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Abstract—Negative ACKnowledgments (NACKs) and subsequent retries, used to resolve races and to enforce a total order among

shared memory accesses in distributed shared memory (DSM) multiprocessors, not only introduce extra network traffic and

contention, but also increase node controller occupancy, especially at the home. In this paper, we present possible protocol

optimizations to minimize these retries and offer a thorough study of the performance effects of these messages on six scalable

scientific applications running on 64-node systems and larger. To eliminate NACKs, we present a mechanism to queue pending

requests at the main memory of the home node and augment it with a novel technique of combining pending read requests, thereby

accelerating the parallel execution for 64 nodes by as much as 41 percent (a speedup of 1.41) compared to a modified version of the

SGI Origin 2000 protocol. We further design and evaluate a protocol by combining this mechanism with a technique that we call write

string forwarding, used in the AlphaServer GS320 and Piranha systems. We find that without careful design considerations, especially

regarding atomic read-modify-write operations, this aggressive write forwarding can hurt performance. We identify and evaluate the

necessary micro-architectural support to solve this problem. We compare the performance of these novel NACK-free protocols with a

base bitvector protocol, a modified version of the SGI Origin 2000 protocol, and a NACK-free protocol that uses dirty sharing and write

string forwarding as in the Piranha system. To understand the effects of network speed and topology the evaluation is carried out on

three network configurations.

Index Terms—Distributed shared memory, cache coherence protocol, negative acknowledgment, node controller occupancy.
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1 INTRODUCTION

DSM multiprocessors employing home-based cache
coherence protocols assign a home node to each cache

line. Every memory request in such a system is first sent to
the home node of the requested cache line where the
corresponding directory entry is consulted to find out the
sharing status of that line. Eventually, an appropriate reply
message arrives at the requester. Negative acknowledg-
ments serve as replies when a read or a write request finds
the directory entry in a pending or busy state (i.e., any
transient unstable state that may arise because of the
distributed nature of a coherence protocol) or fails to find
the data at a third owner node. The latter case arises from
two kinds of intervention races: early intervention and late
intervention. An early intervention race occurs when a
forwarded intervention reaches the dirty third node (the
owner) before that node has even received its write reply. A
late intervention race occurs when a forwarded intervention
reaches the owner after it has issued a writeback message to
the home node. Also, a request may be negatively acknowl-
edged if the home node fails to allocate all the resources
necessary to serve it. However, this can be solved by either
properly sizing all the resources or by carefully designing
the coherence protocol. None of the protocols presented in
this paper generate NACKs because of resource shortage.

NACKs not only introduce extra network traffic but also
increase node controller occupancy, which is known to be a
critical determinant of performance [5]. This paper presents
novel scalable mechanisms to minimize NACKs, shows that
effective elimination of NACKs can lead to significant
performance improvement, and offers a thorough analysis
of the performance impact of these messages across a family
of new and existing bitvector protocols on 32, 64, and
128-node DSM multiprocessors. Starting from a basic
bitvector protocol [14], [15], we first improve it to get the
benefits of the SGI Origin 2000 protocol [20] as far as the
NACKs are concerned (Section 2). Although this protocol
eliminates all intervention races, the home node still
generates NACKs if the directory entry is in a pending state.

To eliminate the remaining NACKs, we present a mechan-
ism to store pending requests in the main memory of the
home node and introduce the novel concept of pending read
combining (Section 3). Further, we implement pending write
combining by augmenting this mechanism with a technique
that we call write string forwarding following the write
forwarding idea of the AlphaServer GS320 [8] and Piranha
[3] protocols. However, our evaluation (Sections 4 and 5)
shows that write forwarding may hurt the performance of
atomic read-modify-write operations and heavily-contended
critical sections in large-scale systems. We propose small
microarchitectural changes in the cache subsystem to im-
prove the performance of read-modify-write operations in
these protocols. The proposed architectural changes are
similar to the delayed response scheme introduced in [26],
but we do not resort to the time-out technique proposed there.
Finally, a quantitative comparison of our NACK-free proto-
cols against a NACK-free protocol that uses dirty sharing and
write string forwarding as in the Piranha system shows that
an increased number of intervention misses severely hurts
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the performance of the latter in the presence of large-scale
producer-consumer sharing.

1.1 Related Work

Organizing the sharers as a bitvector in DSM cache
coherence protocols is popular in both academia [4], [21],
[22] and industry [3], [8], [20] because its simplicity yields
efficient and high-performance implementations. While this
article focuses on a family of bitvector protocols, it is
relevant to any home-based protocol [13], [14], [15], [29].
Cache-based protocols, such as IEEE Scalable Coherent
Interface [14], [15], [23], [24], [28], may have fewer NACKs,
but their distributed linked list directory structure leads to
substantial design complexity and results in large invalida-
tion latency, and typically poor performance [15].

The SGI Origin 2000 [20] protocol eliminates the negative
acknowledgments related to forwarded interventions (i.e.,
the three-hop races), but the presence of busy states in the
directory still forces the home node to generate NACKs.
Our implementation of a modified version of this protocol
that eliminates the three-hop races is described in Section 2.

The designs of the AlphaServer GS320 [8] and the Piranha
chip-multiprocessor [3] introduce coherence protocols that
do not generate NACKs. But the GS320 protocol and the
intrachip protocol of Piranha have to rely on point-to-point
network ordering and total ordering properties among
certain types of messages. The internode protocol of Piranha
eliminates this constraint and still remains NACK-free. The
concepts of dirty sharing and continuous write forwarding in
these protocols, as discussed in Section 3, help remove the
busy states from the directory entry. These two optimizations
may help accelerate migratory data accesses protected by
largely uncontended locks, as observed in commercial work-
loads [2], [27]. Our evaluation shows that without extra
design considerations these optimizations may hurt the
performance of heavily contended read-modify-write opera-
tions (e.g., in contended lock acquires using LL/SC instruc-
tions), relatively long critical sections, and large-scale
producer-consumer sharing. Instead, our NACK-free proto-
cols store the pending requests in the protocol section of the
main memory at the home node and combine the pending
reads, thereby considerably accelerating the execution of
scientific codes.

The Sun WildFire [12] connects four large snoopy
SMP nodes with a directory-based protocol that uses extra
messages to resolve three-hop races. Writebacks use a three-
phase protocol to first get permission from the home node
before sending the data. Also, forwarded three-hop inter-
vention replies must send completion acknowledgment
messages to the home node. These design choices, along
with the combination of snooping within a directory-based
scheme, lead to higher occupancy and message counts than
the directory-based protocols used in this paper.

The Cray SV2 system [1] uses a blocking protocol that
does not have NACKs. However, the mechanism used in
this system is different from our pending request combin-
ing technique. In the Cray SV2 protocol, the messages that
cannot be processed put back-pressure on the virtual
channels and the pending messages are serviced in order
to preserve point-to-point ordering in the virtual network.
None of our protocols presented in this paper are
constrained by network ordering requirements.

Our study shows that for applications with heavily
contended read-modify-write operations (e.g., in centra-
lized flat barriers, lock acquires etc.) the majority of the
NACKs arise from load-linked (LL) and store-conditional
(SC) instructions. But there are applications for which the
remaining NACKs play the most important role. In this
paper, we use simple LL/SC-based locks since this is the
most common ABI provided by most systems. Queue-on-
SyncBit (QOSB) [10], Queue-on-LockBit (QOLB) [18], and
Implicit Queue-on-LockBit (IQOLB) [26] present mechan-
isms to form a queue of lock contenders. In contrast, our
technique of queuing pending requests at the home node
does not require any processor ISA, cache subsystem, or
software modifications. If timings are favorable, our
technique can lead to the formation of the same orderly
queue of lock contenders as proposed in these studies. We
find that our technique of buffering at the home node in
conjunction with read combining can substantially reduce
the lock acquire time in relevant applications. Further, our
technique lends itself naturally to accelerating any other
heavily-contended producer-consumer accesses that are
carried out through normal load/store operations or atomic
fetch-and-� operations (as in centralized flat barriers). This
is not possible even in a system providing hardware or ABI
support for simple queue-based locks. The high perfor-
mance of our technique results solely from the efficient
elimination of negative acknowledgments.

2 BASELINE COHERENCE PROTOCOLS

We start our protocol evaluation with a basic bitvector
protocol and gradually improve it to eliminate negative
acknowledgments. In this paper, we present the protocols
in sufficient detail, however, interested readers can find the
complete protocol state machines in the appendix of [6].

Our node controller architecture shown in Fig. 1 is
directly derived from the Memory And General Intercon-
nect Controller (MAGIC) of the Stanford FLASH multi-
processor. It has similar functionality to the hub of the SGI
Origin 2000, except that our node controller is program-
mable and can execute any cache coherence protocol.
Coherence messages arrive at the processor interface (PI)
or the network interface (NI) and wait for the dispatch unit
to schedule them. The processor interface has an out-
standing transaction table (OTT) to record the outstanding
read, upgrade, and read-exclusive requests issued by the
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local processor. The network interface is equipped with four
virtual lanes to implement a deadlock-free protocol and
obviates the need for a strict request-reply protocol. The
dispatch unit carries out a round robin selection among the
PI queue, four NI queues, and the software queue (see
below). After a message is selected, a table lookup decides
which protocol handler is invoked to service the message. It
may happen that while running a handler (e.g., one that
sends out invalidations) the protocol processor finds that it
needs more space in an outgoing network queue. At this
point, the incomplete message is stored on the software
queue, which is a reserved space in main memory. At some
point, the dispatch unit will re-schedule this message from
the head of the software queue, and the handler can
continue where it left off. The protocol processor has its
own instruction and data caches and communicates with
main memory via cache line-sized data buffers. During
handler execution, the protocol processor may instruct the
send unit to send out certain types of messages (such as
requests/replies/interventions) to either the local processor
(via the PI) or remote nodes (via the NI).

In the following, we discuss our baseline protocols that
resort to NACKs to resolve races.

2.1 Baseline Bitvector Protocol

This protocol has a 64-bit directory entry, 48 bits of which
are dedicated to a sharer vector; two bits are used to mark
dirty and pending states, and the remaining bits are used to
keep track of the number of invalidation acknowledgments
to receive on a write. The sharer vector is used as a bit
vector when the memory line is in the shared state;
otherwise it is used to store the identity of the dirty
exclusive owner. The protocol runs under a relaxed
consistency model that sends eager-exclusive replies where
upgrade acknowledgments and read-exclusive data replies
are sent to the requester even before all the invalidation
messages are sent and all the acknowledgments are
collected. After the home node receives the last invalidation
acknowledgment, it clears the pending state of the directory
entry and sends a write-completion message to the writer.
Our relaxed consistency model guarantees “global comple-
tion” of all writes on release boundaries thereby preserving
the semantics of flags, locks, and barriers. The pending state
in the directory entry is also set when a request is
forwarded to a third dirty node. The third node is expected
to send a sharing writeback message (for forwarded read)
or an ownership transfer message (for forwarded write) or a
pending clear message (if the forwarded request fails to find
the cache line in the third node) to the home node that
clears the pending state of the directory entry. In this
protocol, NACKs are generated by the home node when a
request arrives for a memory line with the corresponding
directory entry in the pending state. NACKs are also
generated by third party nodes in case of early and late
intervention races.

2.2 Modified Origin 2000 Protocol

This simplified version of the SGI Origin 2000 protocol differs
from the actual Origin protocol in four major ways. First, our
protocol is MSI as opposed to MESI and, therefore, the home
node does not send speculative replies to the requester on
three-hop misses. Second, our protocol supports eager-
exclusive replies as opposed to strict sequential consistency.

Third, our protocol sends an exclusive data reply (versus a
NACK), if an upgrade request comes from a node that is not
marked as a sharer in the directory. Finally, our protocol uses
three virtual lanes as opposed to a two-lane strict request-
reply mechanism. The third lane is used to send invalidation
and intervention messages. This eliminates the necessity of
the back-off mechanism used in the SGI Origin 2000.

The directory entry is 64 bits wide. Among these 64 bits,
four bits are dedicated to maintain state information:
pending shared, pending dirty exclusive, dirty, and local.
The sharer vector is 32 bits wide. The remaining 28 bits are
left unused for future extensions of the protocol. The
pending shared and pending dirty exclusive states are used
to mark the directory entry busy when read and read
exclusive requests are forwarded by the home node to the
current owner. The dirty bit is set when a memory line is
cached by one processor in the exclusive state. The local bit
indicates whether the local processor caches the line. As in
the Origin protocol, our protocol collects the invalidation
acknowledgments at the requester, though we again
support eager-exclusive replies. Our modified Origin
protocol also eliminates NACKs in the case of early or late
intervention races. Early interventions are buffered in the
outstanding transaction table (OTT) of the designated
owner and delayed until the write reply arrives. Late
interventions are handled by the home node when it
receives the writeback and are ignored by the third party
nodes. To properly decide which interventions to ignore,
the node controller requires a writeback buffer recording
the addresses of the outstanding writeback messages and
the protocol needs to support two types of writeback
acknowledgments.

In this protocol, NACKs are generated only by the home
node when a read, upgrade, or read-exclusive request finds
the corresponding directory entry in one of the two pending
states. Since this protocol properly resolves all intervention
races, the third party nodes do not generate NACKs.

3 ELIMINATING THE NEGATIVE

ACKNOWLEDGMENTS

This section describes our coherence protocols that elim-
inate the remaining NACKs of the modified SGI Origin 2000
protocol. We first present a brief overview of continuous
write forwarding and dirty sharing as implemented in the
Piranha internode coherence protocol.

3.1 Write String Forwarding and Dirty Sharing

Write string forwarding and dirty sharing are the two major
optimizations of the Piranha inter-node coherence protocol
that eliminate the pending states from the directory. We
will discuss the salient features of these two techniques
along with the problems each can face with heavily
contended critical sections and large-scale producer-con-
sumer sharing on scalable DSM machines.

3.1.1 Write String Forwarding

To eliminate the pending dirty exclusive state, the protocol,
on a write request (e.g., an upgrade or a read-exclusive
request), changes the directory entry immediately to reflect
the new owner and forwards the request to the old owner if
the state of the line is not unowned. As a result, a string of
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write requests continuously gets forwarded to the previous
owners obviating the need for ownership transfer messages.
In Fig. 2a, three nodes, namely, W1, W2, and W3, try to write
to a cache line that is in the dirty exclusive state in node D.
The request from W1 (message 1) gets forwarded to D

(message 2) and the directory entry is changed to reflect the
new owner W1. When the request from W2 (message 3)
arrives at the home node it gets forwarded to W1

(message 4). Similarly, the request from W3 (message 5)
gets forwarded to W2 (message 6). Finally, when W1 receives
the reply (message 7) it completes its write and satisfies the
waiting intervention from W2 via the reply message 8.
Similarly, W2 sends a reply to W3 via message 9 after
completing its own write. The home node relies on the third
party nodes to always be able to satisfy forwarded requests.
Although it is possible for the dirty node to have written
back the line before the forwarded intervention arrives, this
is easily solved by making the writeback buffer hold the
cache line in addition to its address until the writeback is
acknowledged by the home node.

Let us analyze the effects of write string forwarding on the
performance of heavily contended read-modify-write opera-
tions implemented using LL/SC pairs. Although the follow-
ing discussion focuses only on lock acquire, the same effects
will be observed in any other atomic read-modify-write
operations. A simple implementation of a critical section is
shown on the right of Fig. 2b. The load-linked (normally
includes LL and a branch), modify (normally an increment)
and store-conditional (normally includes SC and a branch)
form the lock acquire section. The unlock operation at the end
is a simple store operation. In Fig. 2b, we show three nodesW1,
W2 and W3 competing to acquire a lock. We assume that all
three nodes have successfully executed the LL and modify
sections and are all trying to execute the SC. The upgrade
request from W1 (message 1) arrives at the home node H first.
The home replies to W1 with an upgrade acknowledgment
(message 2a) and invalidates the cached copies of the line in
W2 (message 2b) and W3 (message 2c). The invalidation
acknowledgments are not shown for brevity. The request
from W2 (message 3) gets forwarded to W1 (message 3a) while
the request from W3 (message 4) gets forwarded to W2

(message 4a). The SC of W1 will succeed in the first attempt
while that of W2 will fail in the first attempt because of the
invalidation message (the invalidation resets the lock bit in
the cache controller). Assume that the reply message 3b to W2

carries the cache line with the released lock (i.e., by the time
the intervention message 3a arrives at W1 it has already

executed the critical section and released the lock). Therefore,
the second LL attempt by W2 will not cause a network
transaction. But, it may happen that beforeW2gets a chance to
execute the second SC, the intervention from W3 (message 4a)
takes away the cache line. Such a situation can hurt the
performance of read-modify-write operations in large-scale
systems where the number of failed store-conditionals may
increase dramatically. While this situation can also arise in
normal protocols, aggressive write string forwarding in-
creases the probability of this happening and, as we will show
in Section 5, we observe this problem in practice.

To solve this problem, we propose simple microarchitec-
tural changes to delay the intervention in such situations (so
thatW2’s secondSCwill succeed). For detecting this situation,
we introduce one bit of state that indicates whether the lastSC
succeeded. An incoming intervention looks up the L1 cache
tag RAM to decide whether the line is in the dirty exclusive
state, compares the intervention cache line address to the
contents of the lock address register, and finds whether the
last SC failed. If all these checks match then we have detected
a potential intervention conflicting with an upcomingSC that
may succeed—provided we delay the intervention. In this
case, we block the intervention, maintain a pending inter-
vention state bit, and initialize a one bit LL _loop _counter

to zero to be used by a failingLL instruction to decide whether
to unblock an intervention. The execution of anLL instruction
is changed as follows: If there is a pending intervention and
the LL _loop _counter is zero, the LL instruction sets the
counter to 1. If there is a pending intervention and the counter
is 1, the LL instruction failed to pass the branch and hence the
SCwill not be executed until the lock-holder releases the lock.
At this point the pending intervention is unblocked and the
pending intervention state is cleared. Finally, a graduatingSC

instruction always unblocks any pending intervention and
clears the pending intervention state bit. This hardware
optimization improves the performance of any protocol with
aggressive write forwarding, including one of our two new
protocols discussed in Section 3.2.

Our solution does not use the time-out technique to
unblock pending interventions proposed in [26]. Instead,
our technique relies on the semantics of simple read-
modify-write operations and works equally well for any
read-modify-write operations (e.g., lock acquire, centralized
flat barrier, etc.). However, our solution assumes that the
code between the LL and SC does not depend on the
execution of other nodes in the system (such as wait on a
shared flag etc.). This is not restrictive since if this condition
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is not met it is unclear whether even a conventional LL/SC
implementation would make any forward progress due to
the large amount of time spent between the LL and the SC.
However, our technique can be easily augmented with a
fallback time-out mechanism where a counter is initialized
upon completion of a successful LL and is incremented on
every cycle until an SC graduates. As soon as the counter
crosses a threshold any pending intervention is unblocked.
This technique is different from the one used in [26] and still
provides fast execution for the common case of properly
written LL/SC sequences.

Finally, a different problem may arise with write string
forwarding if the critical section shown in Fig. 2b is
relatively long. In this case the reply message 3b to W2

from W1 may bring in the cache line with the lock, causing
the unlock of W1 to suffer a cache miss which in turn will
invalidate all the cached copies in the other nodes (by this
time all the other competing nodes would be looping on an
LL) generating more network traffic. Note that without
write string forwarding the delay introduced by the
ownership transfer messages may actually cause the next
intervention to be sent to the lock-holder after it has already
released the lock leading to a timely critical section
execution. We could augment our technique with IQOLB
[26] for solving this problem, but that is not the central focus
of this study.

3.1.2 Dirty Sharing

Write string forwarding eliminates the pending dirty
exclusive state and the associated ownership transfer
messages. Dirty sharing eliminates the pending shared
state and the sharing writeback messages. The protocol
maintains an owner for the cache lines in the shared state if
the home node does not have the most updated version of
the line. Thus, a write followed by a string of reads causes
the owner to ripple along the chain just as in write string
forwarding. This is shown in Fig. 2c. Initially, the node D is
the dirty exclusive owner. Along the read string, the shared
ownership ripples from R1 to R3 through R2. Though this
eliminates sharing writeback messages, it may convert
many potential two-hop transactions into slow three-hop
ones since all read requests now have to be forwarded to an
owner even though the line is shared. Although this
optimization favors migratory sharing, as we will find in
Section 5 it may hurt large-scale producer-consumer
sharing patterns, especially if many consumers try to
simultaneously access the produced value. This kind of
sharing pattern is commonly observed in contended lock
acquire phases where every node becomes the producer in
turn while the number of consumers gradually decreases as
the processors enter and exit critical sections. Note that
unlike the situation in write forwarding, the reason for this
poor performance is inherent in the observed sharing
pattern. Further, this optimization will hurt performance
even more with the current trend of large L2 and L3 caches
causing cache lines to be written back less frequently and
increasing the likelihood of three-hop interventions.

3.2 Buffering at the Home Node

This section presents our two NACK-free protocol designs.
Instead of resorting to dirty sharing, our protocols buffer

the pending requests at the home node. We reserve space in
the protocol portion of main memory to store pending
requests and make this space selectively visible to the
dispatch unit only when appropriate.

3.2.1 Mechanism

Our protocols store pending read and write requests in
memory in two separate pending lists. The protocol execu-
tion builds directly upon our modified SGI Origin 2000
protocol. The only differences are in the execution of the
request handlers that find the directory entry in a pending
state and in the execution of the handlers that clear the
pending states. A request finding the directory entry in a
pending state, where it would be NACKed in the Origin
2000 protocol, instead gets stored either in the directory
entry (if it is the first read) or in one of the pending lists
depending on the type of request (read or write). The
message that clears the pending state (e.g., a sharing
writeback) first sends out two pending read replies or one
pending write reply if there is no pending read. This design
decision favors short pending lists without making the
protocol too complex. At this time, a message is also
enqueued on the software queue to handle any remaining
pending requests, making the pending requests visible to
the dispatch unit. When the message on the software queue
gets selected, the corresponding handler gives priority to
the pending reads and first walks through the pending read
list sending out as many replies as possible given the
available outgoing network queue space. Note that this
handler reads the requested cache line only once from
memory into a data buffer and uses that data buffer to send
out all the replies. We call this scheme read combining. This
leads to a reduction in both memory occupancy and
average handler execution time. However, due to limited
space in the outgoing reply lane, aggressive read combining
requires extra design considerations. Although reply
messages are meant to travel only on the reply lane, in
the software queue message handlers it is safe to send
replies on any lane. This is deadlock-free because 1) replies
are guaranteed to drain and 2) the draining of the incoming
queues does not depend on the state of the software queue.
In other words, virtual lane usage policy of the software
queue messages does not introduce a cycle in the lane
allocation dependence graph. Therefore, in our design we
use three of the four virtual lanes to aggressively empty the
pending read chain. Inspection of the protocol code shows
that pending read replies can be generated at a sustained
peak rate of one reply every 17 protocol processor cycles.

After the pending read list empties, the software queue
message handler sends pending write replies one at a time.
If more than one write is pending, the second write will
generate an intervention to the first writer and the directory
will transition to the pending dirty exclusive state. In
general, if at any point during the execution of the software
queue handler the directory entry transitions to a pending
state, the handler finishes execution and retires. The
subsequent message that clears the pending state of the
directory entry is responsible for scheduling another soft-
ware queue message if the pending lists are not empty.
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An interesting feature of this protocol is that since it
treats the pending reads and writes separately, the order in
which replies are sent may not correspond to the order of
request arrival. However, this does not affect correctness
because the order among the pending requests is deter-
mined only when the controller updates the directory and
sends the reply.

We augment the protocol discussed above with aggres-
sive write combining and develop a protocol with both read
and write combining enabled by write string forwarding. In
the protocol discussed above, a string of pending writes (in
fact, the second one in a string) will transition the directory
state to pending dirty exclusive, preventing any further
pending requests from being served. In our second
protocol, we solve this problem by making use of write
string forwarding, as discussed in Section 3.1.1. We
eliminate the pending dirty exclusive state from the
directory entry and let the software queue message handler
aggressively forward a string of pending writes until the
outgoing network queues fill. We call this write combining,
which opens up the additional opportunity of write string
forwarding. However, since intervention messages generate
replies, they cannot be sent on arbitrary virtual lanes. We
therefore use two lanes out of four during write combining.
As discussed in Section 3.1.1, without our delayed inter-
vention optimization, this protocol may suffer from the
adverse performance effects of write string forwarding
related to atomic read-modify-write operations and long
critical sections.

Finally, request combining could also be done in
hardware in the incoming request lane(s) of the network
interface. But due to the small incoming queue sizes and the
service rate of the controller, there is little opportunity to
combine messages in the NI. In Section 5, we will show that
the maximum number of combined requests achieved by
our protocols far exceeds any reasonable size of network
interface queues. Also, request combining in the network
interface would require an associative search on the
addresses of the incoming requests thereby increasing the
inbound latency of the network interface.

3.2.2 Implementation

In the following, we present the implementation details of
our NACK-free protocols. Each pending list entry has a
nominal storage overhead of 20 bytes including an entry
index, the requesting node number, a next pointer, an
upgrade bit (relevant for the write pending list only) and
some system-specific information. Sizing the pending list is
important for performance. The theoretical limit on the size is
given by the maximum number of requests that the system
can generate at any point of time. Assuming P nodes,
SizeMSHR miss status holding registers in the processor, and
SizeOTT slots in the OTT, this limit turns out to be
P �minðSizeMSHR; SizeOTTÞ. But in practice, contention hap-
pens for only one cache line. In that case, P entries would be
sufficient in each list. Our protocol currently supports up to
128 entries in each list requiring 5 KB of total DRAM storage
for two lists. If at any point the protocol runs out of pending
list storage it resorts to NACKs until at least one pending list
entry is available. Although in our experiments this case

never arises, we can modify the design to accommodate
larger lists in DRAM to keep the protocols truly NACK-free.

The directory entry is the same as that in the SGI Origin
2000 protocol discussed in Section 2.2 except that the
unused 28 bits are used to maintain states regarding the
pending requests. The directory entry stores the starting
indices (7 bits each) of the read and write pending lists for
the corresponding cache line. Note that the reserved space
for the pending lists acts as a centralized pool of pending
list entries for a particular node and is not allocated for each
directory entry. When a directory entry needs to queue a
pending request it tries to get one pending list entry from
the pool; if it fails it sends a NACK to the requester. Two
bits in the directory entry are needed to indicate whether
the pending lists are empty or not, and one more bit
indicates whether a pending list handler has already been
scheduled on the software queue. To favor short sharing
sequences the remaining 11 bits are used for storing the first
pending reader in the directory entry itself (7 bits for reader
node number, one valid bit, and 3 bits for system-specific
information about the requested address).

3.3 Residual Negative Acknowledgments

In these NACK-free protocols there remain a very small
number of NACKs arising from what we call read-
invalidate races. We show one such race in Fig. 3.

The read request fromR1 (message 1) gets replied to by the
home (message 2) but the reply gets delayed in the network.
In the meantime, W2 sends a write request (message 3), the
home replies (message 4a) and also sends an invalidation
request to R1 (message 4b). Since the invalidation requests
and the replies travel along different network lanes, the
invalidation can race past the read reply. On receiving the
invalidation, the OTT in R1 marks the outstanding read
invalidated and acknowledges the invalidation (message 5).
Eventually the read reply arrives, but since the invalidation
has already been acknowledged the replied data cannot be
used and still guarantee write atomicity. In this case, the
processor interface inR1 sends a local NACK to the processor
instead of sending the read reply. This is the solution used in
the Stanford DASH multiprocessor [21], [22]. In the Alpha-
Server GS320 some read-invalidate races are eliminated by
sending a marker message to the requester as soon as the
request arrives at the home node. All invalidations for an
outstanding read arriving before the marker are ignored. We
decided not to introduce the extra marker messages in the
system given the extremely small number of read-invalidate
races as we find in Section 5. Also, the invalidation messages
need to be ordered with the marker messages necessitating
point-to-point ordering in the network, which none of our
protocols rely on.
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3.4 Summary of Protocols

Table 1 summarizes the six protocols that we evaluate. Since
the OriginMod+DSH+WSF(+OPT) protocol may return a
cache line to the reader in the owned state, the conventional
read-modify-writes implemented with LL/SC may livelock.
Therefore, for the applications with read-modify-writes we
turn on our delayed intervention optimization (OPT) to
guarantee forward progress. Note that this also eliminates
the bad effects of write string forwarding that this protocol
would have otherwise. This protocol supports four L2 cache
states, namely, M, O, S, and I. Other protocols do not
support an O state. All the protocols other than BaseBV

collect invalidation acknowledgments at the writer and
require writeback acknowledgments. BaseBV collects in-
validation acknowledgments at the home and does not
require writeback acknowledgments.

4 EVALUATION METHODOLOGY

This section discusses the applications and the simulation
environment we use to evaluate our protocols.

4.1 Applications

Table 2 shows six programs selected from the SPLASH-2
benchmark suite [30]. There are three complete applications
(Barnes-Hut, Ocean, and Water) and three computational
kernels (FFT, LU, and Radix-Sort). The programs represent
a variety of important scientific computations with different
communication patterns and synchronization requirements.
As a simple optimization, in Ocean the global error lock in
the multigrid phase has been changed from a lock-test-set-
unlock sequence to a more efficient test-lock-test-set-unlock
sequence [17].

4.2 Simulation Environment

We present detailed results for 64-node systems and
selected results for 32 and 128-node systems. The main
processor runs at 1 GHz and is equipped with separate
32 KB primary instruction and data caches that are two-way
set associative and have line sizes of 64 bytes and 32 bytes

respectively. The secondary cache is unified, 2 MB, two-way
set associative and has a line size of 128 bytes. The processor
ISA includes prefetch and prefetch exclusive instructions
and the cache controller uses a critical double-word refill
scheme. The processor model also contains fully-associative
8-entry instruction TLB, 64-entry data TLB, and 4 KB pages.
We accurately model the latency and cache effects of TLB
misses. On two different occasions our processor model has
been validated against real hardware [5], [9].

The embedded protocol processor is a dual-issue core
running at 400 MHz system clock frequency. The instruc-
tion and data cache behavior, and the contention effects of
the protocol processor are modeled precisely via a cycle-
accurate simulator similar to that for the protocol processor
in [9]. We simulate a 32 KB direct-mapped protocol
instruction cache and a 512 KB direct-mapped protocol
data cache. The access time of main memory SDRAM is
fixed at 125 ns (50 system cycles). The memory queue is
16 entries deep. The input and output queue sizes in the
memory controller’s processor interface are set at 16 and
2 entries, respectively. The corresponding queues in the
network interface are 2 and 16 entries deep. The network
interface is equipped with four virtual lanes to aid dead-
lock-free routing. The processor interface has an 8-entry
outstanding transaction table and a 4-entry writeback
buffer. Each of the read and write pending lists in each
node has 128 entries as discussed in Section 3.2.2. Each node
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controller has 32 cache line-sized data buffers used for
holding data as a protocol message passes through various
stages of processing.

We present results for three network configurations to
understand the effects of different topologies and network
speeds. The slowest configuration, named FT150ns, uses a
fat tree topology connecting crossbar switches containing
16-ports each with a hop time of 150 ns. The fastest
configuration, named FT50ns, is the same as FT150ns but
has a hop time of 50 ns. The fat tree topology presents an
economical way of using large crossbar switches (e.g., with
16 ports, but a relatively large hop time) to build a scalable
network. Fig. 4 shows an example 32-node topology using
only 10 switches. The numbers beside the links show the
number of wires. The 64-node and 128-node topologies (not
shown for brevity) used in this paper need 20 and 40 switches,
respectively. We also present results for a medium-speed two
dimensional mesh topology, named Mesh50ns, using 6-port
switches like the SGI Spider router [7]. Although it has a 50 ns
hop time, it is less scalable than FT50ns. For all three
configurations, the simulated node-to-network link band-
width is 1 GB/s.

5 SIMULATION RESULTS

This section presents detailed simulation results for five
selected applications running on a 64-node system with
uniprocessor nodes. Later, in Section 5.7, we present selected
results for 128 and 32-node systems. The details of the results
for FFT are omitted due to space constraints, but a summary

is provided in Section 5.6. All six bitvector protocols
discussed in Section 3.4 scale by becoming coarsevector
protocols [11] with a coarseness of 2 and 4 for 64 and
128-node systems respectively. The chosen applications
exhibit acceptable scalability up to 64 nodes. The speedup
of Water, Barnes Hut, LU, Ocean, Radix-Sort, and FFT for the
OriginMod protocol on the FT50ns topology and 32 nodes
is 24.8, 27.2, 21.3, 55.1 (superlinear due to cache and
TLB effects), 26.7, and 31.4, respectively. On 64 nodes the
speedup numbers are 32.0, 45.1, 32.5, 69.5, 46.6, and 55.7,
respectively. Our NACK-free protocols, by reducing the
parallel execution time, improve the scalability even further.
However, with the input sizes used in this study none of the
applications achieve speedup of even 64 (50 percent parallel
efficiency) on 128 nodes with the OriginMod protocol.
Ocean and FFT are the only two applications showing
efficiency close to 50 percent. Since the performance of FFT is
not affected much by NACKs, we will only discuss the
results for Ocean on 128 nodes and show that our NACK-free
protocol significantly improves scalability (on FT50ns

configuration speedup improves from 55.0 with OriginMod

to 70.4 with OriginMod+RComb).

5.1 Water

This section presents the simulation results for Water on
64 nodes. This application is optimized with page placement
and software tree barriers, but does not use software prefetch.

Fig. 5a presents the execution time normalized to
BaseBV for three network configurations, while Fig. 5b
presents the distribution of NACKs based on which load/
store instructions (i.e., LL, SC, other loads, other stores and
prefetches) are negatively acknowledged in the OriginMod

protocol. We divide the execution time into busy cycles,
read and write stall cycles, and synchronization cycles. We
further break down the synchronization time into time
spent on lock acquires, barriers and flags. Note that Water
does not use flags. The network configurations are arranged
from left to right in increasing order of speed as indicated
by increasing busy cycle percentages.

For the FT150ns configuration, the OriginMod protocol
runs 37 percent faster than BaseBV (corresponding to a
speedup of 1.37) while the OriginMod+RComb protocol is
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Fig. 4. An example 32-node fat tree topology using 10 16-port crossbar

switches.

Fig. 5. (a) Normalized execution time. (b) Distribution of NACKs for Water.



93.4 percent faster than BaseBV and 41.2 percent faster than
OriginMod. Compared to OriginMod, most of the benefits
of OriginMod+RComb come from reducing the lock time
while the rest comes from reducing the barrier time. It is clear
that eliminating the 48.3 percent of the NACKs that are from
LL instructions and the 16.4 percent coming from SC

instructions, as shown in Fig. 5b, helps accelerate lock
acquires. Note that even if a scheme like IQOLB could achieve
a similar performance benefit for lock acquires it could not
eliminate therestof theNACKsarisingfromnormal loadsand
stores. The reduction in barrier time is due to better load
balance resulting from elimination of these remaining
35.3 percent of NACKs. Adding write string forwarding to
OriginMod+RComb does not affect performance while the
delayed intervention optimization executes 3.3 percent faster.
The OriginMod+RComb protocol is 13.6 percent faster than
the OriginMod+DSH+WSF+OPT protocol due to the latter’s
increased time spent on lock acquires resulting from many
three-hop misses as discussed in Section 3.1.2.

For theMesh50ns configuration, theOriginMod+RComb
protocol executes 25 percent faster than BaseBV and
2.1 percent faster than OriginMod. For the FT50ns config-
uration, this protocol runs 21.4 percent faster than BaseBV

and 8.2 percent faster than OriginMod.
We note that in OriginMod+RComb for all the three

network configurations the maximum number of com-
bined reads in one handler invocation is 60, while in
OriginMod+RWComb+WSF, the maximum number of
forwarded writes in one handler invocation is 39 for
FT150ns, 56 for Mesh50ns, and 48 for FT50ns. Other
applications show similar trends.

Fig. 6a shows the total count of executed protocol
message handlers normalized to BaseBV. This metric has
direct correlation with the message count in the system. For
all three network configurations OriginMod+DSH+WS-

F+OPT achieves the lowest message count due to elimina-
tion of sharing writebacks and ownership transfers, but an
increased number of three-hop transactions in the lock
acquire phases hurts the performance of this protocol. For
example, in the FT150ns configuration this protocol has
29.2 percent more three-hop read misses than the Origi-

nMod+RComb protocol. Fig. 6b shows the normalized count
of NACKs. OriginMod achieves a substantial reduction in

the NACKs over BaseBV: 48.1 percent for FT150ns,
37.8 percent for Mesh50ns and 21.9 percent for FT50ns.
The NACKs in the remaining four cases are solely due to
read-invalidate races. The OriginMod+DSH+WSF+OPT pro-
tocol suffers from the maximum number of such races due
to aggressive write and read forwarding.

5.2 Barnes Hut

This section presents the results for two versions of Barnes
Hut on 64 nodes—one with 64K array-locks and the other
with 2048 array-locks used to protect the cells of the oct-
tree. Both versions use page placement and software tree
barriers, but no software prefetch.

5.2.1 Barnes-Hut with 64K Locks

Fig. 7a presents the execution time normalized to BaseBV

for three network configurations while Fig. 7b presents the
distribution of NACKs in the OriginMod protocol. For the
FT150ns configuration the OriginMod protocol executes
39.5 percent faster than BaseBV while the OriginMod+R-

Comb protocol is 50.6 percent faster than BaseBV and
7.9 percent faster than OriginMod. Compared to Origi-

nMod most of the benefits of OriginMod+RComb come
from reducing the barrier time and therefore improving
load balance by eliminating NACKs, while the rest comes
from reducing the read/write stall time. As shown in Fig. 7b,
41.4 percent of the NACKs arise from LL instructions and
16.7 percent from SC instructions. While the elimination of
these NACKs accelerates lock acquires, the remaining
43 percent of the NACKs play the most significant role.
Adding write string forwarding to OriginMod+RComb

increases the execution time significantly and OriginMod

actually runs 6.9 percent faster compared to Origi-

nMod+RWComb+WSF due to the latter’s increased failed
store-conditionals leading to an increased lock stall time.
The OriginMod+DSH+WSF+OPT protocol performs best in
terms of lock acquire, but continues to suffer from three-hop
misses leading to an increased read/write stall time. The
improved lock acquire performance is due to less contended
locks compared to Water and extremely low occupancy
achieved by this protocol on this application (see below).

For theMesh50nsconfiguration, theOriginModprotocol
emerges the best, executing 12.2 percent faster than BaseBV.
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Fig. 6. (a) Normalized protocol handler invocation count. (b) Normalized NACK count for Water.



All other protocols perform worse compared to OriginMod

with OriginMod+RComb being the closest yielding 1.8 per-

cent increased execution time over OriginMod. For the

FT50ns configuration the OriginMod+RComb protocol is

14.9 percent faster than BaseBV and 1.2 percent faster than
OriginMod. The OriginMod+RWComb+WSF protocol suf-

fers greatly from an increased count of failed store-condi-

tionals and even BaseBV runs 4.1 percent faster compared to

it. The delayed intervention optimization effectively elim-

inates many failed store-conditionals and helps bring down

the execution time, but still OriginMod executes 1.8 percent
faster than OriginMod+RWComb+WSF+OPT. This is due to

relatively long critical sections that compute the forces

between the bodies. As pointed out in Section 3.1.1, aggressive

write forwarding may hurt performance of relatively long

critical sections. Regarding the amount of request combining,
we note that inOriginMod+RComb the maximum number of

combined reads in one handler invocation is 35 for FT150ns,

40 for Mesh50ns and 30 for FT50ns while in Origi-

nMod+RWComb+WSF the maximum number of forwarded

writes in one handler invocation is 21 for FT150ns, 25 for

Mesh50ns, and 42 for FT50ns. Thus, a large amount of
request combining continues to improve the performance of

our protocol.

Fig. 8a shows the normalized count of negative acknowl-

edgments. Fig. 8b shows the normalized protocol processor

occupancy cycles on the most contended node. The notably

high occupancy of OriginMod+RWComb+WSF for FT50ns

explains its poor performance. Also, OriginMod+DSH+WS-

F+OPT shows extremely low occupancy which results from

resolving the three-hop races at the periphery and keeping

the home nodes free as much as possible. But, the large-

scale producer-consumer sharing patterns continue to result

in poor performance with this protocol. Finally, Fig. 9a

shows the normalized dynamic count of executed SC

instructions. In the OriginMod+RWComb+WSF protocol

the number of failed store-conditionals increases enor-

mously due to aggressive write string forwarding.

5.2.2 Barnes-Hut with 2,048 Locks

Since the majority of NACKs arise from lock acquires, we

experimented with a smaller number of array locks. With

2,048 locks the lock contention for each cell in the oct-tree

structure is expected to increase. We show the normalized

execution time for the Mesh50ns configuration in Fig. 9b.

For comparison we also present the results with 64K locks

alongside. Clearly, with 2,048 locks all the protocols show

greater performance improvement relative to BaseBV as
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Fig. 7. (a) Normalized execution time. (b) Distribution of NACKs for Barnes Hut with 64K locks.

Fig. 8. (a) Normalized NACK count. (b) Normalized protocol processor occupancy cycles for Barnes Hut with 64K locks.



compared to that with 64K locks. The OriginMod+RComb

protocol is 29.5 percent faster than BaseBV and 6.4 percent

faster than OriginMod. A comparison between the

performance of OriginMod+RComb with 64K and

2,048 locks clearly brings out the importance of this

protocol in the presence of lock contention. Adding write

combining and write string forwarding to OriginMod+R-

Comb continues to hurt performance because of failed

store-conditionals. The delayed intervention optimization

(OriginMod+RWComb+WSF+OPT) achieves a parallel ex-

ecution time very close to that of OriginMod+RComb.

5.3 LU

This section presents the results for LU on 64 nodes.

Optimized LU shows little variation across different

protocols. This agrees with the findings from other protocol

studies [14], [15]. Therefore, in the following we present

results for an unoptimized version of LU, representative of

less-tuned parallel programs. In unoptimized LU, we turn

off page placement (i.e., rely on a default round robin

placement policy) and software prefetch and instead of

point-to-point synchronization, we use more costly centra-

lized barriers implemented with atomic read-modify-write

via LL/SC.

Fig. 10a presents the execution time normalized to
BaseBV for three network configurations while Fig. 10b
presents the distribution of NACKs in the OriginMod

protocol for unoptimized LU. Due to heavily contended
execution of centralized barriers (which rely on atomic
read-modify-write operations), a large fraction of NACKs
arise from LL and SC instructions: 74.8 percent in FT150ns,
84 percent in Mesh50ns, and 83 percent in FT50ns.
Another interesting observation is that the Origi-

nMod+RWComb+WSF protocol shows extremely poor perfor-
mance. For FT150ns, it runs 2.28 times slower compared to
BaseBV, while for Mesh50ns and FT50ns the slowdown
is, respectively, 1.95 and 1.72. Increased count of failed SC is
the reason for this.

For the FT150ns configuration, the OriginMod pro-
tocol runs 15.7 percent faster than BaseBV while the
OriginMod+RComb protocol is 38.7 percent faster than
BaseBV and 19.8 percent faster than OriginMod.
Compared to OriginMod most of the benefits of
OriginMod+RComb come from reducing the barrier time.
The reduction in the barrier time mostly results from
accelerated read-modify-write operations. Adding write
string forwarding to OriginMod+RComb increases the
execution time significantly as already discussed. How-
ever, the delayed intervention optimization executes
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Fig. 9. (a) Normalized dynamic count of SC instructions for Barnes Hut with 64K locks. (b) Normalized execution time for Barnes Hut with 2,048 locks
on Mesh50ns.

Fig. 10. (a) Normalized execution time. (b) Distribution of NACKs for unoptimized LU.



8.5 percent faster compared to OriginMod+RComb and

clearly performs better than all other five cases. The

OriginMod+DSH+WSF+OPT continues to suffer from an
increased barrier time resulting from a large number of

three-hop read misses. In this protocol, 83.5 percent of all

read misses are three-hop misses which is 7.1 times larger
than the number of three-hop read misses in

OriginMod+RComb. This is due to the heavily contended

producer-consumer sharing pattern observed by the read-
modify-write variable implementing the centralized bar-

rier. For the Mesh50ns and the FT50ns configurations,

the same trend is observed. We also note that in

OriginMod+RComb the maximum number of combined
reads in one handler invocation is 60 for FT150ns, 56 for

Mesh50ns and 39 for FT50ns, while in OriginMod+RW-

Comb+WSF, the maximum number of forwarded writes in
one handler invocation is 34 for FT150ns, 57 for

Mesh50ns and 51 for FT50ns.
Fig. 11a shows the protocol handler invocation count

normalized to BaseBV. For all three network configura-
tions, OriginMod+RWComb+WSF has the highest message

count. Note again the increased message count of Origi-

nMod+DSH+WSF+OPT resulting from a large number of

three-hop transactions that outweigh the reduction
achieved due to elimination of sharing writeback and

ownership transfer messages. Fig. 11b shows the normal-

ized count of NACKs. Fig. 12a shows the normalized

protocol processor occupancy cycles on the most contended

node. The notably high occupancy for OriginMod+RW-

Comb+WSF across all three network configurations explains

its poor performance. Finally, Fig. 12b shows the normal-

ized dynamic count of executed SC instructions. For all

three network configurations OriginMod+RWComb+WSF

shows a significantly higher number of store-conditionals

than the other five cases. In fact, compared to BaseBV it has

16.6 times (FT150ns), 12.5 times (Mesh50ns), and

10.6 times (FT50ns) the number of store-conditionals. The

delayed intervention optimization helps bring down the SC

count to a value close to the other cases.

5.4 Ocean

This section presents the results for Ocean on 64 nodes,

optimized with page placement, software prefetching and

software tree barriers.
Fig. 13a presents the execution time normalized toBaseBV

for three network configurations, while Fig. 13b presents the

distribution of NACKs in the OriginMod protocol. From

Fig. 13b, we note that forFT150ns 86.9 percent of the NACKs

result from LL and SC instructions while for Mesh50ns and

FT50ns the percentages are 87.6 percent and 89.1 percent,
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Fig. 11. (a) Normalized protocol handler invocation count. (b) Normalized NACK count for unoptimized LU.

Fig. 12. (a) Normalized protocol processor occupancy cycles. (b) Normalized dynamic count of SC instructions for unoptimized LU.



respectively. This is due to heavily contended lock acquires in
Ocean.

From Fig. 13a, we observe that for all three network
configurations our OriginMod+RComb protocol delivers
the best performance. For the FT150ns configuration the
OriginMod+RComb protocol executes 27.9 percent faster
than BaseBV and 20.6 percent faster than OriginMod.
Compared to OriginMod most of the benefits of Origi-

nMod+RComb come from reducing the lock time while the
rest come from reducing the barrier time. The Origi-

nMod+RWComb+WSF protocol increases the execution time
significantly as aggressive write forwarding continues to
hurt the performance of contended lock acquires. Adding
the delayed intervention optimization solves this problem,
but OriginMod+RComb is still 5.2 percent faster than
OriginMod+RWComb+WSF+OPT. We found that this is due
to the large critical section effect of write forwarding. Ocean
has small critical sections, but due to cache misses they take
a long time to execute.

For the Mesh50ns configuration, the OriginMod+R-

Comb protocol again emerges the best, 16.8 percent faster
than BaseBV and 11.4 percent faster than OriginMod. All
other protocols show similar trends as those for FT150ns.
For the FT50ns configuration, the OriginMod+RComb

protocol continues to excel. It runs 21.4 percent faster than

BaseBV and 13.4 percent faster than OriginMod. Finally,
we note that in OriginMod+RComb the maximum number
of combined reads in one handler invocation is 34 for
FT150ns, 45 for Mesh50ns and 32 for FT50ns while in
OriginMod+RWComb+WSF the maximum number of for-
warded writes in one handler invocation is 40 for FT150ns,
54 for Mesh50ns and 49 for FT50ns.

Fig. 14a shows the normalized protocol processor occu-
pancy cycles on the most contended node. The Origi-

nMod+RComb protocol has the lowest occupancy. The
notably high occupancy of the OriginMod+DSH+WSF+OPT

protocol clearly brings out its inefficiency in handling large-
scale producer-consumer sharing pattern. Finally, Fig. 14b
shows the normalized dynamic count of executed SC

instructions. For all three network configurations, the count
for OriginMod+RWComb+WSF is the highest. Although
adding the delayed intervention optimization helps reduce
the number of failed store-conditionals, it still suffers from
the effect of aggressive write combining on critical sections
with large execution time.

5.5 Radix-Sort

This section presents the results for Radix-Sort on 64 nodes,
which uses page placement, software prefetch, software tree
barriers, and point-to-point flag synchronization. The
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Fig. 13. (a) Normalized execution time. (b) Distribution of NACKs for Ocean.

Fig. 14. (a) Normalized protocol processor occupancy cycles. (b) Normalized dynamic count of SC instructions for Ocean.



delayed intervention optimization is not relevant since
Radix-Sort does not have contended read-modify-writes.
This optimization has practically no effect on the execution
time of Radix-Sort.

Fig. 15a presents the execution time normalized to
BaseBV for the three network configurations for Radix-
Sort, while Fig. 15b presents the distribution of NACKs in
the OriginMod protocol. As expected, almost all the
NACKs arise from normal loads and stores. The interesting
observation is that the OriginMod+DSH+WSF protocol
emerges the best for all three network configurations. For
the FT150ns configuration this protocol executes 11 per-
cent and 4.2 percent faster than the BaseBV and the
OriginMod protocols, respectively. Similar trends con-
tinue to hold for the other two configurations. We found
that in Radix-Sort about 93 percent of the read misses are
local, but are satisfied at a second owner node and no other
application presented in this paper has such a high
proportion of misses that require interventions. The
dominant sharing pattern results from a remote node
writing to a cache line followed by the home node reading
it. Subsequently, a third node arrives at the home node
with a read exclusive request for that cache line and this
request can be immediately forwarded to the local
processor interface (local processor is the current shared
owner) without blocking at the directory in the Origi-

nMod+DSH+WSF protocol. This is also supported by the fact
that most of the NACKs arise from stores as shown in
Fig. 15b. Although the OriginMod+RComb protocol is also
able to eliminate these NACKs, it suffers from a slightly
higher occupancy.

5.6 Summary of 64-Node Results

We have presented detailed simulation results for five
applications on a 64-node DSM system. The results clearly
establish the fact that for the lock-intensive applications
(e.g., Water, Barnes Hut, and Ocean) and for the applica-
tions with heavily contended read-modify-write operations
(e.g., unoptimized LU) our read combining protocol
(OriginMod+RComb) can substantially improve the per-
formance over a modified version of the SGI Origin 2000
protocol. For Barnes-Hut it is also able to improve

performance by eliminating NACKs unrelated to LL/SC.
Further, the results clearly bring out the inefficiency of the
aggressive write string forwarding and dirty sharing
techniques in acquiring contended locks. We summarize
our findings in two tables. Table 3 presents the best protocol
for each application across the three network configura-
tions, including the results for FFT that we omitted due to
space constraints. While naming the protocols we omit the
OriginMod+ portion where there is no ambiguity. Closely
performing protocols are considered tied.

In Table 3, other than four cases, protocols with some
form of request combining emerge the best, and the
OriginMod+RComb protocol is the best in 12 out of 18 cases.
So, in Table 4 we summarize the speedup achieved by
OriginMod+RComb, the best request combining protocol,
with respect to BaseBV and OriginMod with the max-
imum and the minimum for each network configuration
shown in bold. We note that read combining accelerates
parallel execution by 6 percent to 93 percent relative to
BaseBV and up to 41 percent relative to OriginMod across
various network configurations. Other than a few cases of
negligible slowdown (at most 2 percent), it is clear that our
NACK-free protocols reduce the overall execution time
significantly. Further, as the network gets slower and more
contended, the relative benefit of our protocols increases in
most of the cases, indicating the increased performance
impact of NACKs.

5.7 Results for Other System Sizes

In this section, we compare the performance of Origi-

nMod+RComb, the best request combining protocol, with
BaseBV and OriginMod on 128 and 32-node systems. In
Fig. 16a we show the performance of BaseBV, OriginMod
and OriginMod+RComb for Ocean on 128 nodes. For
comparison we have also included the results for 64 nodes.
For each group of bars the execution time is normalized to
the corresponding (i.e., 64 or 128-node) execution time of
the BaseBV protocol. Clearly, as the system scales the
relative performance benefit of NACK-free protocols in
general, and our read combining protocol in particular,
increases significantly. For the FT150ns configuration, on
64 nodes read combining is 17.1 percent faster than
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Fig. 15. (a) Normalized execution time. (b) Distribution of NACKs for Radix-Sort.



OriginMod while on 128 nodes it executes 68.9 percent

faster than OriginMod. We observe similar trends for the

other network configurations. These results establish the

fact that read combining scales much better than either the

BaseBV or the OriginMod protocol.
We also looked at the effects of NACKs on medium-scale

systems with 32 nodes. In these systems, the contention at the

home node as well as in the network is much less leading to

reduced impact of NACKs. Only Water and Ocean show

some performance gain as NACKs are eliminated. For Water,

the OriginMod+RComb protocol executes 3.3 percent,

2.0 percent, and 1.7 percent faster than OriginMod on

FT150ns, FT50ns, and Mesh50ns configurations, respec-

tively. For Ocean, the numbers are 3.8 percent, 2.6 percent,

and 2.6 percent, respectively. This leads us to conclude that

for highly scalable scientific applications NACKs are not

important in small to medium-scale DSM multiprocessors

while the importance increases significantly beyond 32 nodes.

5.8 Effect of Hardwired Protocol Execution

The results presented thus far assume the existence of an

embedded protocol processor in the node controller that

runs software code sequences to implement the coherence

protocol. This technique, used in the Piranha system [3], the

Stanford FLASH multiprocessor [16], [19], STiNG multi-

processor [23], S3.mp [25], etc., allows late binding of the

protocol, flexibility in the choice of protocol, and a relatively

easy and fast protocol verification phase. It might seem that

the trends exhibited by the results will change if the

protocols were implemented in hardware. But since all the
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TABLE 4
Speedup of the Best Request Combining Protocol Relative to BaseBV and OriginMod

Fig. 16. (a) Normalized execution time on 128 and 64 nodes for Ocean. (b) Effect of faster PP on Ocean for 64 nodes and Mesh50ns.

TABLE 3
The Best Protocol



protocols evaluated in this paper are essentially bitvector, a
particular hardware enhancement is expected to improve
the performance of all the protocols almost equally, which
is tantamount to running the protocol processor faster. In
Fig. 16b, we present the performance of the protocols
running on a protocol processor twice as fast (i.e., 800 MHz)
compared to our base protocol processor. We pick Ocean
running on the Mesh50ns configuration for this study as a
representative of fairly complex scalable applications.

The first group of bars repeats our results for our base
400 MHz protocol processor (PP) with execution times
normalized to BaseBV. The second group of bars present
execution time on a 800 MHz PP, but normalized to the
execution time of BaseBV running on 400 MHz PP. Finally,
the last group of bars present the results for an 800 MHz PP
normalized to BaseBV running at the same frequency. The
second group of bars shows that a faster PP improves the
performance of all the protocols other thanOriginMod+RW-

Comb+WSF andOriginMod+RWComb+WSF+OPT. The reason
for this anomaly is that with a faster PP the write forwarding
becomes even more aggressive leading to an even larger
number of failed store-conditionals manifested in the form of
an increased lock acquire time. A comparison between the
first and the last group of bars establishes the fact that the
relative performance trend for BaseBV, OriginMod, Ori-
ginMod+RComb and OriginMod+DSH+WSF+OPT is largely
independent of the frequency of the protocol processor.

6 CONCLUSIONS

We have presented a detailed analysis of the performance
impact of negative acknowledgments on 64 and 128-node
systems. We propose and evaluate two novel request
combining techniques in conjunction with buffering at the
home node to eliminate the NACKs that remain in a
modified version of the SGI Origin 2000 protocol. The
protocol with aggressive read combining at the home node
achieves the best performance in a majority of the cases and
shows that removing NACKs can significantly improve
performance. Our protocol achieves speedup as high as 1.93
over a baseline bitvector protocol and up to 1.41 compared
to a modified SGI Origin 2000 protocol on a 64-node system.
In most cases the advantages of NACK-free protocols
increase as the network gets slower and more contended.
We also show that as the system scales to larger sizes the
read combining protocol continues to achieve better
scalability compared to the baseline bitvector or the SGI
Origin 2000 protocol. Interestingly, our read combining
protocol not only eliminates NACKs, but also significantly
accelerates lock acquires in lock-intensive applications.

The second variant of our NACK-free protocol incorpo-
rates the idea of write string forwarding as in the
AlphaServer GS320 and Piranha system with our read
and write combining schemes. But, to our surprise, we find
that aggressive write forwarding degrades the performance
of heavily contended read-modify-writes and large critical
sections. We propose microarchitectural changes in the
cache controller to improve the performance of read-
modify-writes in these protocols. It does not appear
beneficial to implement write forwarding in a cache
coherence protocol without supporting some form of

delayed intervention optimization in the cache subsystem.

Further, our evaluation of dirty sharing used in the NACK-

free protocol of the Piranha chip-multiprocessor shows that

this technique can greatly hurt performance in the presence

of large-scale producer-consumer sharing due to an

increased volume of three-hop misses. Our read combining

protocol not only remains free of the problems of write

forwarding and dirty sharing, but also significantly im-

proves load balance and overall performance by effectively

eliminating negative acknowledgments.
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