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Abstract— Given an input that can trigger a concurrency
bug, only a subset of possible thread schedules satisfying certain
constraints can actually cause such a bug to manifest. Recent
proposals on controlled randomization of thread schedules with
concrete guarantees on bug detection probabilities have opened
promising avenues in this direction. However, to boost the bug
detection probability, these techniques typically require a sig-
nificant number of schedules to be explored. As a result, it is, in
general, beneficial to accelerate the schedule space exploration
of the multi-threaded programs.

In this paper, we introduce Simultaneous Interleaving Explo-
ration with Controlled Sequencing (SINECOSEQ), a generic
framework that leverages the high-performance graphics pro-
cessing units (GPUs) to significantly accelerate schedule space
navigation of general-purpose multi-threaded programs. The
SINE framework accepts POSIX compliant multi-threaded
programs, instruments them to intercept all shared memory
accesses, and automatically generates CUDA (Compute Unified
Device Architecture) compliant code that navigates the schedule
space of the input multi-threaded program on an NVIDIA
GPU. Each GPU thread typically explores one schedule of
the input program. The COSEQ framework decides how the
schedule space is navigated by architecting the schedules on
the fly. While it is straightforward to construct and navigate
a different schedule on each GPU thread, the performance of
the resulting technique can be very poor due to disparate pieces
of codes executed by each GPU thread leading to full control
divergence. In this paper, we demonstrate one application of
SINECOSEQ by proposing a new GPU-friendly scheduler for
accelerated concurrency testing (ACT), which is inspired by
the recently proposed randomized scheduler of probabilistic
concurrency testing (PCT). Compared to the state-of-the-art
parallel PCT (PPCT) implementation on a twelve-core CPU,
our proposal implemented on an NVIDIA Kepler K20c GPU
card significantly speeds up schedule space exploration for
eight multi-threaded applications and kernels drawn from the
Phoenix and the PARSEC suites.

I. INTRODUCTION

In this era of multi-cores, efficiently testing applications for
concurrency bugs has gained enormous importance. Concurrency
bugs are elusive: these bugs require a specific sequence of
decisions from a scheduler to manifest. As schedulers are non-
deterministic, both detecting and reproducing these faults are
hard. Traditionally, concurrent programs are heavily stress-tested
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— the application is run many times hoping for the right set of
decisions from the scheduler that unearth latent bugs.

Recent proposals on controlled randomization of thread sched-
ules with concrete guarantees on bug detection probabilities
have opened promising avenues in this direction. An interesting
approach in this direction attempts to classify concurrency bugs
using the notion of bug depth [5]: the “depth” of a concurrency
bug is the least number of constraints on the ordering of thread
instructions that is required to manifest the concurrency bug in a
thread-schedule. The PCT algorithm, proposed in the same arti-
cle, uses a priority-based scheduler that assigns priorities to each
thread in a manner that each run of the program tests one such
possible ordering at a user-provided bug-depth. Hence, overall,
the algorithm guarantees a lower-bound on the probability of
catching bugs at a certain bug-depth. However, due to complete
serialization of the multi-threaded execution, the PCT runs are
slow. The parallel PCT algorithm (PPCT) [11] restricts serialized
execution to a small number of threads (bounded by the bug
depth) while allowing the other threads to execute in parallel. The
PPCT algorithm achieves significant speedup (5× on an eight-
core machine) over the PCT algorithm.

However, the lower-bound guarantee on catching a concur-
rency bug is small (dictated by the number of dynamic instruc-
tions), while the search space increases exponentially with the
bug depth. Hence, an application still needs to be executed a
large number of times to gain enough coverage of feasible thread
schedules to elicit reasonable confidence.

Modern graphics processing units (GPUs) support massive
parallelism, thus providing an exciting opportunity for concur-
rency testing. However, the GPU hardware, being tuned for the
graphics pipelines, needs carefully designed algorithms to extract
acceptable parallelism. In NVIDIA GPUs, the computation is
divided into blocks of threads, where each block executes threads
in warps of 32 threads. The blocks are scheduled on multiple
streaming multiprocessors (SM’s) by the GPU scheduler. Each
warp is executed by a single instruction multiple thread (SIMT)-
style vector unit and, thus, the threads in the warp must be data
parallel; any control-flow divergence among these threads results
in serialization, thus hurting performance. Efficient utilization of
the memory hierarchy (consisting of the large but slow global
memory, small shared memory, and fast but minuscule local
memory) also turns out to be a challenge for GPU algorithms.

A naive port of multi-threaded concurrency testing algorithms
(like PPCT) to GPUs is not a viable approach to achieving high
performance, as such an implementation would face significant
control divergence. The PPCT algorithm attempts to run most of
the program threads in parallel (while serializing a small number
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of them); on a GPU, such an implementation will see almost no
data-parallelism and high divergence (as the different program
threads would execute completely different instructions) leading
to an abysmally poor performance.

In this paper, we introduce Simultaneous Interleaving Ex-
ploration with Controlled Sequencing (SINECOSEQ), a generic
framework that leverages the high-performance GPUs to signifi-
cantly accelerate schedule space navigation of general-purpose
multi-threaded programs (Section III). The SINE framework
accepts POSIX compliant multi-threaded programs, instruments
them to intercept all shared memory accesses, and automatically
generates CUDA (Compute Unified Device Architecture) com-
pliant code that navigates the schedule space of the input multi-
threaded program on an NVIDIA GPU. The COSEQ frame-
work constructs an efficient orchestration by controlling and
navigating the explored interleavings on the fly with the goal
of maximizing exploration coverage while minimizing control-
flow divergence. Overall, SINECOSEQ provides an extensible
scheduler that allows implementation of different schedule-space
exploration strategies while drawing support from the framework
for their efficient GPU execution.

Our framework (SINECOSEQ) is capable of model-checking
unmodified POSIX-complaint multi-threaded applications on a
GPU. SINECOSEQ includes support for identifying shared loca-
tions, provides a compiler (C-to-COSEQ) to transform the source
program for interleaved execution by “flattening” it, instruments
preemption points to allow the scheduler to take control, models
POSIX thread calls on the GPU and provides stubs for common
libc methods that enable running thousands of interleaved execu-
tions of realistic programs in parallel on the GPU (Section III).
Our framework is generic; an algorithm developer interested in
experimenting with new scheduling algorithms for discovering
bugs would only need to implement a new thread orchestration
strategy within the scheduler, while inheriting the rest of the
functionality for free.

In this paper, we demonstrate the utility of our framework
by designing a GPU-friendly randomized scheduler for accel-
erated concurrency testing (ACT) and implementing it on our
SINECOSEQ framework. ACT is inspired by the PCT scheduler:
ACT carries out PCT across the warps (using unbiased sampling
of preemption points across warps) but exploits a biased sam-
pling technique to gain in performance within a warp. In partic-
ular, we show how our Delayed Divergence algorithm carefully
constructs and navigates the schedules so that control divergence
among the GPU threads is contained (Section IV). Compared
to the state-of-the-art parallel PCT (PPCT) implementation on
a twelve-core CPU, our proposal implemented on an NVIDIA
Kepler K20c GPU card significantly speeds up schedule space
exploration for eight multi-threaded applications and kernels
drawn from the Phoenix and the PARSEC suites (Section V).
Figure 1 provides a high-level summary of our results by enumer-
ating the best speedup achieved by our implementation at each
bug depth for all the applications. The best speedup numbers vary
from 1.2× to 365.3×. These impressive improvements over the
state-of-the-art can significantly accelerate concurrency testing.
The contributions of this paper are as follows:
• Our primary contribution is in the design of the

SINECOSEQ framework that allows accelerated schedule
space exploration on GPUs.
– We introduce the notion of Controlled Sequenc-
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Fig. 1: Speedup achieved at various bug depths

ing (COSEQ) and demonstrate its effectiveness at explor-
ing thread schedules on a GPU.

– We discuss the Simultaneous Interleaving Explo-
ration (SINE) scheme that involves executing the COSEQ
on multiple GPU threads, effectively exploring multiple
interleavings concurrently.

• We demonstrate the capabilities of our SINECOSEQ frame-
work by building a GPU-friendly scheduler, ACT, on the
SINECOSEQ framework. Our proposal speeds up schedule
space exploration by 1.2× to 365.3× over the state-of-the-
art multi-threaded PPCT implementation for eight multi-
threaded applications.

II. BACKGROUND

A. Probabilistic Concurrency Testing
The major challenge in testing multi-threaded programs is the
non-determinism in their thread schedules. As the space of
all possible thread schedules is exponential in the number of
dynamic instructions executed by the program, an exhaustive
coverage of all such schedules is not practical.

Burckhardt et al. [5] propose to classify a bug based on the
least number of constraints on the ordering of thread instructions
that are required to manifest the concurrency bug in a thread
schedule; they refer to this as the bug depth. For example, if
a thread T1 acquires two locks, a lock x followed by another
lock y, while another thread T2 acquires the same locks but in
the different order, we would need two ordering constraints to
elicit a deadlock: T1’s acquire(x) must happen before T2’s
acquire(x), and T1’s acquire(y) must happen after T2’s
acquire(y). Probabilistic Concurrency Testing (PCT) [5]
proposes a scheduling policy that provides a probabilistic lower
bound of 1

tnd−1 for detecting a concurrency bug at a given depth
d for a program with t threads that executes a maximum of n
instructions.

To explore bugs at a depth d, the PCT scheduler starts off by
assigning distinct random priorities between d and (t + d − 1)
to each of the t threads in a given program. Assuming that an
execution of the program retires n dynamic instructions, it picks
(d − 1) out of these n instructions as the priority change points
uniformly at random. Till a priority change point is encountered
(the scheduler maintains a counter to count the number of dy-
namic instructions executed), it follows a strict priority based
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scheduling scheme, picking the enabled thread with the highest
priority every time. At the ith priority change point, the priority
of the running thread is lowered to (d− i).

The intuition behind PCT is that at the ith priority change
point, the scheduler, by lowering the priority of the current thread
to a priority of d − i, establishes an ordering constraint between
the current dynamic instruction and the instruction at the (i−1)th
priority change point (as the priority of the current thread is lower
than the thread that was running when the (i − 1)th priority
change point was encountered). However, this ordering can get
violated in priority inversion scenarios; it is a demon that the
algorithm lives with.

The parallel PCT (PPCT) [11] algorithm attempts to accelerate
the PCT algorithm on multi-core CPU platforms. This Parallel
PCT (PPCT) scheduler makes use of the important observation
that it is not necessary to initially assign distinct priorities to
the threads as the ordering constraints are only established once
the thread priorities are lowered. The PPCT scheduler initially
assigns a high priority to each thread and allows them to run in
parallel. At a priority change point i, it lowers the priority of one
of the executing threads to d− i, thereby establishing an ordering
constraint by sequentializing the execution. As the high priority
threads run in parallel while serial execution is only limited to
at most d threads, PPCT offers substantial speedup (about 5×
on eight-core machines) while providing the same probabilistic
assurance of hitting concurrency bugs as the PCT scheduler.

As both the PCT and the PPCT schedulers explore only a
single schedule in a run, to ensure higher probabilities of hitting
concurrency bugs, one has to repeatedly explore the schedule
space with these schedulers. In this paper, we propose strategies
for simultaneously exploring multiple runs on the GPU in a sym-
biotic manner. Also, while the parallelism in the PPCT scheduler
is limited by the number of program threads, the parallelism of
our framework is independent of the number of program threads
and is only bounded by the resource limits of the GPU hardware.

The NeedlePoint [11] framework facilitates systematic sched-
ule space exploration of multi-threaded programs; it provides
implementations of the PCT and the PPCT algorithms (besides
others) on traditional CPUs.

B. Overview of GPU Architecture
The GPU architecture that we use in this study contains an array
of streaming multiprocessors (SM’s or SMX’s) with each SM
containing an array of execution units. The CUDA (Compute
Unified Device Architecture) parallel programming model di-
vides the threads of a program into a number of thread blocks
and a thread block is scheduled on an SM. The threads in a thread
block are further grouped into warps. The GPU architecture we
use in this study has a warp size of 32 threads. All threads in a
warp are scheduled together and execute the same instructions in
lock-step, except when the threads in a warp diverge on a branch
condition. The lock-step execution of the threads in a warp leads
to the single instruction multiple thread (SIMT) execution model,
which is central to high-throughput vector computation; the same
instruction of the threads in a warp operate on a vector data
in parallel. If the threads in a warp diverge due to a branch
condition, the divergent subsets of the threads within the warp
execute sequentially severely hurting the performance. One of
the primary goals of a good GPU algorithm is to minimize control
divergence within a warp.

III. SINECOSEQ FRAMEWORK

We present the details of the SINECOSEQ framework in
this section. We begin by introducing the concept of controlled
sequencing (COSEQ) of concurrent programs (Section III-A).
Next, we discuss how the SINE component simultaneously ex-
plores different interleavings of a concurrent program on the
GPU threads (Section III-B). Finally, we briefly discuss the
details of our implementation of SINECOSEQ (Section III-C).

A. Controlled Sequencing (COSEQ)
A concurrent program P can exhibit one of many possible
thread interleavings during an execution. We denote the possible
interleavings by I1, I2, I3, . . ., In. Let the execution of P
with the interleaving Ik be represented as 〈P, Ik〉. Consider a
sequential program P ′k that is designed to simulate 〈P, Ik〉 for
some k ∈ [1, n]. The sequential program P ′k will be referred
to as one of the n possible controlled sequencing of P , or
COSEQ(P , k). Intuitively, given a schedule of a concurrent
program P , there exists a COSEQ that is equivalent in execution
to the given schedule, since each execution 〈P, Ik〉 has a one-
to-one correspondence with the sequence of instructions of the
COSEQ. The COSEQ is constructed by stitching together the set
of executed instructions in the order they are scheduled in the
given interleaving.

We refer to a program thread as sthread (sequential thread) to
distinguish it from the thread that executes the COSEQ corre-
sponding to a given schedule of the concurrent program P . Each
sthread executes the same sequence of dynamic instructions as
its corresponding thread in the original program running under
the schedule simulated by the COSEQ. However, instead of ex-
ecuting concurrently, they execute sequentially in an interleaved
manner on the COSEQ thread.

The COSEQ framework includes a scheduler which is invoked
at each identified scheduling point in P . While any program
point can potentially be a scheduling point, for studies on con-
currency testing, we mark the shared memory access points as
the scheduling points. On encountering a scheduling point in the
currently running sthread, the COSEQ thread transfers control to
the scheduler. The scheduler’s job is to pick an sthread among
the active sthreads to run on the COSEQ thread. By designing
different types of schedulers, the COSEQ can explore different
families of schedules. Since a COSEQ thread interleaves the
execution of the sthreads, it must keep track of individual sthread
states and any global states of the original program. This is the
responsibility of the sthread manager. Each COSEQ thread main-
tains a data region with space for holding the global variables of
the original program. All global variable accesses from sthreads
are converted to accesses to the corresponding segment in the
global data region. Additionally, each COSEQ thread maintains
the stack region for each sthread. All private variables of an
sthread are stored in this region. The COSEQ framework also
includes a mutex manager that maintains the states of the mutexes
in the original concurrent program and the set of sthreads blocked
on each mutex (implemented in the form of a mutex hash table).

B. Simultaneous Interleaving Exploration (SINE)
The SINE technique uses the COSEQ framework to perform si-
multaneous exploration of different interleavings of a concurrent
program. Given a concurrent program, we generate its COSEQ
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Fig. 2: Prefixes of explored interleavings of a sample SINE with
eight GPU threads (gray boxes corresponding to g0 to g7) and
two program threads of the concurrent program, sthread1 and
sthread2, in the COSEQ are executed by the gthreads. At each
preemption point, the GPU threads split in halves to pick a different
sthread, thereby exploring different interleavings. After hitting
three preemptions, all gthreads are exploring a distinct COSEQ.

by instrumenting all potential shared memory accesses (the
schedule points). Then, we emit a GPU kernel to execute a
different COSEQ on each GPU thread (gthread). Hence, each
gthread executes the sthreads in an interleaved fashion, trans-
ferring control to the scheduler on encountering a schedule
point. Ideally, the scheduler’s job is to pick sthreads in such a
manner that the COSEQ executing on each gthread explores a
different interleaving, thereby offering the maximum possible
coverage in one run of the GPU kernel. Figure 2 shows the
interleaving explored by a sample SINE execution with eight
GPU threads (gthreads) and a concurrent program with two
program threads (sthreads).

The scheduler’s job is complicated as the GPU performance
heavily depends on the amount of control divergence experienced
by a warp. The gthreads in a warp should ideally execute in lock-
step conforming to the single-instruction-multiple-thread (SIMT)
execution model, which is central to the efficiency of the vector
operations in a GPU. Control divergence refers to the situation
where a subset of threads in a warp executes instructions that
are different from the remaining subset. The lock-step SIMT
execution model can get significantly disturbed if the gthreads
that form a warp explore completely disparate schedules leading
to full control divergence. Since the amount of divergence is
directly proportional to the number of different interleavings
explored by the threads within a warp, we face two contra-
dictory requirements when designing an efficient SINECOSEQ
framework for concurrency testing. First, different gthreads must
explore a different interleaving. Second, the amount of control
divergence within a warp must be minimized, which can be
achieved only when all threads within a warp explore the same
interleaving. Since these contradictory goals cannot be achieved
simultaneously, our proposal takes a middle ground where full
divergence is delayed as much as possible while achieving
maximum possible schedule space coverage. The central idea
is to guarantee that the COSEQ threads within a warp share a
significant common prefix while gradually (as opposed to at the
same time) diverging to explore different interleavings.

To begin with, the GPU threads in a warp start off by exploring
the same interleaving while different warps are assigned different
interleavings to explore. Within a warp, at certain scheduling
points, the threads are made to diverge to explore different
interleavings as shown in Figure 2. These scheduling points will
be referred to as the splitting points. At every splitting point for
a group of GPU threads, the group is halved; for one half, the
scheduler picks sthread X (say) for execution on the COSEQ,
while for the other half, it picks sthread Y. The splitting points
need to be picked carefully as delaying the splitting points too
far can prevent full divergence within a warp; while this is good
for performance, this can lead to a suboptimal coverage of the
schedule space. We employ a statistical technique for choosing
the splitting points.

Since all threads in a warp execute a common prefix of
instructions before reaching the first divergence point, this may
seem wastage of resources. A possible alternative could be to run
one thread through the common prefix and then gradually “fork”
new threads as the splitting points are encountered. On a GPU,
there are multiple objections to this scheme. First, as a GPU does
not support a “fork” call, we would need to stop execution of
the complete warp to emulate what a fork call would have done
i.e., copy the complete state of the parent thread to the child; this
would be prohibitively expensive. Second, as each thread in the
warp is executing a completely different set of instructions, there
would be complete divergence. In terms of the GPU hardware,
it is equivalent to running 32 different warps, with one active
thread in each warp. To avoid these problems, it is necessary
to execute all threads in a warp through a common prefix so
that each thread builds up its own context. As a result, we incur
zero performance penalty at a splitting point. This is faster than
executing a costly (and inherently sequential) context copy at
each splitting point. Even on traditional multiprocessors with
OS support for fork calls, most model checkers commence the
exploration of each interleaving from scratch; each interleaving,
thus, builds up its own context, thereby duplicating executions of
prior explorations.

While our SINECOSEQ framework provides the complete
machinery around it, the orchestration of the interleavings to be
explored by each gthread is central to a good concurrent model
checker that must balance between providing a lower-bound
probability of eliciting a buggy schedule (if possible) and pro-
viding good performance (in terms of coverage attained per unit
time). Our framework allows for writing such “schedulers” for
experimenting with different algorithms. In Section IV, we pro-
pose a new GPU-friendly scheduling algorithm, the ACT sched-
uler, to demonstrate a concrete application of the SINECOSEQ
framework for conducting a directed exploration of the schedule
space with the aim of identifying concurrency bugs.

C. Implementation
Figure 3 shows the architecture of our tool. Our tool accepts a
multi-threaded C program (we currently support only the POSIX
library). The important components of the tool-chain are:
• Identify shared accesses: We use the Inspect tool [18] to

identify the shared memory accesses. Inspect uses escape
analysis to statically over-approximate the shared memory
accesses.

• C-to-COSEQ transformation: Our C-to-COSEQ trans-
former instruments the shared memory accesses to record
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Fig. 3: The SINECOSEQ tool chain

the scheduling or preemption points. Further, this pass
prepares the program for controlled sequencing on a GPU
by flattening the function hierarchy (similar to what ex-
ists in assembly code) and inserting conditional jumps to
enable control transfer across preemption points (via the
scheduler); when the source and target jumps correspond to
locations in two different threads, then this control transfer
amounts to establishing a preemption. Thus, selecting a
sequence of (valid) jump targets would enable a sequen-
tialized run of a multi-threaded execution of the program
corresponding to one particular thread interleaving. The
scheduler controls these jump targets, thereby dictating the
sequence of preemptions. Our C-to-COSEQ transformer
is a source-to-source transformation pass implemented on
the CIL compiler framework [1]. It handles complex pro-
gramming constructs like recursion and dynamic memory
allocation.

• Enable GPU execution: Execution of this transformed
program on the GPU is enabled by our models for
POSIX thread creation and synchronization primitives.
We model many of the POSIX library calls as
CUDA __device__ methods. These include thread
management calls such as pthread_create()
and pthread_join(), and synchronization
primitives such as pthread_mutex_lock() and
pthread_mutex_unlock(). We also provide
stub methods for many useful glibc functions, again
implemented as CUDA __device__ methods1. The GPU
main memory is used to store the state of the programs. As
the CUDA code executing on a GPU cannot handle any
system calls, we approximate the behavior of some of the
important calls; one noteworthy mention are the file system
calls: any input file is loaded into memory by the CPU-side
code and transferred to the GPU memory. Our GPU stubs
for the file system calls replace the file system operations
by accesses to the GPU memory. Note that all this is done
under-the-hood by the stub library (implemented by us),
thereby not requiring any modifications of the source code.
Our current implementation contains enough support to
allow for execution of real-life programs (as demonstrated
by our benchmark applications).

1 We also wrote the CPU-side methods of these calls and use them with
Needlepoint for a fair comparison.

• Scheduler: The scheduler is the central component of
the framework. The scheduler operates by constructing a
valid sequentialization of the COSEQ-transformed code.
Our framework allows for the implemention of various
scheduling policies without any change to any of the other
components in the framework. For instance, our implemen-
tation of the ACT scheduler (discussed in the next section)
controls the sequencing with an objective to achieve an
efficient exploration of the interleavings.
Designing a scheduler for the SINECOSEQ framework not
only entails sequencing the program threads in a manner
that the thread scheduling policy is obeyed, but it also
requires arbitration of the valid sequences among the GPU
threads so that the schedule space exploration is performed
efficiently on the GPU hardware. We discuss how our imple-
mentation of the ACT scheduler allows a fast exploration of
different schedules in the next section.

The above components are compiled and linked using the
NVIDIA CUDA compiler (nvcc) to produce a CUDA-compliant
binary.

IV. ACCELERATED CONCURRENCY TESTING (ACT)
In this section, we discuss the design of our Acceler-

ated Concurrency Testing (ACT) scheduler implemented within
SINECOSEQ. In particular, we discuss the Delayed Diver-
gence (DD) algorithm that allows us to achieve efficient perfor-
mance on the GPU architecture.

A. Design Alternatives
We considered multiple design alternatives while attempting to
implement our scheduler on GPU. Some of the prominent ones
are discussed below.
• PPCT on GPU: The first option that one may have is

to consider implementing the PPCT algorithm directly on
GPU. This option poses a difficulty: the PPCT scheduler
allows multiple program threads to execute in parallel. Due
to the SIMT constraints on GPU, such a control-parallel
design would manifest full divergence, causing complete
serialization among the GPU threads in a warp. The second
objection to this design is that PPCT’s parallelism is limited
by the number of program threads spawned by the program
under test. Hence, such a design would not be able to exploit
the enormous parallelism offered by GPUs.

• PCT runs independently on each GPU thread: This
design addresses the second objection on directly running
PPCT on GPU — that of exploiting the massive parallelism
offered by GPUs. By executing as many PCT runs as al-
lowed by the hardware limits of the GPU, the GPU hardware
can be exploited to the fullest. However, such a design will
still have a large control divergence, causing serialization
among the threads in a warp.

• Delayed Divergence: Our Delayed Divergence algorithm
attempts to delay the warp divergence as much as possible.
We discuss this algorithm in the rest of this section.

B. The ACT Scheduler
The goal of the Delayed Divergence algorithm is to delay control
divergence within a warp as much as possible while attempting
to cover as many schedule interleavings as the GPU threads
employed. Using the Delayed Divergence algorithm, we propose
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the Accelerated Concurrency Testing (ACT) scheduler that at-
tempts to minimize control divergence within a warp during the
initial phase of the parallel exploration, while full divergence is
eventually, and inevitably, manifested in the later stages.

The ACT scheduling algorithm operates as follows:
• As control divergence only manifests inside a warp, each

group of GPU threads (gthreads) in a warp is assigned the
task of exploring schedules corresponding to:
– an initial assignment of priorities for program

threads (sthreads): each gthread within a group share the
initial assignment of priorities for sthreads;

– a selection of priority change points (spoints): at a bug
depth of d, the PCT scheduler selects (d − 1) spoints;
in contrast, the ACT scheduler selects (d − 1) tuples
of spoints for exploring interleavings executed by the
gthreads in a warp. The first (d − 2) tuples are pairs of
spoints, while the last tuple is of length warpsize

2d−2 .
• Initially, the gthreads are grouped by the warp they belong

to. As the exploration progresses, the gthread groups are
split into smaller groups: each gthread in a group would
have explored exactly the same interleaving before hitting
the next split.

• After encountering the (k − 1)th spoint, a group fetches
the kth spoint-tuple. For an spoint-tuple of size n, the
group further splits its members into n equal groups; the
ith subgroup selects the ith component in the tuple as its
next spoint.

• After d − 2 such splits, each group will contain a sole
gthread; thus, each gthread would have selected a unique
sequence of spoints among the initial group of the gthreads
in the warp. Also, as each warp is initialized with a different
random assignment of priorities for the sthreads and a
different assignment of the spoint-tuples, each thread in the
GPU would have exercised a unique interleaving.

Note that the ACT scheduler attempts to delay full divergence
all the way to the last spoint-tuple. At any point in the algorithm,
the divergence is bounded by the number of groups formed so far,
as the gthreads within a group have no divergence. We discuss the
detailed algorithm below.

1) gthread Group Management
The ACT scheduler chooses a ‘master’ for each warp. As each
group is initially formed from a GPU warp, the master is chosen
as the first gthread of each warp (Algorithm 3, lines 4-5). The
master generates random priorities for the sthreads and random
spoint-tuples for its group (lines 6-9). All GPU threads in a warp
use the same assignment of random priorities for their sthreads
(see Algorithm 1).

2) Generation of the spoint-tuples
While attempting to hit concurrency bugs at depth d, PCT needs
(d−1) spoints in each thread schedule. The ACT scheduler needs
d − 1 spoint tuples for each warp so as to efficiently assign a
unique sequence of spoints to each of its member gthread.

For spoint-tuple generation (Algorithm 2), a warp requires
exactly 2(d − 2) + (warpsize

2d−2 ) spoints for generating the d− 1
spoint-tuples: two spoints for the spoint-pairs corresponding to
spoint indices till d− 1 and warpsize

2d−2 spoints for the final spoint-
tuple.

1 var Πρ ← RandomPermute(t) ; // t is #sthreads

2 for i← 1 to t do
3 ρ#[i]← d+ Πρ(i)− 1
4 end

Algorithm 1: A warp’s master storing random priorities in ρ#.

1 numSPoints← 2 ∗ (d− 2) + (warpsize/2d−2)

2 var Πk ← distinctRandomPoints({1 . . . n}, numSPoints) ;
// n is estimated number of preemption points

3 sort-ascending(Πk)
4 for i← 1 to d− 1 do
5 if i < d− 1 then
6 k#[i]← 〈getNextInSeq(Πk), getNextInSeq(Πk)〉
7 else
8 k#[i]← 〈getNextInSeq(Πk), . . . 〉

; // the above tuple will have size warpsize
2d−2

9 end
10 end

Algorithm 2: A warp’s master storing random spoints in k#.

Given an estimated length n for an interleaving sequence
(in terms of its preemption points), the master generates
numSPoints distinct points in the range [1, n], in the increasing
order. It, then, creates respective spoint tuples by extracting
points from this sorted random list. We estimate the length of
interleaving sequences by counting the number of spoints hit in a
few random executions on the CPU (similar to [5]).

3) Parallel Exploration of Thread-Schedules
After the master assigns the sthread priorities and spoint tuples
for its group (as discussed above), each gthread in the warp
initializes the groupsize as the warpsize, computes its id within
the group (which is currently the whole warp), and the splitId
which helps compute whether this respective gthread would
belong to the first or the second half if this group was split into
two equal halves (Algorithm 3, lines 12-14).

The scheduler makes progress by picking the highest priority
enabled program thread tρ and extending the (currently empty)
execution sequence S by executing a step on the thread tρ. All
gthreads within a warp start as a single group exploring the
same thread schedule before they split into equal halves, each
half picking a different first spoint to form two groups. Each of
these two groups continues exploring a unique thread-schedule
before each further splits into equal halves, each half picking a
different second spoint to form four groups and so on, as shown
in Algorithm 3 (lines 21-25).

Till the first (d − 2) spoints, every group picks its ith spoint
from the ith spoint pair, each half of the split selecting the
respective component from the tuple. After (d − 2) splits, the
size of each group is reduced to warpsize

2d−1 . Once the d−1th spoint
needs to be chosen (Algorithm 3, lines 28-30), each gthread picks
the (d−1)th spoint from this array based on its own index within
the group. Figures 4a, 4b, 4c, and 4d illustrate this for a warp of
32 GPU threads exploring the schedule space at concurrency bug
depths of 1, 2, 3, and 6, respectively.

After (d − 1) spoints, each gthread continues exploring its
unique thread-schedule. Note that each gthread within the warp
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1 var blockid← cuda-blockid()
2 var threadid← cuda-threadid()
3 var blocksize← cuda-blocksize()

4 var master ← blockid ∗ d blocksize
warpsize

e+ d threadid
warpsize

e
5 var me← master + threadid % warpsize

6 if me = master then
7 ρ# ← makepriority() ; // warp-shared
8 k# ← makeschedule() ; // warp-shared
9 end

10 var S ← ε ; // begin null thread-schedule
11 var di ← 1 ; // index of next switch-point
12 var groupsize← warpsize
13 var id← threadid % groupsize ; // index in current group

14 var splitId← d 2∗id
groupsize

e ; // first/second half on next split

15 while enabledthreads(S) 6= ∅ do
16 tρ ← enabled and ρ#[tρ] is maximum
17 S ← S + ||tρ|| ; // extend S by advancing thread tρ
18 if di < d then
19 if di < d− 1 then

; // spoint 2-tuple
20 if length(S) == k#[di][splitId] then
21 ρ#[tρ]← d− di
22 di++
23 groupsize← ( groupsize

2
)

24 id← id % groupsize

25 splitId← d 2∗id
groupsize

e
26 end
27 else

; // spoint (warpsize
2d−2 )-tuple

28 if length(S) == k#[di][id] then
29 ρ#[tρ]← d− di
30 di++
31 end
32 end
33 end
34 end

Algorithm 3: The ACT scheduler used by gthreads within a warp.

is assigned its own unique set of (d − 1) spoints, forcing the
thread-schedule explored by each gthread to be unique. At the
same time, as the gthreads within a warp share the spoints, all
the preemption points (marked as ? in Figure 2) would occur in
a synchronized manner (see Figure 4d).

C. Discussion
1) ACT versus PCT
ACT carries out PCT across the warps (using unbiased sam-
pling across warps) but exploits a biased sampling technique to
gain performance within a warp (at the cost of a lower worst-
case probability of catching a bug). The overall effectiveness of
concurrency testing depends on the product of two parameters,
namely, the expected number of schedule explorations needed
to uncover a bug and the time taken by each of these schedule
explorations (or coverage achieved per unit time). The first
term depends on the probability of uncovering a bug. A biased
sampling within a warp trades the probability of finding a bug
for performance. Overall, we show in Figure 6 that compared to
an unbiased sampling technique that offers the same probabilistic

guarantee as PCT across as well as within warps, our delayed di-
vergence scheme offers better schedule exploration performance.
Moreover, (as also mentioned in [5]), often a bug is triggered
by multiple schedules, which makes it important to be able to
explore a large number of schedules quickly.

2) Addressing Control Divergence
Before passing the first spoint, all the gthreads in the warp
perform the same operation. Control divergence is triggered only
after the first spoint but it is controlled carefully. Full control
divergence is established only after all the GPU threads in a
warp pass their last spoint. This method of controlled and delayed
divergence achieves good performance on GPUs.

3) Exploring deeper bug depths
As the current GPU hardware supports a warp size of 32 gthreads,
which we use as our initial groups, the above scheme is adept at
exploring bug depths up to six (as a bug depth of six requires
five spoints). For exploring deeper bug depths, we need to form
our initial groups consisting of gthreads from multiple warps. For
instance, grouping two warps will enable an exploration at bug
depth of seven. However, note that the performance at bug depth
of seven will be similar to that at bug depth of six, as divergence
only manifests within a warp (i.e., the first split will cause no
divergence as it would only detach the two warps).

V. EXPERIMENTS AND RESULTS

This section presents the performance comparison between
NeedlePoint with PPCT and SINECOSEQ with ACT. The former
is a multi-threaded schedule space exploration tool designed
for multi-core CPU platforms, while the latter is our proposal
running on the GPU hardware.

A. Benchmark Applications and Experimental Setup
We selected seven concurrent programs (Histogram, K-Means,
Linear Regression, Matrix Multiplication, PCA, String Match,
Word Count) from the Phoenix benchmarks [15] and one (Black-
Scholes) from the PARSEC suite [3]. These concurrent programs
use the POSIX thread library for multi-threading. Each bench-
mark application creates fifteen POSIX threads. We do not use
any buggy multi-threaded program in our evaluation because the
primary focus of this study is to accelerate the schedule space
exploration of multi-threaded programs as opposed to uncovering
known or unknown bugs.

We evaluate NeedlePoint PPCT (N-PCT) on a dual CPU Intel
hardware platform, where each CPU has six cores and runs at
2 GHz. The machine has 32 GB DDR3 memory. We evaluate our
proposal SINECOSEQ-assisted ACT (S-ACT) on an NVIDIA
Kepler K20c GPU card having a GK110 graphics processor
clocked at 706 MHz. The graphics processor has 2496 CUDA
cores. The card is equipped with 5 GB GDDRx memory. Since
this GPU has a warp size of 32, we explore bug depths up to
six, which is often sufficient to uncover most of the common
concurrency bugs.

We use speedup of S-ACT over N-PCT as the performance
metric, defined as the ratio of average run-time per explored
schedule of N-PCT to that of S-ACT. We report the achieved
speedup for each of the possible six bug depths separately. For
each bug depth, the time for N-PCT is calculated by taking
the average time of 20000 sample runs. For S-ACT, we fix the
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(a) Depth 1: There are no
spoints. All GPU threads (gth-
reads) run the same thread-
schedule. There is absolutely
no warp-divergence.

(b) Depth 2: There are 32
spoints, one for each GPU
thread (gthread). Here control
divergence manifests quickly
as each gthread passes its
spoint.

(c) Depth 3: There are 18
spoints. Control divergence
partially manifests as the odd
half of 16 GPU threads (gth-
reads) passes its first spoint.
Full control divergence is
manifested gradually as each
of the 16 GPU threads in the
two groups pass their corre-
sponding second spoints.

(d) Depth 6: There are only 10
spoints. Full warp-divergence
manifestation is slowest.
Full warp-divergence is
manifested when each of
the two GPU threads in the
sixteen groups pass their
corresponding fifth spoints.

Fig. 4: The figures illustrate how control divergence manifests in a warp of 32 GPU threads (gthreads) exploring program thread schedules
at bug depths 1, 2, 3, and 6. At depth 1, as there are no spoints, each warp executes the same schedule (the hardware is underutilized). At
depths of 2, 3 and 6, the warp hardware is fully utilized wherein 32 different program thread schedules are explored by each warp, each
GPU thread running a unique interleaving of the program threads.

total number of CUDA threads at 65536 and vary the number of
threads per block (the block size) from 32 to 512 while keeping it
a power of two. As the block size doubles, the number of blocks
is halved to keep the total number of CUDA threads constant.
For each bug depth, we show the results for all these configura-
tions. The time of execution for each of these configurations is
calculated as the average time of fifteen sample runs.

B. Performance Analysis
Figure 5 shows the detailed speedup achieved by our proposal
on the benchmark applications. For each application, we present
six groups of bar, each group corresponding to one bug depth
value. For each bug depth, we show how the speedup varies with
the CUDA kernel configurations, namely, the block size and the
number of blocks (recall that the total number of CUDA threads
is kept constant at 65536).

We observe two general trends from these results. First, the
speedup achieved by our proposal at bug depth one is small
and the speedup significantly increases when bug depth becomes
two. Increasing the bug depth further either offers slightly better
speedup or leaves the speedup more or less same. For example,
at bug depth one, our proposal speeds up the schedule space
exploration of Black-Scholes, Histogram, K-means, Linear Re-
gression, Matrix Multiplication, PCA, String Match, and Word
Count by up to 4.3×, 3.7×, 1.8×, 11.2×, 7.8×, 7.6×, 2.1×, and
1.2×, respectively. On the other hand, the best speedup figures
offered by our proposal on these applications are 132.3× (at bug
depth six, block size 64), 127.1× (at bug depth four, block size
32), 52.1× (at bug depth three, block size 512), 365.3× (at bug
depth three, block size 32), 351.2× (at bug depth three, block
size 32), 45.5× (at bug depth five, block size 32), 37.6× (at bug
depth five, block size 64), and 23.6× (at bug depth six, block
size 64), respectively. The reason for relatively low speedup at
bug depth one is that all the GPU threads within a warp ex-

plore the same interleaving, even though different warps explore
different interleavings (please refer to Figure 4a). As the bug
depth increases, our proposal explores different interleavings in
different GPU threads while employing the delayed divergence
technique (please refer to Figures 4b, 4c, and 4d). This leads to
significantly higher speedup.

The second observation is that, in general, the speedup
achieved by our proposal is better when the COSEQ kernel is
launched with smaller block sizes. This is primarily because
smaller block sizes allow the run-time to have more thread
blocks, given that the total number of GPU threads is kept
constant. A larger number of thread blocks offer a better load-
balance overall, since the execution of the slower and/or heavier
blocks can get overlapped with many fast and/or shorter blocks.
A larger thread block is more likely to have work-imbalance
across its warps, causing the larger blocks to hold up GPU
resources longer preventing other thread blocks from getting
scheduled. So, it is beneficial to have many small thread blocks
when the work distribution across the warps may be uneven or
unpredictable, which can very well be the case when carrying
out schedule space exploration of an arbitrary multi-threaded
program.

In Figure 1, we have already summarized the best speedup
achieved by our proposal at each bug depth for all the applica-
tions. These best speedup numbers vary from 1.2× to 365.3×.
These impressive improvements over the state-of-the-art can
significantly accelerate concurrency testing.

Finally, before closing this section, we quantify the importance
of the delayed divergence technique. With the same experimental
setup, we implement the PCT scheduler on our framework. This
algorithm is a completely divergent scheduling algorithm, paying
no attention to control divergence and causes full divergence to
happen very early in a warp’s life. Figure 6 shows the percentage
reduction in run-time achieved by our proposal compared to
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(a) Black-Scholes
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(c) K-means
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(d) Linear regression
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Fig. 5: Summary of speedup achieved by our proposal.
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Fig. 6: Percent reduction in run-time over full divergence.

the PCT scheduling algorithm (on our framework) for three
applications. Only at depth one, the delayed divergence scheme
suffers a slowdown (by at most 4% for these three applications).
This is because the fully divergent scheduler explores 32 different
interleavings in a warp leading to better average exploration time
per schedule (recall that our scheduler explores only one schedule
per warp at bug depth one). As the bug depth increases, our
proposal achieves significantly better run-times than the fully
divergent scheduler. These results for the rest of the applications

are not shown in the interest of space, but they follow similar
trends as shown in Figure 6. We would like to emphasize that this
should not be mistaken as the overall winnings of our framework
as this implementation of PCT also benefits from all the heavy
machinery provided by our GPU framework; it only lacks the
ability to orchestrate the thread schedules well.

Finally, it should be noted that single-threaded execution of
the applications on a GPU thread runs much slower compared
to the CPU as the execution units in a GPU are much simpler.
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GPUs, however, provide hardware to run thousands of threads
in parallel. To quote one of our raw data-points from Black-
Scholes, the Needlepoint implementation takes 0.44 seconds
(on an average) to complete, while our framework with the
ACT scheduler takes about 215 seconds to complete an execu-
tion. However, our framework employing 65536 GPU threads
(each GPU thread handles one interleaving) achieves an overall
speedup of (0.44)/(215/65536) i.e. about 134x per interleaving.

VI. RELATED WORK

An interesting direction of testing for concurrency bugs was in
the design of frameworks that allowed for writing new scheduling
strategies easily [7], [19], [11]. These frameworks identified that
writing a concurrency tester has two components: one is a generic
implementation that encompasses identification of shared ac-
cesses and synchronization operations, a generic dispatcher to
allow for dispatching threads, and, often, a high-level strategy
(like Fuzzing). The second component is a specialized compo-
nent that implements a specific strategy, and one that is able to
ride on top of the generic machinery. Such frameworks have
made the design and development of new ideas much easier
than developing a complete tool from scratch. For instance, the
NeedlePoint framework was reported to be around 6K lines of
code, while exploration strategies like preemption bounding [10],
AtomFuzzer [16] and PCT [5] were implemented quite easily,
each taking less than 300 lines of code. The CalFuzzer frame-
work [7] uses the high-level strategy of fuzzing-based testing
for Java applications. It has seen quite impressive tools built
on it for detecting deadlocks [8], atomicity violations [12] and
races [17]. Maple [19] identifies a set of interleaving idioms
to define coverage of multithreaded programs, and uses this
coverage metric to guide testing. Maple employs the dynamic
instrumentation capabilities of PIN [9] to control the execution
of the program. NeedlePoint builds a similar, PIN based frame-
work, providing a stable framework for implementing different
analysis. In this work, we also attempt to build SINECOSEQ as
a generic framework that would ease and encourage implement-
ing concurrent program testing strategies on GPU architectures.
SINECOSEQ provides an end-to-end support for transforming
a POSIX-complaint parallel program to enable it to run on a
CUDA-enabled GPU, while taking care of static instrumentation
of shared-memory, modeling of synchronization operations and
an extensive stub library for common glibc functions to enable
running of realistic programs on a GPU. To the best of our
knowledge, this is the first such framework that enables testing
of concurrent programs on GPU.

A popular direction in testing concurrent programs has been in
designing policies that would indicate a certain guaranteed cover-
age. Based on a crucial observation that many concurrency bugs
are triggered by a small number of context-switches, Qadeer et
al. [13] built a tool that would test all behaviors of a multithreaded
program with a small number of context-switches. Many more
such coverage metrics were invented and successfully employed
like bounded preemptions [10], bounded delay [6], bounded
exploration at a certain bug-depth [5], coverage of inter-thread
dependencies (iRoots) [19], and bounding the number of vari-
ables modeled and the number of participating threads [4]. Our
SINECOSEQ framework is capable of supporting these schedul-
ing policies with a careful design of a good arbitration policy so

that the schedule space exploration is performed efficiently on
the GPU hardware.

Rajan et. al [14] use GPUs to test applications by simul-
taneously executing the program with one test-case per GPU
thread. CUDA accelerated LTL Model Checking [2] uses Nvidia
GPU cards along with CUDA technology to accelerate automata
theoretic LTL model-checking; in particular, the work formalizes
a GPU based fast algorithm for accepting cycle detection in an
automata. This work, however, is orthogonal to our proposal in
its goal, scope and approach.

VII. SUMMARY

In this paper, we propose a generic framework (SINECOSEQ)
for accelerating schedule space exploration of multi-threaded
applications on GPUs. Our experiments demonstrate that
SINECOSEQ (with our efficient ACT scheduler) can often ex-
tract one to two orders of magnitude speedup over the optimized
state-of-the-art multi-core CPU implementations.
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