ory operations used in this paper: Matriz Transpose, Sparse
Matriz, Linked List Linearization and Memory-side Merge.
‘We show why a cache coherence problem arises with these
operations, and explain how we solve the problem in our
active memory system.

2.1 Matrix Transpose

Consider a matrix A stored in memory in row-major order.
If the processor wants to access the matrix A in a column-
major fashion, it results in poor cache behavior if the matrix
does not fit in the cache. Our active memory controller pro-
vides an in-memory transpose to solve this problem. An
address re-mapping technique is used to map AT to an ad-
ditional physical address space A’, called the shadow space.
The shadow space is not backed by any real physical mem-
ory, instead it acts as a trigger for the active memory con-
troller. On a shadow space reference the active memory con-
troller gathers individual elements from the normal space,
packs them together into a single cache line, and returns it
to the processor. Therefore, accesses to A in column-major
order can be converted to row-major accesses to the shadow



space A', resulting in good cache behavior. In addition, this
transformation makes it easy to prefetch the shadow space
accesses, which now exhibit good spatial locality.

This matrix transpose operation gives rise to a coher-
ence problem between the original matrix A and the shadow
space A’. Any two corresponding elements of the matrix A
and the shadow space A’ should be consistent with each
other, yet the processor may be caching them at two sepa-
rate locations. One way to ensure coherence is to guarantee
that only one of the two spaces is cached at any time. We
extend the coherence protocol and treat the access to the
two spaces by the same processor in precisely the same way
a coherence protocol treats accesses to the same cache line
by different processors in a multiprocessor. When returning
shadow space cache lines we invalidate the corresponding
normal space cache lines from the processor cache. When
the processor next references these lines in the normal space,
we have guaranteed that this access will cause a cache miss,
and our active memory controller can undo the previous re-
mapping operation, returning the latest copy of the data
to the processor and invalidating the corresponding shadow
space cache lines.

2.2 SparseMatrix

In this technique the central idea is to gather scattered
data that the main processor wishes to access closely spaced
in time and assemble them into cache lines. As an example
we show the basic loop of Sparse Matrix Vector Multiply
(SMVM), using the Compressed Row Storage (CRS) repre-
sentation of a sparse matrix.

for i=0 to N-1

for j=Arow[i] to Arow[i+1]-1
wlil += A[jI*v[Acol[jl];

The scattered accesses to the dense vector v will experi-
ence cache misses if v is large. To improve cache behavior
we re-map v to a shadow space vector _v and in the loop re-
place v[Acol[j]] by _v[j]. Whenever the active memory con-
troller sees accesses to _v it calculates the index j, accesses
the cache line containing Acol[j], assembles the correspond-
ing elements of v[Acol[j]] into a cache line and returns that
cache line to the main processor. As a result, the main pro-
cessor sees contiguous accesses to v and an improved cache
hit rate. This technique again makes it possible to prefetch
shadow space accesses to _v.

Here the coherence problem arises between v and _v. The
solution is similar to that for matrix transpose, though this
particular technique prohibits writes to the shadow space
vector _v because a single cache line of v may contain the
same element of v more than once. Therefore if the proces-
sor writes to one element, the other element (at a different
position in the same cache line) will have a stale value. This
restriction applies to any active memory implementation of
this operation, whether using cache flushes or leveraging the
coherence protocol. However, none of the sparse matrix ap-
plications that we have seen need to write to the shadow
space.

2.3 Linked List Linearization

Searching, inserting, or deleting items in a linked list may
require walking through the list and these linked list traver-
sals can exhibit poor cache behavior. The central idea of this
active memory technique is to pack consecutive nodes of a
linked list into a contiguously-allocated memory region in a
dynamic fashion. One linearize call to the active memory

PO
P1
P2
P3

Matrix A Matrix B

Figure 1: Dense Matrix Multiply

controller packs a certain number of nodes in the list into a
contiguous region, updating the “next” pointers in the list
as it goes. The next time the processor traverses the list it
sees contiguous memory accesses and hence improved cache
behavior. Note that after linearizing the list it is possible
to prefetch consecutive nodes of the list, which is difficult in
the random linked list structure of the original list.

Linearizing linked lists can be done in software without
the use of active memory systems. However, a correctness
problem arises if after linearization the processor derefer-
ences a dangling pointer that points into the “old” linked
list. Such a reference may now return stale data. Our solu-
tion to this problem is much like that of memory forward-
ing [19], except we can perform this optimization without
processor modifications. Here, the coherence protocol im-
plements the safety net by invalidating the original cache
lines during the copying phase. If the processor accesses a
dangling pointer, it is guaranteed to be a cache miss and
can therefore be handled correctly by the active memory
controller [15]. There are some limitations of this technique
such as safety net overhead and potential pointer compar-
ison problems [19], but it is still a powerful technique that
shows large benefits in many applications.

24 Memory-sideMerge

In the classic problem of parallel reduction we merge an
array of elements by some operation that can be addition,
multiplication, or even a maximum or minimum selector
that can be used to sort an array of elements in memory.
A final merge phase takes the locally reduced variables and
reduces them to a single variable. Clearly, this merge phase
suffers from remote read misses [4]. Our active memory
merge can hide this miss latency and save the computation
time of the merge phase. The technique is briefly explained
below via dense matrix multiplication.

Suppose we want to compute C' = AT B where A and B
are dense matrices with compatible dimensions. To compute
C[i][§] we need to carry out an inner product of the i** col-
umn of A and the j*® column of B. So, computation of each
C[#][7] is a parallel reduction with addition as the underlying
operation. As shown in Figure 1, in a four-processor system
the contribution of Py to C[é][j] comes from carrying out the
inner product of the shaded portions of the i*" column of A
and j*® column of B. A final merge phase adds together all
four parts of each C[¢][j] and generates the final result. This
merge phase can be done completely in parallel by assigning
each processor a range of mutually exclusive indices of C.
Because this phase will incur many read misses while access-
ing the local sums, we do not carry out the merge phase on
the main processor. Instead, we re-map the local sum arrays
to the shadow space C’, and whenever a shadow space cache
line is written back to memory the memory controller adds
its value to the corresponding cache line of C. With this
optimization, the application does not have a merge phase



and saves not only the read miss stall time but also the
computation time of the merge phase. Further, if the writes
to the merged array (in this case C) are sparse, the active
memory controller saves some useless merge operations by
never touching some cache lines [4].

In the memory-side merge, our controller maintains co-
herence between C' and C’. If a cache line of the array C is
accessed, it sends interventions for the corresponding lines
belonging to the re-mapped spaces of local sums, performs
addition on those local sums, returns the merged cache line
and also writes the merged cache line back to main memory.

3. ACTIVEMEMORY CONTROLLER

In this section, we discuss the design goals and imple-
mentation of our active memory controller. We explain the
microarchitecture in detail and illustrate the unique behav-
ior of our controller via an example active memory transpose
operation.

3.1 Design Goals

The design goals of our active memory controller are to
provide flexibility in the types of active memory operations
supported without sacrificing performance or changing the
programming model. We achieve these goals by augmenting
a programmable core, called the Active Memory Processor
Unit (AMPU) with specialized hardware, called the Active
Memory Data Unit (AMDU). The AMPU runs software pro-
tocol handlers to implement cache coherence and control the
correctness of active memory operations. The AMDU accel-
erates cache line assembly and disassembly, which form the
datapath core of active memory techniques. By dividing our
protocol execution into control and data paths (similar to
the approach in [16]), and by executing them concurrently,
we simultaneously achieve flexibility and performance.

3.1.1 Flebility

In an all-hardware approach to an active memory con-
troller, each active memory technique from Section 2 im-
poses its own specialized hardware requirements. Matrix
transpose and sparse matrix scatter/gather need cache line
assembly and disassembly capability, linked list linearization
requires memory forwarding hardware and modifications to
the main processor, and memory-side merge needs merging
hardware at the memory controller. However, the basic un-
derlying operations are the same—address re-mapping be-
tween the original data space and the shadow space, and
word-granularity data operations. Therefore, a program-
mable active memory controller that can control hardware
that efficiently supports these underlying operations can pro-
vide all of the active memory techniques above and more.
In our active memory controller the AMPU runs the co-
herence protocol that controls the flow of data through the
AMDU that supports both address re-mapping and word-
size data operations. As the machine scales from a unipro-
cessor through single-node multiprocessors to multi-node
multiprocessors, the software running on the AMPU is the
only thing that needs to change to support active memory
systems.

3.1.2 Performance

Active memory techniques reduce the cache miss rate and
therefore the memory stall time. Some techniques, like mem-
ory-side merge, can also save busy time by performing com-
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putations at the memory controller. In conventional mem-
ory systems the key factor determining memory latency is
the SDRAM access time. Although intelligent SDRAM page
management policies can exploit the regularity in vector and
stream accesses [21] and prediction techniques can improve
SDRAM resource management [29], the raw SDRAM access
latency still constitutes the major part of load-to-use la-
tency in conventional memory systems. However, in active
memory systems, the controller latency itself may become
a bottleneck because of the overhead of active memory op-
erations like address re-mapping. This issue is even more
important in our architecture, because our controller per-
forms not only active memory operations on the data, but
also runs a cache coherence protocol to control those opera-
tions. We will see that we can achieve dramatic reductions
in miss rate that more than compensate for the increase in
latency during active memory operations. Further, the ac-
cesses to the normal address space are not affected by our
active memory optimizations.

To minimize the latency of active memory accesses, our
specialized AMDU cache line assembly and disassembly en-
gine supports fully-pipelined address calculation with the
ability to issue a double word operation to the memory sys-
tem on every system cycle. This functionality is important
in the matrix transpose and sparse matrix active memory
operations. The AMDU also has a dedicated adder to sup-
port memory-side merge, though the reduction operation
can also be performed on the programmable AMPU. The
AMPU latency must also be balanced with the AMDU so
it does not become a bottleneck. A specialized ISA with in-
structions to tightly coordinate with the AMDU is a key to
overlapping AMPU and AMDU operations to achieve high
performance.

3.2 Microarchitecture

Figure 2 shows the architecture of our active memory con-
troller. Memory requests are placed into one of two input
queues (the network interface is used in multi-node systems)
and are scheduled by the Dispatch Unit. The request is di-
vided into header and data transfer components, which the
AMPU and AMDU process concurrently. For active mem-
ory operations, the AMDU assembles or disassembles the
cache line under the control of AMPU. Finally, the Send
Unit returns the cache line to the requester if necessary. In
the remainder of this section we describe each unit in detail.
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Dispatch Unit. The Dispatch Unit schedules requests from
the processor interface (PI) or network interface (NI) and
initializes the AMPU and AMDU based on the address space
and the type of the request.

Active Memory Processor Unit (AMPU). The AMPU
is a dual-issue programmable core that executes the co-
herence protocol—the control portion of an active mem-
ory operation. It is a simple processor with a modified
MIPS ISA. It does not support virtual memory, exceptions,
floating-point arithmetic, or integer multiplication and di-
vision. However, it includes specialized instructions to en-
hance common cache coherence protocol and active memory
operations. The AMPU gets its code and data from on-chip
instruction and data caches, respectively. Both caches are
backed by main memory.

For each memory request (normal or active), the AMPU
executes the corresponding protocol handler. It checks and
updates directory entries to preserve cache coherence, and
sends appropriate control messages to the AMDU to per-
form active memory operations on data. The latency of the
handler is critical to overall performance. For high perfor-
mance the handler latency should be less than that of the
AMDU so that it can be completely hidden by the data
transfer time. In practice, we find that this is the case. As
we show in Section 5.4, technology trends are also in our
favor.

Active Memory Data Unit (AMDU). The AMDU (see
Figure 3) is a specialized hardware datapath that performs
pipelined address re-mapping and accelerates cache line as-
sembly /disassembly. For each cache line, it loads/stores 16
different double words (a cache line) from/to the main mem-
ory according to the addresses it generates each cycle. We
follow an idea similar to that proposed in [2]. However, be-
cause our cache coherence mechanism demands special op-
erations from the AMDU, it shows quite different behavior,
as discussed in Section 3.3.

The AMDU is composed of five cache line-sized buffers:
Base Address Buffer, Virtual Address Buffer, Physical Ad-
dress Buffer, Directory Address Buffer, and Data Buffer,
and three pipelined stages: Address Calculation, AMTLB
Lookup, and Directory Address Calculation/Memory Access.
Each pipeline stage receives its input from the previous
buffer and writes its result to the next buffer. Operations are
fully pipelined, so one entry is processed per cycle. There-
fore, the best-case latency of the AMDU is the pipeline la-
tency + 15 cycles, where the pipeline latency is the time
it takes one double word to pass through all three stages
without stalls.

The Base Address Buffer contains technique-specific val-
ues that are intended to be used for virtual address calcu-
lation. For example, the sparse matrix technique uses this
buffer to store Acol[j] values for the cache line under op-
eration. The Address Calculation stage calculates virtual
addresses from the Base Address Buffer by shift and add
operations, and writes to the Virtual Address Buffer. Each
entry of the Virtual Address Buffer holds the virtual address
of the corresponding double word. The AMTLB (discussed
below) translates the virtual addresses to physical addresses,
and then the Memory Access stage performs a double word
load/store operation to/from the corresponding entry of the
Data Buffer. The Directory Address Calculation unit helps
the AMPU calculate directory addresses. The cache co-
herence protocol requires the AMPU to check a directory
entry for every double word, so the address calculation is
performance-critical. By moving the address calculation to
the AMDU, the latency of the AMPU handler is significantly
reduced and because it operates concurrently with the Mem-
ory Access stage, it does not slow down the AMDU.

Active memory techniques directly manipulate applica-
tion data that cannot be accessed through physical addresses.
For example, linked list linearization traverses a list by chas-
ing virtual addresses. The memory system is addressed with
physical addresses, so the AMDU has a 256-entry direct-
mapped TLB we call the AMTLB. Because an AMTLB miss
stalls the AMDU pipeline and has a large miss penalty, the
hit rate of the AMTLB is a critical determinant of perfor-
mance. Therefore, our AMDU also has an AMTLB pre-
dictor to improve the performance of the AMTLB. The
AMTLB predictor predicts and prefetches the next access
to the AMTLB. It is a Differential Finite Context Method
predictor [15, 27, 28, 7] that consists of a 3 KB table and
control logic. We analyze this predictor in detail in Sec-
tion 5.3. Note that although the AMTLB has 256 entries,
it is direct-mapped as opposed to the fully associative 64-
entry data TLB of the processor. Finally, if the memory
controller suffers a page fault, a trap is made to the kernel
and the page fault handler is initiated.

The AMDU is under full control of the AMPU, though
both units run concurrently. The AMPU sets parameters
such as the shift amount in the Address Calculation stage,
and it can read and write all the buffers.

Send Unit. The Send Unit is responsible for the mechan-
ics of sending intervention or reply messages sent by the
AMPU. The Send Unit inserts the message into the corre-
sponding output queue (PI or NI), offloading this task from
the AMPU. The Dispatch Unit, AMPU, and Send Unit can

all operate concurrently on different requests.

Memory Interface. The Memory Interface connects the
SDRAM to the other parts of the controller. It picks a
request from a 16-deep request queue and performs loads or
stores. It is fully pipelined and the AMDU does not stall
unless the memory request queue fills.

3.3 Example: Matrix Transpose

We present the matrix transpose operation as an example
to illustrate the features of our active memory controller.
Assume that A is a square matrix of dimension N and A’ is
a shadow space mapped to A by our matrix transpose tech-
nique. Note that our programming model allows accesses to
the normal space A and the shadow space A’ without the
need to worry about coherence between the two.
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Figure 4: Example: Matrix Transpose

A’ = AMInstall(A, N, N, sizeof(Complex));
Initialize(A);
for i=0 to N-1
for j=0 to N-1
x += A’ [i][j];
for i=0 to N-1
for j=0 to N-1
x += A[i][j];
Initialization. The transpose application starts by invok-
ing a setup library call AMInstall that passes some basic
information to the active memory controller—the virtual ad-
dress of A, the dimension N, and the size of each element of
the matrix. The active memory controller stores the infor-
mation in its data structures and returns the shadow address
A’ mapped to A. It also stores the virtual address of the
shadow space.

Forward Mapping. The first loop accesses A’ in row-
major fashion. Assume the situation depicted in Figure 4.
The processor reads a cache line C’ of A’ that is clean in
memory. C’ is composed of 16 double words that map to
w0, wl,... ,wlb, and the 16 cache lines C0,C1,... ,C15 of
A contain these double words. The processor may be caching
one or more of C0 to C'15 when it accesses C’. In this
example, let us assume the processor cache has C'1 and C2
in the dirty and shared states, respectively, and that the
other lines are clean in memory.

When the processor reads C' it is a cache miss and the
processor sends a memory request to the active memory con-
troller. The message is inserted into the PI queue, and the
Dispatch Unit schedules it, checks the address space of the
request, and initializes the AMDU accordingly. The AMPU
is instructed to run the matrix transpose protocol handler
and the AMDU starts cache line assembly. While the AMPU
checks the directory entries of C0,C1,...,C15, the AMDU
concurrently assembles the cache line C'. The AMDU spec-
ulatively assumes that every double word required is clean
in memory. The Address Calculation stage calculates the
virtual Addresses of w0, wl,... ,wl5, which are translated
to physical addresses by the AMTLB. The Memory Access
stage requests 16 double word reads from the Memory In-
terface. After the initial memory access latency, a double
word is fed into the Data Buffer once per cycle.

Meanwhile, the AMPU reads the directory entries of CO,
C1,...,C15 and finds that C'1 and C2 are cached in the
dirty and shared states, respectively. The AMPU sends an
intervention to the main processor for C1. In the AMDU,
the Data Buffer now has a stale value for wl because the
most recent data is in the processor cache. On receiving the
intervention reply, the AMPU writes C'1 to the memory and
issues a control message instructing the AMDU to get the
correct data for wl. The AMPU also sends an invalidation
for C2, but does not issue a control message to the AMDU,
because it already has the correct data in this case. Finally,
the AMPU and AMDU finish their work and the Data Buffer
has an assembled cache line C’. The AMPU issues a send

command to the Send Unit, and the Send Unit sends C’ to
the processor. Cache coherence plays an important role to
guarantee correctness in this example. The active memory
controller sends an intervention for C'l and an invalidation
for C2, before it returns C’ to the main processor, guaran-
teeing mutual exclusion between C’ and C0,C1, ... ,C15.

In this example, the AMDU performs cache line assem-
bly. A similar cache line disassembly takes place when the
memory controller receives a writeback for a shadow cache
line. To generate the addresses for the 16 double words,
the AMDU calculates a forward mapping from A’ to A as
follows. First, from the physical address of C’, the row
and column indices of C’ are calculated with the help of
the information provided by the initialization call. Second,
the indices are transposed. Third, the virtual addresses
of w0, wl,...,wl5 are calculated from the indices and the
starting virtual address of A. Finally, the AMTLB trans-
lates the virtual addresses into physical addresses.

Inverse Mapping. The corresponding inverse mapping
from A to A’ is needed when the second loop accesses A.
From the physical address of C, the physical addresses of
w0, wl’,... ,wl5' are calculated, where w0', w1’ ... w15
are the corresponding double words of A’. Cache coherence
guarantees correctness in the same fashion as before. The
AMPU checks the directory entries of C1',C2',... ,C15,
which are the cache lines containing w0', w1, ... , w15, re-
spectively. For dirty cache lines, it sends an intervention and
writes back the replied cache line to memory, and it sends
invalidations for shared cache lines.

4. APPLICATIONSAND
SIMULATION METHODOLOGY

In this section we discuss the steps necessary to convert a
normal application into an active memory application, the
applications we use to evaluate the performance of our active
memory system, and the simulation environment we use to
collect the results.

4.1 Programmer Implications

To exploit the flexibility of the active memory controller
an application programmer needs to follow a few simple
steps that can be easily automated with a compiler for most
applications, though that is not our focus here. First, we
identify an active memory operation in the application that
the system supports and the data structures where the re-
sults of this operation are stored when the operation is ap-
plied. We will collectively refer to these data structures as
R. Next, we allocate a virtual address space of size R and
map it to our physical shadow address space. Recall that the
shadow address space does not exist in the physical memory
but is used only to help the memory controller distinguish
active memory accesses from normal memory accesses. At
the beginning of the application we insert an initialization
library call to set up a table of values that the flexible con-
troller uses while carrying out the active memory operations
as previously described in Section 3.3. Then, since the active
memory operations will be performed by the active memory
controller, we remove all instances of the operation from the
application code. In the original code all accesses to R after
the active memory operation are replaced by a correspond-
ing access to the shadow address space. A detailed example
can be found in our technical report [15].



Table 1: Applications and Problem Sizes

[ Application | Problem Size |
SPLASH-2 FFT 1IM(1K x 1K) complex doubles
FFTW 2M (8K x16x16) complex doubles
Transpose 1M(1Kx 1K) complex doubles
Conjugate Gradient | 8K x8K matrix, 256K non-zeros
SMVM 64K x64K matrix, 2M non-zeros

MST 2K node graph

Health 6 level tree, 4 children per node
Traverse 256 lists, 1K elements per list
MMM 64K (256x256) elements
SparseFlow 64K nodes, 8K edges

Parallel Reduction 512K elements

4.2 Applications

To evaluate each of the techniques discussed in Section 2
we use a range of applications—some are well-known bench-
marks while others are microbenchmarks written to exhibit
the potential of a particular active memory technique. We
use FFT from SPLASH-2 [35], FFTW [3], and a microbench-
mark called Transpose to evaluate the performance of the
matrix transpose active memory technique. The microbench-
mark reads and writes to an array and its transpose. As
sparse matrix applications we use Conjugate Gradient from
the DIS (Data-Intensive Systems) benchmark suite [33] and
a microbenchmark called SMVM that carries out the sparse
matrix vector multiplication kernel. Linked list lineariza-
tion is evaluated by running MST [1] and Health [1] from
the Olden benchmarks, and a microbenchmark called Tra-
verse that walks through a number of lists as new elements
are inserted. The length of each list increases to a maxi-
mum of 1024 nodes. Finally, to evaluate parallel reduction
we use the dense matrix multiplication (MMM) described in
Section 2.4, a microbenchmark called SparseFlow that car-
ries out some operation on the in-flow of each node and sums
them in a sparse multi-source flow graph, and a microbench-
mark called Reduction that performs a parallel reduction on
an array of elements. In Table 1 we summarize the applica-
tions and the problem sizes we use in simulation.

4.3 Simulation M ethodology

In Section 5 we present simulation results of the applica-
tions above for four different cases: the normal application,
the application running with our active memory support, the
application running with active memory support and soft-
ware prefetching for shadow address space access only, and
the application running with active memory operations but
relying on cache flushing rather than coherence. Our simu-
lator models contention in detail within the active memory
controller, between the controller and its external interfaces,
at main memory, and for the system bus. The embedded
active memory processor is a dual-issue core running at the
400 MHz system clock frequency, and executing the code
sequences that comprise our coherence handlers. We simu-
late an invalidation-based bitvector protocol running under
release consistency. Each directory entry is byte-sized with
four bits dedicated to the sharer list, one bit to mark whether
the cache line is re-mapped or not, one bit to mark if the the
line is dirty and two bits are left unused. The instruction
and data cache behavior of the active memory processor is
modeled precisely via a cycle-accurate simulator similar to

that for the protocol processor in [6]. The input and output
queue sizes in the memory controller’s processor interface
are set at 16 and 2 entries, respectively. We assume proces-
sor interface delays of 1 system cycle inbound and 4 system
cycles outbound. The access time of main memory SDRAM
is fixed at 125 ns (50 system cycles), similar to that in recent
commercial high-end servers [30, 32].

The main processor runs at 2 GHz and is equipped with
separate 32 KB primary instruction and data caches that
are two-way set associative and have a line size of 64 bytes.
The secondary cache is unified, 512 KB in size, two-way set
associative, and has a line size of 128 bytes. For sparse ma-
trix applications we scale down the cache size so that we can
simulate the effect of running problems with large sparse ma-
trices by running smaller problem sizes that we can simulate
within a reasonable amount of time. For this class of appli-
cations we use a 16 KB primary data cache and a 64 KB sec-
ondary cache keeping the same line sizes and associativities.
We also assume that the processor ISA includes prefetch
and prefetch exclusive instructions. In our processor model
a load miss stalls the processor until the first double-word
of data is returned, while prefetch and store misses will not
stall the processor unless there are already references out-
standing to four different cache lines. The processor model
also contains fully-associative 64-entry instruction and data
TLBs and we accurately model the latency and cache effects
of TLB misses.

To minimize the flush overhead we simulate user-level
complete cache flushes. This does not involve any kernel
trap overhead, but it does model the latency incurred in the
cache hierarchy to flush the whole cache. Note that systems
that only support selective page flushes will see a larger flush
overhead because realistic problem sizes are far bigger than
the cache size and the entire data structure is flushed one
page at a time.

5. SIMULATION RESULTS

Our simulation results are broadly divided into four areas:
uniprocessor active memory systems, single-node multipro-
cessor active memory systems, a study of the performance
of our AMTLB predictor, and the effects of continued tech-
nology scaling on our active memory architecture.

5.1 Uniprocessor Active Memory Systems

We report uniprocessor results for three active memory
operations: matrix transpose, sparse matrix and linked list
linearization. For the first two techniques we present speedup
of the active memory version over the normal application,
the speedup of the active memory version with software
prefetching of the shadow address space (where prefetch-
ing is not possible in the normal application as explained in
Section 2), and the speedup of active memory applications
using cache flushes rather than coherence. For applications
involving linked list linearization, cache flush results have
no relevance and are not shown since this technique requires
leveraging the coherence mechanism. We note that although
non-active applications are run with the same flexible active
memory controller, this does not affect normal uniproces-
sor execution time since protocol processing is minimal and
the memory access time completely dominates the AMPU
handler latency as in [9].
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5.1.1 Matrix Transpose

Figure 5 shows the uniprocessor speedup of FFT, FFTW,
and the Transpose microbenchmark with active memory op-
timization (AM), with active memory and software prefetch-
ing of the shadow address space (AM+Prefetch), and with
active memory using cache flush calls rather than coher-
ence (Flush), measured relative to the execution time of the
normal application. All the applications show the clear suc-
cess of the matrix transpose operation in our active memory
system. FFT with active memory optimization runs 1.28
times faster than the normal application and with prefetch-
ing in the transformed shadow address space it is 1.36 times
faster. While both the normal and active memory execu-
tions could benefit equally from prefetching row-wise ac-
cesses in the normal address space, here we emphasize that
the prefetches from the shadow address space are a bonus of
the active memory technique. The active memory speedup
is mainly due to a factor of 2.0 reduction in L2 cache read
misses and a reduction of the overall processor data TLB
miss penalty by a factor of 176. The speedup for FFTW
is even larger than FFT, achieving 1.74 with active mem-
ory optimization and 1.78 with software prefetching. For
this application we reduce the overall L2 cache read misses
by a factor of 4.0 and the overall processor data TLB miss
penalty by a factor of 53.8. The Transpose microbenchmark
is a highly memory-bound application that reads and writes
to the normal matrix and its transpose, but performs little
computation. It achieves a speedup of 2.3 over normal exe-
cution. Because of the lack of computation, it is difficult for
prefetching to hide memory latency in this microbenchmark
and there is little additional benefit from prefetching. Active
memory optimization for this microbenchmark reduces L2
cache read misses by a factor of 3.8 and the overall processor
data TLB miss penalty by a factor of 72.

For FFT and FFTW flush has marginally better per-
formance than our coherence-based active memory system.
Given the advantages that a coherence-based solution brings
to the programming model along with multiprocessor cor-
rectness, we note that our results show that it is possible
for a coherence-based approach to achieve these advantages
at a performance level commensurate with the cache flush
technique.

5.1.2 Sparse Matrix

Figure 6 shows the uniprocessor speedup for Conjugate
Gradient and the Sparse Matrix Vector Multiply (SMVM)
microbenchmark. As described in Table 1, both applica-
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Figure 6: Uniprocessor Speedup: Sparase Matrix

tions have relatively sparse matrices—32 non-zeros on aver-
age per row. For Conjugate Gradient the dense vector has
length 8192 and fits into the scaled-down 64 KB L2 cache we
use for these sparse matrix simulations. CG therefore rep-
resents a moderately large problem size while the SMVM
microbenchmark shows results for a much bigger problem
size. Conjugate Gradient achieves a uniprocessor speedup
of 2.22 while SMVM is 4.62 times faster than the normal
application. With software prefetching of the shadow ad-
dress space the speedup increases to 2.23 and 6.04 respec-
tively. The SMVM kernel is particularly well-suited to this
optimization. For Conjugate Gradient, active memory op-
timization reduces L2 cache read misses by a factor of 3.8
while for SMVM the reduction factor was 7.8. For these two
applications the reduction factors in the overall processor
data TLB miss penalty were 2.1 and 94.2, respectively. For
sparse matrix applications we see that the flush technique is
marginally better than coherence. However, since we scale
down the caches to simulate the effect of large sparse matri-
ces, and in our flushing scheme the flush overhead depends
on the size of the cache rather than the size of the matrix,
the flush scheme receives some relative benefit in the results
presented here.

5.1.3 Linked List Linearization

Figure 7 shows the uniprocessor speedup for Health, MST,
and the Traverse microbenchmark. Health achieves a speed-
up of 1.31 with linearization, increasing to 1.37 with software
prefetching. In Health every node in the tree has several
linked lists attached to it, but we linearize only two of them
to demonstrate the potential of this technique. The remain-
ing lists can be linearized in a similar manner to achieve
better speedup. For Health the linearization technique re-
duces the number of L2 cache read misses by a factor of 1.3.
MST represents a complete graph of 2048 nodes as a hash
table. Since hashing collisions are resolved by chaining, the
bigger the hash table the smaller the average length of each
linked list. As expected, the linearization technique gets
more benefit from a longer linked list. We use a hash table
size of N/32 where N is the number of nodes in the graph.
Also, MST has both a graph-building phase where we lin-
earize the N/32 lists as each list grows, and a compute phase
that calculates the minimum spanning tree. Figure 7 shows
the overall speedup for MST by including both phases. The
overall speedup is 2.28 without prefetching and increases
to 2.53 with prefetching. The speedup of the computation
phase only (not shown) is 3.74 without prefetching and 4.56



Il Normal
75M B AV
7H H AM+Prefetch

n

Health MST Traverse

Figure 7: Uniprocessor Speedup: Linearization

with prefetching, but this does not account for the lineariza-
tion overhead and so we show total speedup here. Including
the linearization overhead, the linearization technique re-
duces L2 cache read misses by a factor of 4.1. Traverse shows
even better speedup because of a larger number of longer
lists. It achieves a speedup of 6.72 without prefetching with
a 6.6 times reduction in L2 cache read misses. The speedup
increases to 7.68 with software prefetching. We would again
like to emphasize that prefetching is only possible because
of the linearization technique, and is not possible in the nor-
mal application. In addition, linked list linearization is only
possible using a coherence-based approach, hence no flush
comparisons can be shown.

5.2 Single-node Multiprocessor
Active Memory Systems

Since our active memory system leverages the cache co-
herence protocol, it can transparently support address re-
mapping techniques on multiprocessor systems. In the fol-
lowing we present single-node multiprocessor results for an
active memory transpose version of SPLASH-2 FFT and
three applications for Parallel Reduction. We show results
for one, two, and four processor systems.

5.2.1 Fast Fourier Transform

Figure 8 shows the single-node multiprocessor speedup for
FFT, calculated relative to the uniprocessor execution time
of the normal application. For all the processor counts, FF'T
with an active memory transpose beats the normal applica-
tion. The dual-processor execution with in-memory trans-
pose achieves a speedup of 2.42 while the quad-processor
node achieves a speedup of 3.84. Stated differently, for a
dual-processor node, in-memory transpose with cache co-
herence is 1.26 times faster than the normal two-processor
execution. For a quad-processor node the corresponding
speedup is only 1.13, due to increased AMPU occupancy.
The average AMPU occupancy for 1, 2 and 4 processors
in the normal executions is 7.7%, 21.3% and 43.2% of the
total execution time, respectively. The corresponding oc-
cupancy for the active memory executions is 15.5%, 29.4%
and 47.8%, though one must remember that the active mem-
ory execution time is smaller. These results show that our
coherence-based active memory techniques scale to multi-
processor nodes. We discuss techniques to further reduce
AMPU occupancy in Section 6.
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5.2.2 Parallel Reduction

Figure 9 shows the single-node multiprocessor speedup for
three applications that have parallel reduction kernels. As
previously mentioned, the main reason for using memory-
side merge is to hide remote miss latency. But in a single-
node multiprocessor every cache miss results in a local mem-
ory access. Though we expect even larger gains from this
technique in multi-node systems, we can still show improve-
ments in a single-node system. Because the merge phase in
a single-node system may cause many cache interventions, a
single-node multiprocessor active memory system can save
busy time and the cost of those interventions. For dense
matrix multiplication both normal and active memory ap-
plications scale well on a single node, with the active mem-
ory technique being only slightly better. This is because the
computation time involved in the parallel matrix multiplica-
tion phase is much bigger than the time spent in the merge
phase, especially in the absence of significant network la-
tency. For SparseFlow and the Reduction microbenchmark
one can clearly see saturating trends as the normal applica-
tion scales, while the active memory technique scales well.
In SparseFlow our active memory technique benefits from
saving useless merges that happen in the normal application
for sparse data structures. The Reduction microbenchmark
also achieves good speedup because of well-balanced com-
putation and merge phases. With the network latencies of
multi-node systems, we expect that the merge phase will al-
ways dominate the local computation phase and this active
memory technique will be an even bigger win. We discuss
this and other future research in Section 6.
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5.3 AMTLB Predictor Study

In our simulations we found that the active memory ma-
trix transpose suffers from high AMTLB miss rates. FFT
and FFTW show 28.7% and 33.5% miss rates, respective-
ly [15]. To overcome this problem, our controller uses an
AMTLB predictor. Here, we study various aspects of our
predictor.

Figure 10 shows the speedup of FFT and FFTW with dif-
ferent AMTLB configurations. With a perfect AMTLB ev-
ery access is a hit. Both applications show that the AMTLB
predictor is quite effective. We found that the predictor re-
duces the AMTLB miss rate from 28.7% to 7.3% for FFT
and from 33.5% to 10.6% for FFTW, so that FFT is 19%
and FFTW is 40% faster compared to the execution with-
out an AMTLB predictor. Figure 11 shows the speedup with
a bigger AMTLB (1024 entries) and with a set-associative
AMTLB of the same size (256 entries and 4-way). The re-
sults show that increasing the AMTLB size does not im-
prove performance without a predictor because the data
sizes of FFT and FFTW are bigger than the coverage of the
AMTLB and the data access pattern keeps the miss rate the
same. Associativity only marginally helps FFTW, with a 6%
speedup over the 1024-entry direct-mapped AMTLB. When
using our predictor with the larger AMTLB configurations
we found that the speedup of FFTW increased by only 4%
over the 256-entry direct-mapped AMTLB with the predic-
tor. We also carried out a comparison between a 256-entry
direct-mapped AMTLB with predictor and a larger direct-
mapped AMTLB with no predictor but of equal size to the
total size of the smaller AMTLB with the predictor. We
found that for both applications the smaller AMTLB with
our predictor dramatically outperformed the larger AMTLB
with no predictor, by 16% and 33% respectively.
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5.4 Effectsof Technology Scaling

Logic speeds continue to outpace memory access time as
technology scales. Just as the main processor speed in-
creases, so does the frequency of our embedded active mem-
ory processor unit (AMPU). However, raw SDRAM access
times improve much more slowly. Figure 12 summarizes the
results for two different technologies—one is our base tech-
nology with a 2 GHz processor, 400 MHz memory system,
and 125 ns SDRAM access time; the other is a scaled tech-
nology where both the processor and the AMPU are four
times faster compared to the base technology while keep-
ing the SDRAM access time unchanged. The results are
presented for three applications: FFTW, Conjugate Gradi-
ent and MST. For a particular technology and a particular
application the speedup is shown relative to the normal ex-
ecution time for that technology and application. For all
the applications our approach gracefully scales with future
technology with even better speedup. As the gap between
the processor speed and the SDRAM access time widens, ac-
tive memory techniques will show even larger performance
improvements.

6. FUTURE WORK

We have shown significant speedup on uniprocessor and
single-node multiprocessor applications for four active mem-
ory operations. We continue to look for ways to exploit the
flexibility of our active memory controller. Possibilities in-
clude implementing memory-side prefetch techniques that
do not require any application modification [37]. On multi-
processor systems this will once again require a coherence-
based approach to active memory. We will also investigate
the inclusion of active memory elements (instead of standard
SDRAM) to form what we call two-level active memory sys-
tems [20] where the active memory controller manages co-
herence and the active memory elements perform data par-
allel operations.

Our active memory architecture also contains all the nec-
essary functionality to support coherent multi-node systems.
With the evolution of system area networks like 3G10 [12]
and InfiniBand [11] that are integrated at the memory con-
troller, it is possible to form cache-coherent clusters with the
same active memory controller that provides performance
benefits on uniprocessors and single-node multiprocessors.
We call such a system active memory clusters [10]. To sup-
port active memory clusters, the only necessary addition to
our system is the software coherence handlers that handle
network requests. This does not necessitate any hardware



changes to our design, though to scale to larger clusters we
may explore the use of multiple embedded cores as in [23,
24]. The flexibility of active memory clusters will also let us
explore the synergy between active memory operations and
traditional multiprocessing functions (e.g. we would expect
larger gains from our parallel reduction operation), as well
as exploring coherence protocols that are efficient on single-
node systems yet scale well to larger coherent clusters. We
can also explore predictive techniques in these scalable sys-
tems similar to those in [17, 22].

7. CONCLUSIONS

Our active memory architecture improves the performance
of uniprocessor and multiprocessor systems when they ex-
hibit poor cache behavior. In this paper, we have detailed
the microarchitecture of a flexible active memory controller
that extends the cache coherence mechanism to implement
active memory operations without requiring cache flushes
by the programmer. We described four active memory op-
erations that perform address re-mapping techniques to im-
prove spatial locality and reduce the number of cache misses
in both uniprocessor and single-node multiprocessors. The
address re-mapping creates a coherence problem that our
active memory controller solves by enforcing mutual exclu-
sion between the caching states of the two spaces, providing
a transparent and safe programming model to extend tradi-
tional uniprocessor active memory techniques to multipro-
cessor systems.

Through detailed simulation on a range of applications we
have shown that our active memory system achieves unipro-
cessor speedup from 1.3 to 7.6. We have also shown that
these impressive speedup numbers can be improved by soft-
ware prefetching the shadow address space where our active
memory transformations have created spatial locality that
was not present in the original code. Further, we have shown
that the architecture scales to a single-node multiprocessor
system and can improve the speedup of parallel active mem-
ory applications as well.

In addition to transparency, another focus of this work is
the flexibility of the active memory controller at the heart
of the system. The flexibility allows us to run both tra-
ditional active memory operations, such as in-memory ma-
trix transpose and sparse matrix scatter/ gather operations,
and non-traditional active memory operations like linked
list linearization, parallel FFT, and parallel reduction. Cus-
tomized instructions in our embedded processor and a highly-
optimized data unit that performs pipelined cache line as-
sembly and disassembly strike a balance between flexibility
and performance. We have also introduced an AMTLB pre-
dictor that improves the speedup of active memory opera-
tions by up to 40%.

The transparency and flexibility of our system make it
possible to extend our approach to multi-node systems with
active memory support called active memory clusters. We
are beginning to look at the intriguing possibilities of such
systems, building on the scalable coherent single-node archi-
tecture and well-understood programming model described
here. As processor performance continues to outpace the
memory system, active memory architectures become in-
creasingly attractive, especially on multi-node shared mem-
ory systems where remote memory latencies can be quite
large.
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