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ABSTRACT

Cache blocks often exhibit a small number of uses during
their life time in the last-level cache. Past research has ex-
ploited this property in two different ways. First, replace-
ment policies have been designed to evict dead blocks early
and retain the potentially live blocks. Second, dynamic in-
sertion policies attempt to victimize single-use blocks (dead
on fill) as early as possible, thereby leaving most of the work-
ing set undisturbed in the cache. However, we observe that
as the last-level cache grows in capacity and associativity,
the traditional dead block prediction-based replacement pol-
icy loses effectiveness because often the LRU block itself is
dead leading to an LRU replacement decision. The benefit
of dynamic insertion policies is also small in a large class of
applications that exhibit a significant number of cache blocks
with small, yet more than one, uses.

To address these drawbacks, we introduce pseudo-last-in-
first-out (pseudo-LIFO), a fundamentally new family of re-
placement heuristics that manages each cache set as a fill
stack (as opposed to the traditional access recency stack).
We specify three members of this family, namely, dead block
prediction LIFO, probabilistic escape LIFO, and probabilistic
counter LIFO. The probabilistic escape LIFO (peLIFO) pol-
icy is the central contribution of this paper. It dynamically
learns the use probabilities of cache blocks beyond each fill
stack position to implement a new replacement policy. Our
detailed simulation results show that peLIFO, while having
less than 1% storage overhead, reduces the execution time
by 10% on average compared to a baseline LRU replacement
policy for a set of fourteen single-threaded applications on a
2 MB 16-way set associative L2 cache. It reduces the average
CPI by 19% on average for a set of twelve multiprogrammed
workloads while satisfying a strong fairness requirement on a
four-core chip-multiprocessor with an 8 MB 16-way set asso-
ciative shared L2 cache. Further, it reduces the parallel exe-
cution time by 17% on average for a set of six multi-threaded
programs on an eight-core chip-multiprocessor with a 4 MB
16-way set associative shared L2 cache. For the architec-
tures considered in this paper, the storage overhead of the
peLIFO policy is one-fifth to half of that of a state-of-the-
art dead block prediction-based replacement policy. How-
ever, the peLIFO policy delivers better average performance
for the selected single-threaded and multiprogrammed work-
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loads and similar average performance for the multi-threaded
workloads compared to the dead block prediction-based re-
placement policy.
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1. INTRODUCTION

Replacement policies play an important role in determin-
ing the performance delivered by a cache. As the on-chip
last-level caches grow in capacity, the replacement policies
become even more important for good utilization of the sili-
con estate devoted to the caches. Past research on cache re-
placement policies has observed that a block often becomes
dead after a few uses [7]. This property has been exploited
in dead block predictors and dynamic insertion policies.

By identifying the dead blocks and evicting them early,
one can correct the mistakes made by the LRU replacement
in the L1 caches [3, 7] or in the L2 caches [9]. Specifically,
such an approach helps reduce conflict misses by allowing
the LRU block, which may not be dead yet, to stay longer
in the cache. These proposals select the dead block that is
closest to the LRU block in the access recency stack for re-
placement. However, since the last-level caches are usually
large and highly associative, near-term conflicts are few in
many applications. As a result, in many cases, the LRU
block itself is dead. In such a situation, a traditional dead
block predictor would victimize the LRU block and end up
following an LRU replacement policy. The primary reason
for this phenomenon is that the definition of “death” is my-
opic and designed specifically to defend against near-term
conflict misses. Usually, during the execution of an appli-
cation, most of the cache blocks undergo periodic use times
and dead times. As a result, a cache block that is dead now
will probably be used many times in future, although may
not be in near-future. This fact is substantiated in Figure 1.

The fourteen single-threaded applications shown in Fig-
ure 1 are drawn from SPEC 2000 and SPEC 2006 suites
and each of them executes a representative set of one billion
instructions on the ref input set. The L2 cache (last-level
cache in our case) is 2 MB in size with 16-way set associa-

tivity and LRU replacement.’
1

More information on simulation environment is available
in Section 3.
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Figure 1: Distribution of L2 cache block addresses in the
miss stream for single-threaded applications. We have
shortened 462.libquantum to 462.libq and 482.sphinx3
482.sphinx.
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Figure 2: The median count of evictions between evic-
tion of an L2 cache block and re-appearance of the same
cache block address in the L2 cache miss stream for
single-threaded applications.

Figure 1 classifies each L2 cache block address appearing
in the miss stream into one of five categories. A category
[z,y) includes all cache blocks that appear in the L2 cache
miss stream at least x times and at most y—1 times. We have
put the cache blocks that appear exactly once in the miss
stream in a separate category. The most important take-
away point from this chart is that a large number of blocks
repeat a significantly high amount of times in the L2 cache
miss stream. For example, in 181.mcf, almost 70% of the L2
cache block addresses appear at least thousand times in the
miss stream. In 179.art, almost half of the L2 cache block
addresses appear hundred to thousand times each, while the
remaining half appear at least thousand times each. Figure 2
shows, however, that the median number of L2 cache evic-
tions that take place between eviction of an address and re-
appearance of the same address in the L2 cache miss stream
is extremely high indicating a large interval between the
LRU eviction and the reuse of the same address. The me-
dian L2 cache eviction count is more than ten thousand for
eleven out of the selected fourteen applications. As a result,
many of these highly repeated blocks would be predicted
dead and victimized by a traditional dead block predictor.
A good replacement policy would, however, retain as many
blocks as possible, even if they are dead.

Use distribution of L2 cache blocks
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Figure 3: Distribution of L2 cache block uses for (a)
single-threaded applications, and (b) multiprogrammed
and multi-threaded workloads.

Dynamic insertion policies [11] address this problem to
some extent by changing the cache block insertion policy so
that the single-use blocks (i.e., dead on fill) are evicted as
early as possible. Thus, one can leave a large number of
blocks in the cache undisturbed. Such a policy may help
improve cache block reuse in workloads that exhibit tempo-
ral locality on a large time-scale, as depicted in Figure 1.
However, we observe that there is a large class of workloads
that do not have many single-use L2 cache blocks. Fig-
ure 3 shows the distribution of uses to the cache blocks in
an L2 cache. The single-threaded applications are shown in
Figure 3(a), while the multiprogrammed and multi-threaded
ones are shown in Figure 3(b). The twelve multiprogrammed
workloads are prepared by mixing four single-threaded appli-
cations and run on a quad-core chip-multiprocessor (CMP)
simulator with an 8 MB 16-way set associative shared L2
cache. The multi-threaded workloads execute on an eight-
core CMP with a 4 MB 16-way set associative shared L2
cache. The cores have private 32 KB 4-way set associative
L1 caches. The L2 cache block size is 128 bytes and the L1
data cache block size is 32 bytes. All the caches exercise
LRU replacement. For each workload, we divide all the L2
cache blocks into five categories depending on the number
of uses seen by these blocks. A category [z,y] includes all
blocks with number of uses at least x and at most y. We
observe that for most of the workloads the majority of the
cache blocks have number of uses between two and four (note
that the ratio of L2 cache block size to L1 cache block size is
four). For example, in 462.libquantum, all blocks fall in this



range (see Figure 3(a)). On the other hand, there are work-
loads with a reasonably high percentage of single-use blocks,
e.g., 179.art, 181.mcf, 429.mcf among the single-threaded
applications, and FFTW among the multi-threaded ones.
The dynamic insertion policies work well for applications
with a large volume of single-use blocks because these ap-
plications require only one way in most of the sets to satisfy
the short-term reuses. Therefore, the remaining ways can
be used to retain a fraction of the working set to satisfy
the far-flung reuses. The key observation underlying the
idea presented in this paper is that even in the applications
where the number of uses per cache block is more than one,
this number, on average, is still much smaller than the asso-
ciativity of the cache. Therefore, a good replacement policy
would dynamically learn that all the ways are not needed to
satisfy the short-term reuses and would utilize the “spare”
ways for working set retention to satisfy some of the far-flung
reuses. Based on this observation, we introduce a family of
replacement policies called pseudo-LIFO. All the members
of this family make use of the fill stack position (in addi-
tion to the traditional access recency stack position) of each
block within a set to arrive at a replacement decision. The
top of the fill stack (position zero) holds the most recently
filled block in the set and the bottom of the stack (position
A — 1 where A is the associativity of the cache) holds the
least recently filled block in the set. The basic idea is to
confine the replacement activities within a set to the up-
per part of the fill stack as much as possible and leave the
lower part undisturbed to satisfy the far-flung reuses. In
this paper, we specify three members of this family, namely,
dead block prediction LIFO (dbpLIFO), probabilistic escape
LIFO (peLIFO), and probabilistic counter LIFO (pcounter-
LIFO). The peLIFO policy is the central contribution of this
paper. This replacement policy dynamically learns the prob-
abilities of experiencing hits beyond each of the fill stack po-
sitions. Based on this probability function, the peLIFO pol-
icy deduces a set of highly preferred eviction positions in the
upper part of the fill stack. Complete designs of dbpLIFO,
peLIFO, and pcounterLIFO are presented in Section 2.
Our detailed simulation results (Sections 3 and 4) compare
dbpLIFO, peLIFO, and pcounterLIFO with an array of pro-
posals discussed in the next section for single-threaded, mul-
tiprogrammed, and multi-threaded workloads. The peLIFO
policy, while having less than 1% storage overhead, reduces
the execution time by 10% on average compared to a base-
line LRU replacement policy for the fourteen single-threaded
applications shown in Figure 3. It reduces the average CPI
by 19% on average for the twelve four-way multiprogrammed
workloads and it saves 17% of the parallel execution time on
average for the six eight-way multi-threaded programs.

1.1 Related Work

There is an impressive body of research attempting to
improve the cache performance in all types of processors.
Since it is impossible to do justice to this large body of re-
search in this short article, in the following we discuss some
of the studies most relevant to our proposal. The first dead
block prediction proposal was for L1 data caches [7]. This
proposal used a trace-based address-indexed dead block pre-
dictor to enhance the quality of correlation prefetching into
the L1 data cache. A subsequent proposal used the regu-
larity in live times of the L1 data cache blocks to predict
death [3]. A more recent proposal shows how to apply dead
block prediction mechanisms to improve replacement quality
in the last-level caches [9]. At the time of a replacement in a
set, this proposal selects the dead block closest to the least
recently used (LRU) position in the access recency stack.
Based on the history of reference counts, this proposal pre-
dicts death of a block only when a block makes a transition
out of the most recently used (MRU) position of the access
recency stack (note that this is very different from a transi-

tion out of the most recently filled position of the fill stack).
This proposal also uses hysteresis counters to improve the
confidence of prediction in the case of fluctuating reference
counts. Our dbpLIFO policy uses this dead block prediction
mechanism.

Perhaps the oldest technique for conflict resolution and
working set retention is victim caching [5], where the last few
evicted cache blocks are maintained in a small fully associa-
tive buffer hoping to enjoy reuses. Selective victim caching
based on reload intervals of cache blocks has also been pro-
posed [3]. A more recent proposal shows how to design a
large, yet fast, victim cache for the last level of caches with
selective insertion based on the frequency of misses to dif-
ferent cache blocks [1].

Dynamic insertion policy (DIP) is a scheme for retaining
a large portion of the working set based on the observa-
tion that a large number of cache blocks become dead on
fill [11]. In this scheme, the insertion policy of a cache block
is dynamically learned based on the outcome of a set du-
eling technique. A newly filled block is inserted into the
LRU position, but not promoted to the MRU position un-
til it observes an access. Thus the blocks that are dead on
fill get evicted as early as possible without disturbing the
remaining blocks in the set. However, for workloads with
a small number of single-use blocks, DIP and LRU policies
exhibit similar performance. A subsequent proposal extends
DIP to make it thread-aware and this policy is referred to
as thread-aware DIP with feedback (TADIP-F) [4]. We will
refer to it as TADIP.

Sharing the last-level cache among multiple threads usu-
ally leads to destructive interference. In such situations,
avoiding near-term conflicts is sometimes more important
than retaining working sets. Utility-based cache partition-
ing (UCP) proposes a scheme to partition the ways among
the threads based on the marginal utility of the partitions [10].
A recent proposal aims at achieving the best of DIP and
UCP by inserting blocks from a thread at a position in the
access recency stack that is exactly k positions away from
the LRU position where k is the number of ways assigned to
this thread by the partitioning algorithm [15]. This proposal
combines this insertion policy with a probabilistic promo-
tion policy by associating a static probability to the event
of promoting a block up the access recency stack on a hit.
This scheme is referred to as promotion/insertion pseudo-
partitioning (PIPP).

Adaptive set pinning (ASP) is another scheme for re-
ducing the interference among the threads in the last-level
cache [13]. In this scheme, each set is dynamically owned
by a certain thread and only that thread is eligible to al-
locate/evict a block to/from that set. An allocation re-
quest from another thread mapping to this set must allocate
the block in a small processor owned private (POP) cache
partition of the last-level cache. However, an adaptive set-
ownership hand-over policy makes sure that a thread does
not unnecessarily hold a set for too long when other threads
are continuously missing on this set.

A recent proposal explores software-directed cache par-
titioning algorithms by computing the L2 cache miss rate
curves online [14]. This proposal makes use of the hard-
ware performance monitoring units to prepare a log of the
L2 cache access trace and subsequently analyzes this log in
software to infer the cache demand of the executing appli-
cation or the mix of applications.

2. PSEUDO-LIFO EVICTION POLICIES

In this section, we present the design and implementation
of the pseudo-LIFO family of replacement policies. Sec-
tion 2.1 motivates the need for maintaining the fill stack
position of each block within a set. Sections 2.2 and 2.3
present the dbpLIFO, peLIFO, and pcounterLIFO policies.
Section 2.4 discusses the hardware implementation issues.



2.1 Fill Stack Representation

While a block can move both upward and downward in an
access recency stack depending on the activities within the
set, a block can only move monotonically downward in the
fill stack. A block’s life starts at the top of the fill stack (po-
sition zero), and it makes downward movements until it be-
comes the least recently filled block and stays at the bottom
of the stack. This unidirectional dynamics simplifies arguing
about block movement within a set. The fill stack represen-
tation is orthogonal to the replacement policy, however. If
on a fill, the block at position k of the fill stack is replaced,
all blocks in positions zero (top of the stack) to k — 1 are
moved downward by one slot. The newly filled block occu-
pies the position zero.
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Figure 4: Hit distribution of L2 cache blocks in the fill
stack for (a) the single-threaded applications, and (b)
the multiprogrammed and multi-threaded workloads.

To establish the connection between the pseudo-LIFO fam-
ily and the fill stack representation, Figure 4 quantifies the
L2 cache hit distribution within the fill stack. The L2 cache
configurations are same as those used for Figure 3. We clas-
sify the hits into five categories depending on the fill stack
position a hit is experienced at. A category [z,y] includes
all hits observed in fill stack positions in the range [:c,y}.Q
The hits at fill stack position zero are grouped in a single
category. For most of the workloads, the majority of the
hits are observed at fill stack position zero. In fact, for
462.libquantum, all hits take place at the top of the stack.

2 The single-use blocks do not participate in this statistic,
since they do not experience any hit.

This essentially means that most of the hits experienced by
a cache block take place soon after it is filled. However,
there are important exceptions. For example, the bottom
half of the fill stack experiences a fairly large number of hits
in 179.art, 429.mcf, and some of the multiprogrammed and
multi-threaded workloads.

We note that this observation does translate to a high
fraction of hits in the upper part of the access recency stack
in the workloads where most of the L2 cache blocks in a set
are not accessed in an interleaved fashion. But, in general,
exploiting this property is much more difficult in the access
recency stack than in the fill stack due to bidirectional walks
of the blocks within the former. In summary, the statistics
presented in Figure 4 imply that the cache blocks occupy-
ing the lower parts of the fill stack are mostly dead. The
pseudo-LIFO family members, instead of evicting them, ac-
tually retain them, thereby confining most of the replace-
ment activities in a set to the upper part of the fill stack.
We formulate this family below.

Pseudo-LIFO. Pseudo-LIFO is a family of replacement
policies, members of which attach higher eviction priori-
ties to the blocks residing closer to the top of the fill stack.
Different members of the family use additional criteria to
further refine this ranking so that the volume of premature
evictions from the upper part of the fill stack is minimized
and capacity retention in the lower part of the fill stack is
maximized.

2.2 Dead Block Prediction LIFO

The dead block prediction LIFO (dbpLIFO) policy is per-
haps the most intuitive one among the possible members of
the pseudo-LIFO family. Traditional replacement policies
based on dead block predictors evict the dead block clos-
est to the LRU position in the access recency stack. The
dbpLIFO policy victimizes the dead block that is closest to
the top of the fill stack. We use the dead block predictor
proposed in [9]. As a result, our design has storage over-
head similar to that proposal. This drawback of dbpLIFO
motivated us to explore other members of the pseudo-LIFO
family with much less book-keeping overhead.

2.3 Probabilistic Escape LIFO
The design of the probabilistic escape LIFO (peLIFO) pol-
icy is based on the following definition of escape probability.

Escape Probability. The escape probability, P.(k), for fill
stack position k € [0, A — 1] in an A-way set associative L2
cache is defined as the probability that cache blocks expe-
rience hits at fill stack positions bigger than k. This can
be computed as the number of cache blocks experiencing at
least one hit beyond fill stack position k divided by the total
number of blocks filled into the cache. Pe(A — 1) is zero by
this definition.

The peLIFO policy attaches higher eviction priority to
the blocks residing closer to the top of the fill stack based
on the escape probabilities of their fill stack positions. The
peLIFO policy is composed of three components. The first
component learns the escape probability of each fill stack
position over a certain period of time. The second com-
ponent identifies the top few fill stack positions where the
escape probabilities undergo a sharp drop. These fill stack
positions will be referred to as the escape points. Based on
these escape points, the peLIFO policy takes a replacement
decision. The escape points need to be recomputed only on
phase changes. The third component of the peLIFO policy
is responsible for detecting phase changes.

2.3.1 Learning Escape Probabilities
The escape probabilities can be maintained either for the
entire cache or for a set (possibly singleton) of banks of the



cache depending on the ease of implementation. We will
assume that these probabilities are learned for a pair of ad-
jacent banks as this is one of the modular ways of incor-
porating peLIFO in a multi-bank large last-level cache. An
array of A saturating counters named epCounter (A is the
associativity of the cache) per cache bank-pair maintains the
hit counts. More specifically, epCounter[k] holds the num-
ber of blocks in the bank-pair experiencing at least one hit
beyond fill stack position k. The epCounter array is up-
dated as follows. Each block (or way) maintains its fill stack
position when it experienced the last hit. On a hit to a
block B currently at fill stack position k, all the epCounter
locations starting from the last hit position of B up to k—1
are incremented. At this point the last hit position of B is
updated to k. Note that when a block is filled, no counter
is incremented, but the last hit position of the filled block is
initialized to zero.

The escape probabilities are computed periodically on ev-
ery N*® refill to the cache bank-pair based on the values in
epCounter. The time period between two consecutive com-
putations of the epCounter values will be referred to as an
epCounter epoch or, simply, epoch. N is always chosen to
be a power of two. We assume it to be 2" in this discussion.
The escape probabilities are computed in three steps as fol-
lows. First, each epCounter value is rounded to the next
power of two, if it is not zero or already not a power of two.
Then each positive value is replaced by its logarithm to the
base two, leaving the zero values unchanged. Thus, a value
in (2P, 2P will get replaced by p + 1. Finally, these values
are subtracted from n and the subtraction results are stored
in the epCounter array. We note that these three steps
are invoked only on every N'! refill to a cache bank-pair
and that each of these three steps is fairly easy to realize in
hardware. At the end of the third step, epCounter[k] holds
log,(1/P7 (k)) for all positive P (k) and n otherwise, where
P} (k) is a rounded up over-estimate of P.(k). Notice that
the rounding up step is important for avoiding expensive di-
vision operations when computing P.(k). These values are
also copied to another array named epCounter Last Epoch.
This array will be used for detecting phase changes. Hence-
forth, when we refer to the content of epCounter[k], we will
mean log,(1/P;(k)).

2.3.2 Computing Escape Points

By definition, P.(k) is a monotonically decreasing func-
tion of k. Therefore, the epCounter array holds monotoni-
cally increasing values, as discussed in the last section. For
example, a sample of epCounter computed at the end of
some epCounter epoch for 181.mcf looks like (9, 13, 14, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16) for a 16-way
set associative cache. Here the value of n is also 16. Thus,
the probability that a block experiences a hit beyond fill
stack position zero within the corresponding epoch is only
2% implying that the majority of the blocks become dead
at fill stack position zero. On the other hand, a sample of
epCounter for 429.mcf looks like (1, 1, 2,2, 2,2, 2,2, 2 3,
3,3, 3, 4, 5, 16). In this case, half of the blocks experience
hits beyond positions zero and one, but only one-quarter
experience hits beyond positions two to eight.

The knees of these epCounter values when plotted against
k are the most interesting points. For example, the knee at
position two of 429.mcf where the epCounter value changes
from one to two implies that the escape probability observes
a noticeable drop at fill stack position two. The next no-
ticeable drop comes at fill stack position nine where the
epCounter value changes from two to three. These knee po-
sitions can be seen as the most preferred eviction or escape
points for cache blocks. For example, beyond fill stack posi-
tion two in 429.mcf, only one-quarter blocks should continue
down the stack and the rest can be evicted. We say that

a trivial knee is located at position zero if the epCounter
value at this position is positive. For example, in 429.mcf,
half of the blocks can be evicted at fill stack position zero
itself. Therefore, the idea would be to identify these escape
points and evict an appropriate number of blocks at each
escape point as the blocks travel down the fill stack. This
is illustrated in Figure 5, which plots the epCounter sample
of 429.mcf against the fill stack position. On each horizon-
tal staircase of the graph, we show the expected fraction of
blocks that should continue down the stack. The expected
fraction of blocks that can leave the set at a knee is exactly
equal to the difference of the fractions on two consecutive
staircases around the knee.

16 —

epCounter[k]

- W s !

Figure 5: Shape of epCounter when plotted against fill
stack position k. There are discontinuities at the knees.

We observed that three distinct escape points closest to
the top of the fill stack are usually enough to fully capture
the dynamics of the upper part of the fill stack for a 16-way
set associative cache. However, instead of positioning the
escape points at the knees, we position them at the middle
of an epCounter cluster. We define an epCounter cluster
as a set of consecutive fill stack positions holding a con-
stant epCounter value. For example, in 429.mcf, there are
six epCounter clusters: [0,1], [2,8], [9,12], [13,13], [14, 14],
[15,15]. Here we express the clusters in terms of the start-
ing and ending fill stack positions. The center of a cluster is
defined as |(startpos + endpos + 1)/2], where startpos and
endpos are the starting and ending fill stack positions of the
cluster. Thus, the first escape point for 429.mcf is at position
zero because epCounter[0] is non-zero. The second escape
point is at position one, which is the center of the first clus-
ter. The third escape point is at position five, which is the
center of the second cluster.

Two corner cases need to be dealt with carefully. First, if
the first few entries in the epC'ounter array are zero, the first
escape point is positioned at the first knee, as opposed to at
the center of this cluster. The center of this cluster cannot
be a preferred exit point for the blocks because they will
continue to enjoy hits beyond the center until they reach the
first knee. For example, in 401.bzip2, one sample epCounter
is (0,0,0,0,1,1,1,1,1,1, 2, 2,2, 3, 4, 16). In this case, the
first escape point is at position four, where half of the blocks
become dead and can be evicted. The second corner case
arises when two escape points coincide. Consider the sample
epCounter contents of 181.mcf discussed earlier. The first
escape point is at zero due to positive epCounter[0]. The
second escape point is also at zero because this is the center
of the first cluster. In such situations, where the currently
computed escape point coincides with the last escape point,
the currently computed one is incremented by one. Thus,
for 181.mcf, the first three escape points are at fill stack
positions zero, one, and two. Note that all the sets in the
entire cache bank-pair will uniformly use these three escape
points for deciding replacement candidates.

Once the escape points are computed, they can be used
for cache block eviction. The idea would be to evict an



appropriate number of blocks at the most preferred escape
point (among the three computed ones) as the blocks travel
down the fill stack. To dynamically learn the most preferred
escape point among the chosen three within a cache bank-
pair, we use a set sampling (or set dueling) technique as
proposed in [11]. We have four competing policies P1, ..., P4
with P4 being the LRU replacement policy. The policy P,
for 4 € {1,2,3}, victimizes the block that is closest to the
top of the fill stack and satisfies the following two criteria:
1) has not experienced a hit in its current fill stack position,
and 2) its current fill stack position is bigger than or equal to

the i*® escape point. If no block is found to satisfy these two
criteria, the LRU block is chosen for eviction. Note that the
first criterion guards against premature evictions, which may
happen due to the probabilistic nature of the escape points.
The set dueling technique for picking one of Pi,...,Ps is
implemented as follows. Within each cache bank-pair we
dedicate a small number of sample sets to each of these
policies and each bank-pair can independently elect its most
preferred policy. All the non-sampled sets follow the elected
policy. To dynamically compute the most preferred policy,
we maintain six saturating counters, each initialized to the
mid-point, M, of its range. Let us refer to these counters
as Cyj for i < j and 4,5 € {1,2,3,4}. A particular counter
Ci; decides the winner among P; and P;. A miss in a set
dedicated to P; increments all counters C;; and decrements
all counters Cj;. For example, a miss in a sample belonging
to P2 would decrement C'12 and increment Cos and Caoy. For
i < j, the policy Pj is better than the policy P; if Ci; > M,
otherwise policy P; is better. Therefore, it follows that for
i > j, the policy Pj is better than the policy P; if Cj; < M.
A particular policy P; is the overall winner if all the three
counters that it participates in indicate so. For example, the
policy Pz is the overall winner if C12 > M, Cas < M, and
Coa < M. It is easy to prove that there will always be a
total order among the policies.

2.3.3 Detecting Phase Changes

Preliminary experiments revealed that the escape points
need recomputation only when the application undergoes a
phase change. Interestingly, we find that the escape proba-
bilities serve as excellent features for learning phase changes.
To detect a phase change, we compare the contents of the
epCounter array generated in this epCounter epoch (N re-
fills) with the contents of the epCounter array saved from
the last epoch. If any array location less than the third es-
cape point has a difference of at least D, we declare a phase
change. At this point, we revert the entire cache bank-pair
to execute LRU policy for the next IV refills and based on
the hit counts collected during this period, we recompute the
escape points and then transition to the peLIFO mode with
all the counters Cj; reset to the mid-point of their range.
The reason for reverting the entire cache bank-pair to exe-
cute LRU policy on a phase change is to give the lower part
of the fill stack in each set a chance to get flushed out due to
LRU replacement so that the new cache blocks accessed in
the new phase can be brought in. While the escape points
are computed only on phase changes, the escape probabil-
ities have to be computed at the end of every N*'" refill so
that the phase changes can be detected correctly.

2.3.4  Putting It All Together

The entire cache bank-pair starts off in LRU mode and
remains in the LRU mode for N = 2" refills until the escape
probabilities and the escape points are computed. At this
point, the cache bank-pair switches to the peLIFO mode
and remains in this mode until a phase change is detected.
In the peLIFO mode, the epCounter array is populated
with hit counts only from the sampled sets dedicated to the
LRU policy to make sure that the probabilities are com-
puted from the prevailing baseline behavior only. Since

the number of sets dedicated to each policy is small, the

epCounter epoch in the peLIFO mode is set to N’ = 2" <
2". Thus, the escape probabilities are computed only after
the sets dedicated to LRU receive N’ refills. At this point,
the epCounter is compared with the epCounter from the
last epoch provided the last epoch was also executed in the
peLIFO mode. A phase change is declared if there exists k
less than the third escape point such that |epCounter[k] —
epCounterLast Epochlk]| > D. Note that this comparison is
done only after epCounter[k] is updated to hold log, (1/PZ (k)).
If a phase change is detected, the entire cache bank-pair is
switched to the LRU mode and the entire cycle starts afresh.
It is important to note that in the peLIFO as well as the
LRU mode, when looking for a replacement candidate in a
set, invalid ways are always filled first before invoking any
replacement policy.

Adapting the peLIFO policy to CMPs does not require
any change or addition to the design discussed here. The
policy remains oblivious to the presence of multiple threads
and continues to gather the escape probabilities from the
behavior of each bank-pair of the shared L2 cache. The set
dueling algorithm also remains oblivious to the presence of
multiple threads and computes the preferred policy accord-
ing to the discussion presented in Section 2.3.2. Understand-
ing the necessity of making the peLIFO policy thread-aware
is left to future research.

2.3.5 A Cousin of peLIFO

We have designed a simplified version of peLIFO that
does not use set dueling (the LRU set samples are still
used to compute the epCounter contents). The idea of
this simplified policy is to fit the escape probability dis-
tribution in the long run. To understand this policy, let
us refer to the epCounter knees of 429.mcf located at fill
stack positions (2, 9, 13, 14, 15), excluding the trivial knee
at position zero. According to the epCounter values of
429.mcf, once a cache set is completely filled (i.e., no in-
valid ways), on average half of the new population of blocks
should continue past the first trivial knee at position zero,
only one-quarter should continue past the second knee at
position two, only one-eighth should continue past the third
knee at fill stack position nine, etc. The simplified replace-
ment policy tries to enforce this expected flow of blocks
within each set. Let us consider a general epCounter array
with x non-trivial knees at positions (Ko, ..., Ky—1), where
K; > 0 for all i. Let the epCounter values at positions
(Ko—1,...,Ky—1—1) be (eo,...,ex—1). These are the val-
ues just before the knee transitions take place. For example,
these values for 429.mcf would be (1,2, 3,4,5). We maintain
x counters @; for 0 < i < x per cache bank-pair. All the
counters Q; belonging to a bank-pair are incremented mod-
ulo 2% whenever a new block B is filled into the bank-pair.
Next, K; corresponding to the highest index ¢ such that Q; is
zero is declared the earliest dead position of the filled block
B. If no counter is having a zero content, the block is de-
clared dead at position zero itself. Notice that this scheme,
on average, enforces the probability distribution of the block
flow as computed in the epCounter array. For example, in
429.mcf, on average, half of the filled blocks will have zero as
their earliest dead position, a quarter will have Ky (i.e., two)
as their earliest dead position, etc. The replacement policy
victimizes the block closest to the top of the fill stack satis-
fying the following two criteria: 1) has not experienced a hit
in its current fill stack position (guards against premature
eviction), and 2) its current fill stack position is bigger than
or equal to its earliest dead position. We will refer to this
policy as probabilistic counter LIFO (pcounterLIFO). The
counters (Q; are initialized to ¢ mod 2. The design choice
of using simple modulo counters in place of good pseudo-
random number generators makes pcounterLIFO less robust
and it degrades the performance of a few workloads.



2.4 Implementation Overhead

A new replacement policy usually comes with two types
of overhead, namely, extra storage needed for book-keeping
and the impact on the critical path delay. All the mem-
bers of the pseudo-LIFO family need to maintain the fill
stack position of each block in a set requiring Alog,(A) bits
of storage per set (in addition to the bits needed by the
baseline for maintaining the access recency stack position).
The dbpLIFO policy requires the storage for maintaining
the dead block predictor and some more information per
block (such as the PC of the instruction filling the block, ref-
erence count, and dead bit) as discussed in [9]. The peLIFO
policy needs to maintain an A-entry epCounter array, an A-
entry epCounterLast Epoch array, three escape points, and
six set dueling counters for each cache bank-pair. These
have negligible storage overhead compared to the storage of
the bank-pair (in our simulation one cache bank is 1 MB
in size). In addition to these, the peLIFO policy needs to
maintain the fill stack position of the last hit for each block
within a set (requires A log,(.A) bits per set) and one bit per
block to mark if the block has seen a hit in the current fill
stack position. The pcounterLIFO policy needs additional
Alog,(.A) bits per set to remember the earliest dead position
of a block assigned to it at the time of fill.

The fill stack position of a block in a set needs to be up-
dated only on a cache fill to the set. Thus, the circuitry for
updating the fill stack can be designed completely off the
critical path. The computation of the replacement candi-
date can also be made off the critical path because these
circuitries have to be invoked only on a cache fill. The re-
quested L1 sector of the L2 cache block being filled can be
forwarded to the LL1 cache while the replacement decision in
the L2 cache is being computed. Thus, the critical delay on
the fill path remains unaltered. On an L2 cache hit, a range
of consecutive locations in the epCounter array of the cor-
responding bank-pair will have to be incremented. But this
can be comfortably overlapped with the data array access
after the hit is detected in the tag array (we assume serial
tag/data access in each L2 cache bank).

3. SIMULATION ENVIRONMENT

We simulate two types of systems, namely, one with a sin-
gle core and the other with multiple cores. Table 1 presents
the relevant details of our MIPS ISA-based single-core out-
of-order issue baseline system. The cache latencies are de-
termined using CACTI [2] assuming a 65 nm process. We
assume serial tag/data access in the L2 cache. The base-
line L2 cache has two banks each of size 1 MB with 16-way
set-associativity and 128-byte block size. This configuration
is shown in Figure 6(a). This single-core simulation envi-
ronment is used to evaluate our replacement policies on the
single-threaded applications. However, the same memory-
side configuration is used for both single-core and multi-
core environments. We simulate four integrated memory
controllers clocked at 2 GHz (half the core frequency) and
each connected to a four-way banked memory module via
a 64-bit channel. The <controller, bank> id of a physical
address is determined with the help of the XOR scheme pro-
posed in [16]. The memory module can transfer 64 bits to
the memory controller on both edges of a 400 MHz clock.
The DRAM access time to the first 64 bits within a re-
quested 128-byte cache block is 80 ns and on each subse-
quent 400 MHz clock edge, one eight-byte packet arrives
at the memory controller. The memory controller switches
each packet on the front-side bus.

We evaluate our policies on four-way multiprogrammed
workloads by simulating a quad-core CMP with an 8 MB
16-way set associative shared L2 cache. Similarly, the poli-
cies are evaluated on eight-way multi-threaded applications
by simulating an eight-core CMP with a 4 MB 16-way set
associative shared L2 cache. Both these configurations use
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Figure 6: (a) A two-bank single-core architecture. (b)
An architecture with more than two banks and/or more
than one core. In this particular case, we show eight
cores (CO to C7) and four L2 cache banks (organized as
two bank-pairs: BP0 and BP1) on a bidirectional ring.

Table 1: Simulated single-core baseline system

l Parameter | Value |
Process/Vaa/Vi 65 nm/1.1 V/0.18 V
Frequency/pipe stage 4 GHz/18
Front-end/commit width | 4/8

BTB 256 sets, 4-way

Branch predictor Tournament (Alpha 21264)
RAS 32 entries

Br. mispred. penalty 14 cycles (minimum)

ROB 128 entries

Branch stack 32 entries

Integer /FP registers 160,/160

Integer/FP/LS queue
ALU/FPU

Int. mult./div. latency
FP mult. latency

FP div. latency

32/32/64 entries

6 (two for addr. calc.)/3
6/35 cycles

2 cycles

12 (SP)/19 (DP) cycles

ITLB, DTLB 64/fully assoc./Non-MRU
Page size 4 KB

L1 Icache 32 KB/64B/4-way /LRU
L1 Dcache 32 KB/32B/4-way/LRU
Store buffer 32

L1 MSHR 1641 for retiring stores
L1 cache hit latency 3 cycles

L2 cache 2 MB/128B/16-way/LRU
L2 MSHR 16 per bankx2 banks

L2 bank tag latency

L2 bank data latency
Front-side bus width/freq.
Memory controllers
DRAM bandwidth
DRAM access time

9 cycles

4 cycles (one way)

64 bits/2 Gz

four (on-die), freq. 2 GHz
6.4 GB/s per controller
80 ns access +

20 ns DRAM channel

the core depicted in Table 1 as the basic building block. The
shared L2 cache is composed by connecting a pair of 1 MB
16-way set-associative banks to a switch on a bidirectional
ring as shown in Figure 6(b). Each core with its own L1
caches (same configuration as in Table 1) connects to the
ring via a switch. Each switch on the ring takes one cycle
for port scheduling i.e., the hop time is one cycle. The L1
caches are kept coherent via a directory-based MESI coher-
ence protocol [8]. Each L2 cache block maintains a directory
entry with a sharer vector and the necessary states. In both
single-core and multi-core configurations, the cache hierar-
chy maintains inclusion. In all the simulations, the virtual
pages are mapped to the physical pages using a demand-
based bin-hopping algorithm [6].

We carry out our preliminary evaluations presented in this
article on a small set of single-threaded, multiprogrammed,



Table 2: MPKI of single-threaded applications
171.swim 5.2 || 401.bzip2 1.0
172.mgrid 1.5 || 403.gcc 1.0
173.applu 2.3 || 429.mcf 22.2
179.art 16.8 || 433.milc 8.8
181.mcf 50.8 || 462.1ibq 5.7
183.equake [ 7.0 || 470.lbm 8.4
254.gap 1.8 || 482.sphinx | 4.4

Table 3: Multiprogrammed and multi-threaded work-
loads

|| Multiprogrammed I
183, 429, 462, 482 (MIXL) | 171, 181, 470, 432 (MIX7)
181, 183, 433, 482 (MIX2) | 171, 183, 254, 462 (MIXS)
181, 183, 429, 482 (MIX3) | 172, 254, 403, 429 (MIX9)
181, 183, 470, 482 (MIX4) | 172, 254, 401, 462 (MIX10)
(MIX5) (
( (

172, 403, 429, 462 IX5) | 172, 254, 403, 433 (MIX11)
181, 183, 429, 462 (MIX6) | 173, 403, 462, 470 (MIX12)
Multi-threaded

Application | Problem size
Art MinneSPEC
Equake MinneSPEC,

ARCHduration 0.5

FFT 256K points
FFTW 4096 x16x 16 points
Ocean 258 %258 grid
Radix 2M keys, radix 32

and multi-threaded workloads. We choose fourteen single-
threaded applications (shown in Table 2) that have at least
one miss per kilo instructions (MPKI) on the baseline 2 MB
16-way set associative L2 cache when simulated for a rep-
resentative set of one billion dynamic instructions selected
by the SimPoint toolset [12]. All the applications are drawn
from the SPEC 2000 and SPEC 2006 benchmark suites, and
they run on the ref input set. We include both the versions
of mcf, namely, 181.mcf and 429.mcf, in the evaluation be-
cause they exhibit very different cache behavior, as already
discussed in Section 2.3.2 and shown in Table 2.

We use twelve four-way multiprogrammed workloads shown
in the upper half of Table 3 (we only show the SPEC bench-
mark id for each member of a mix). Each workload mix is
simulated until each thread commits the representative one
billion dynamic instructions. A thread that completes this
representative set early continues execution so that we can
correctly simulate the cache contention for all the threads.
However, all results are reported by taking into account only
the first one billion committed instructions from each thread.
We report normalized average CPI i.e.

(1 S CPINEY) /(3 ST CPIERY),

where the CPI of each thread i is computed based on the
cycles taken by it to commit its first one billion instructions
in the multiprogrammed mix. This metric captures the re-
duction in average turnaround time of a mix when a new
policy “NEW?” replaces the baseline LRU policy. We also
evaluate a strong fairness metric, which captures the mini-
mum benefit observed by a thread in a mix. It is given by

cpPINEW . . .
L A policy “NEW” is at least as fair as the

maXi Gp TR -

baseline LRU policy if this fairness metric is less than or
equal to one meaning that no thread in a mix observes a
slowdown due to introduction of the policy “NEW”. This
metric captures single-stream performance in a multipro-

grammed environment. Taken together, these two metrics
summarize the overall performance of a mix as well as the
lower bound performance of individual threads in the mix.

We also evaluate our policies on six multi-threaded pro-
grams shown in the lower half of Table 3. These applications
use hand-optimized array-based queue locks and scalable
tree barriers. All these applications are run to completion.

We evaluate dbpLIFO, peLIFO, and pcounterLIFO from
the pseudo-LIFO family. The dbpLIFO policy uses a dead
block predictor similar to the one proposed in [9]. This pol-
icy maintains 19 bits of extra state per cache block compared
to the baseline: the lower eight bits of the PC (after remov-
ing the least significant two bits), six bits of reference count,
a dead bit, and four bits for the fill stack position. Each
1 MB L2 cache bank is equipped with a 2048-entry history
table per core for carrying out dead block prediction. The
history table is indexed with eight bits of PC concatenated
after three lower bits of the block address (after removing
the bank id bits). Each history table entry contains a valid
bit, six bits of reference count, six bits of filter reference
count, and a hysteresis bit (see [9] for detail). The tra-
ditional dead block predictor-based replacement policy re-
quires 37 KB, 232 KB, and 172 KB of auxiliary storage for
our single-threaded, multiprogrammed, and multi-threaded
simulation environments, respectively. For dbpLIFO, these
requirements are 45 KB, 264 KB, and 198 KB, respectively.

The peLLIFO policy maintains only nine bits of extra state
per cache block compared to the baseline: one bit to record
hit in the current fill stack position, four bits for last hit po-
sition, and four bits for the current fill stack position. This
policy has less than 1% storage overhead. The pcounter-
LIFO policy requires four additional bits per cache block
to remember the block’s earliest dead point assigned to the
block at the time of fill. Overall, the storage overhead of the
peLIFO policy is 18 KB, 72 KB, and 36 KB for our single-
threaded, multiprogrammed, and multi-threaded simulation
environments, respectively. For the pcounterLIFO policy,
these requirements are 26 KB, 104 KB, and 52 KB, respec-
tively. The logic complexity of the peLIFO policy is ex-
pected to be higher than the pcounterLIFO policy because
of the set sampling technique employed by the former.

The peLIFO policy dedicates sixteen set samples per bank-
pair to each of the four competing policies (note that a bank-
pair has 1024 sets). This policy uses four times the number
of blocks in a bank-pair as its epCounter epoch length in
the LRU mode (this is N of Section 2.3.4). This is 26 for
our configurations. In the peLIFO mode, the epCounter
epoch length is set to 2! (this is N’ of Section 2.3.4). The
phase change detection threshold D is set to four (see Sec-
tion 2.3.4). The policy chooser counters are all 31 bits in
size. Each entry of the epCounter array is 16 bits in size.

‘We compare our policies with configurations having a fully
associative 16 KB victim cache per 1 MB L2 cache bank.
Thus, an 8 MB shared L2 cache would get a total of 128 KB
victim caching space. The victim cache exercises a non-
most-recently-filled-random replacement policy. We also com-
pare our policies with DIP, TADIP, UCP, PIPP, and ASP.
For DIP, we use 1/32 as the BIP epsilon and 32 dedicated set
samples per 1 MB bank. For TADIP, we use the same BIP
epsilon and eight dedicated set samples per bank-pair per
policy per thread. Even though the original TADIP proposal
uses only one set sample per policy per thread, our exper-
iments show that increasing the number of set samples per
policy per thread up to a certain limit improves performance.
For UCP, the partitions are recomputed every five million
processor cycles using the greedy partitioning algorithm pro-
posed in [10]. For PIPP, we use 3/4 as the promotion prob-
ability for non-streaming threads and 1/128 for the stream-
ing threads. These probabilities are simulated with the help
of the random() function of the C library. The streaming
threads are identified using the same criteria and parame-



ters proposed in [15]. In ASP, the POP cache per thread is
32 KB for the four-way multiprogrammed workloads, while
for the eight-way multi-threaded ones it is 16 KB. The total
POP cache budget is kept fixed at 128 KB throughout the
evaluation. The ownership hand-over threshold and confi-
dence counter size are same as in the original proposal [13].

4. SIMULATION RESULTS

The simulation results are presented in four sections. Sec-
tions 4.1, 4.2, and 4.3 present the results for single-threaded

applications, multiprogrammed workloads, and multi-threaded
shared memory applications, respectively. Section 4.4 presents

the performance of peLIFO in the presence of aggressive
multi-stream stride prefetching.

1.2

110 { q
o 1 H 1 i f
@
=]
&
c
2 0.9
E]
3
[}
£
[
Bos
] Il VC
£ HE DIP
=07 [ dbpConv
. [ dbpLIFO
[ pcounterLIFO|
[ peLIFO
0.6
0.5
o
,\x

Flgure 7: Performance of the single-threaded applica-
tions.

4.1 Single-threaded Applications

Performance analysis of the single-threaded applications,
even in today’s multiprocessor environments, has the po-
tential to offer important insights into the working of the
proposed policies. Figure 7 presents the execution time
of the fourteen single-threaded applications running with
six different L2 cache optimization schemes, namely, victim
caching (VC), dynamic insertion policy (DIP), conventional
dead block prediction (dbpConv) [9], dbpLIFO, pcounter-
LIFO, and peLIFO. The execution time is normalized to
the baseline LRU policy. The difference between dbpConv
and dbpLIFO is only in the selection of the dead block vic-
tim (see Section 2.2). As can be approximately deduced
from Figure 2 in Section 1, traditional small fully associative
victim caches are unlikely to offer much benefit. Overall, vic-
tim caching reduces execution time by 3.5% on average (see
the gmean group of bars). Only 179.art enjoys a notice-
able reduction (21.9%) in execution time. DIP is effective
only in 179.art, 181.mcf, and 401.bzip2. This result can be
explained with the L2 cache block reuse data presented in
Figure 3(a) of Section 1. Overall, DIP is able to reduce
the execution time by 5.1%, on average. As expected, db-
pLIFO outperforms dbpConv. In fact, in 179.art, 181.mcf,
462.libquantum, and 482.sphinx3, these two policies have
noticeable difference in performance. Overall, dbpConv re-
duces the execution time by 6.2%, while the correspond-
ing saving in dbpLIFO is 9.3%. The pcounterLIFO policy
comes quite close to dbpLIFO on average (8.2% reduction
in execution time), but severely hurts the performance of
171.swim and 172.mgrid. Finally, peLIFO emerges the best
policy across the board saving 10.3% execution time on av-
erage. Noticeable performance improvement can be seen in
179.art, 181.mcf, 401.bzip2, 429.mcf, 462.libquantum, and
482.sphinx3. The most encouraging result is that peLIFO
performs equally well as the storage-heavy dbpLIFO.

Table 4: Top four escape points in peLIFO

|| App. | Top four escape points ||
17lswim | 2 (0.26), 1 (0.26), 15 (0.22), 3 (0.14)
T72.mgrid | 15 (0.63), 13 (0.07), 14 (0.06), 11 (0.05)
173.applu 2 (0.31), 1 (0.28), 15 (0.23), 3 (0.16)
179.art 2 (0.84), 6 (0.09), 0 (0 02), 15 (0.01)
I8L.mcf | 0 (0.59), 1 (0.31), 15 (0.03), 2 (0.02)
183.equake | 1 (0.94), 15 (0.02), 5 (0.02), 2 (0.01)
254.gap 1(0.49), 2 (0.42), 15 (0.08), 0 (<0.01)
A01.bzip2 | 4 (0.51), 7 (0.25), 1 (0 02), 14 (0 02)
103 gcc 11 (0.22), 15 (0.13), 10 (0.13), 13 (0.08)
429 mef 1(0.78), 5 (0.12), 2 (0.04), 0 (0.01)
433 milc | 1 (0.58), 15 (0.20), 2 (0.08), 14 (0.06)
162.1ibq 1(0.95), 15 (0.03), 2 (<0.02), 0 (<0.01)
4700bm | 2 (0.87), 3 (0.05), 1 (0.05), 15 (0.02)
482.sphinx | 2 (0.77), 1 (0.15), 15 (0.02), 6 (0.02)

To further understand the characteristics of peLIFO and
its differences with DIP, in Table 4, we present the top
four fill stack positions where most evictions took place in
peLIFO during the simulations. We also show the fraction
of evictions for each of these escape points within parenthe-
ses. Recall that the position zero corresponds to the top
of the fill stack and the position fifteen corresponds to the
bottom of the fill stack in a 16-way set associative cache.
The pseudo-LIFO nature of peLIFO emerges clearly from
the high eviction fractions seen in the upper part of the
fill stack (except for 172.mgrid and 403.gcc). Only 181.mcf
shows position zero as the most preferred escape point. How-
ever, in addition to a 59% eviction at position zero, a 31%
eviction from position one in 181.mcf allows peLIFO to go
beyond DIP in retaining working sets because DIP relies on
evictions at position zero only.

The applications that successfully retain cache blocks in
the lower part of the fill stack (indicated by a high fraction
of evictions from the upper part of the fill stack), but fail
to observe any benefit from peLIFO bring out an important
drawback of this policy. Although the peLIFO policy suc-
cessfully finds out cache space for capacity retention, it does
not necessarily retain the “hot” blocks that would maximize
the number of hits in the L2 cache. In other words, the cur-
rent design does not do anything to improve the quality of
retention; it only partitions each L2 cache set into two log-
ical halves, one to satisfy the near-term uses and the other
to satisfy a subset of far-flung uses.

4.2 Multiprogrammed Workloads

We present the detailed performance and fairness results
for the multiprogrammed workloads in Figures 8 and 9. In
part (a) of these figures, we include the results for victim
caching (VC), thread-aware dynamic insertion policy with
feedback (TADIP), utility-based cache partitioning (UCP),
adaptive set pinning (ASP), and promotion/insertion pseudo-
partitioning (PIPP). In part (b) of these figures, we evaluate
dbpConv, dbpLIFO, pcounterLIFO, and peLIFO.

First, let us discuss the performance results. Traditional
victim caching with small (16 KB) fully associative victim
caches per 1 MB cache bank fails to reduce the average CPI
much (1.1% on average). TADIP also turns out to be ineffec-
tive, as can be inferred from the L2 cache block reuse data in
Figure 3(b). UCP performs the best across the board among
the policies in Figure 8(a). On average, it reduces the aver-
age CPI by 15.4%. ASP is able to improve performance of
MIX2 and MIX6 only, but severely hurts the performance
of others. Overall, it increases the average CPI by 19.6%
compared to the baseline LRU policy. We identified two
major drawbacks in ASP. First, once a set is occupied by
a thread, other threads cannot allocate blocks in that set
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Figure 8: Performance of the multiprogrammed work-
loads.

even though there are invalid ways in that set. This leads
to very high congestion in the POP caches. Second, the set
ownership hand-over policy must implement some fairness
mechanism because the threads with moderate amount of
cache demands most often lose a free set to another thread
with high demands and have to remain satisfied with the
POP cache space only. This is reflected in the poor POP
cache hit rates, as shown in Table 5 (see the POP column,
which lists the ratio of the total number of POP cache hits
across all the threads to the number of POP cache accesses
from all the threads). PIPP also exhibits poor performance.
We observed that for these workloads, the congestion toward
the tail of the access recency stack leads to high volume of
conflict misses in PIPP. In such situations, it is important
to get promoted out of the tail as soon as possible. Our pre-
liminary experiments with the promotion probabilities and
promotion steps point to a design that incorporates algo-
rithms to dynamically learn these parameters.

Turning to Figure 8(b), we find that dbpConv and db-
pLIFO perform equally well reducing the average CPI by
about 14%, on average, dbpConv being slightly better. The
peLIFO policy again emerges the best across the board re-
ducing the average CPI by 19.4%, on average. It is impor-
tant to note that peLIFO outperforms dbpConv and db-
pLIFO on several workloads by large margins. We found
that the auxiliary storage allocated to the dead block predic-
tor is still not enough to realize the full potential of dbpConv
and dbpLIFO on the selected set of one dozen workloads.

Table 5 shows the top four eviction positions in the fill
stack for peLIFO. None of the workloads show position zero
as the most preferred escape point, rendering TADIP inef-
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Figure 9: Fairness evaluation of the policies.

fective for these workloads.

Finally, the fairness data shown in Figure 9 follow the
trend of the performance data. UCP, dbpConv, dbpLIFO,
and peLIFO are the policies with maximum fairness. It is
important to note that pcounterLIFO loses out in fairness
by a large margin, even though it delivers good average per-
formance (10.6% reduction in average CPI).

Some of the policies evaluated so far were evaluated on
cache hierarchies with one single block size across all levels
of the hierarchy in their original proposals. This can have a
great impact on performance of the policies that rely on a
small number of block reuse in the L2 cache. For example,

Table 5: Characteristics of peLIFO and ASP
[ Mix | [ POP |

Top four escape points

MIX1 | 4 (0.47), 1 (0.37), 0 (0.10), 10 (0.02) | 0.62
MIX2 | 1 (0.51), 3 (0.26), 0 (0.16), 9 (0.02) | 0.58
MIX3 | 2 (0.82), 1 (0.08), 0 (0.04), 7 (0.02) | 0.41
MIX4 | 1 (0.63), 5 (0.27), 2 (0.05), 3 (0.01) | 0.51
MIX5 | 6 (0.93), 1 (0.03), 14 (0.01), 15 (0.01) | 0.53
MIX6 | 3 (0.71), 1 (0.16), 0 (0.08), 9 (0.02) | 0.51
MIX7 | 3 (0.68), 2 (0.20), 1 (0.03), 5 (0.01) | 0.47
MIX8 | 7 (0.43), 8 (0.43), 1 (0.03), 6 (0.02) | 0.72
MIX9 | 1 (0.76), 6 (0.15), 0 (0.01), 2 (0.01) | 0.72
MIX10 | 1 (0.79), 6 (0.08), 0 (0.06), 7 (0.01) | 0.77
MIX11 | 3 (0.87), 9 (0.04), 1 (0.01), 8 (0.01) | 0.66
MIX12 | 2 (0.70), 4 (0.17), 1 (0.04), 3 (0.04) | 0.72
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Figure 10: Performance of the multiprogrammed work-
loads with equal L1 and L2 cache block sizes (128 bytes
each).
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Figure 11: Performance of the multiprogrammed work-
loads with 16 MB L2 cache.

with a smaller number of L2 cache accesses per set, the set
ownership hand-over in ASP gets accelerated. With equal
L1 and L2 cache block sizes, the number of accesses per
block (and per set) in the L2 cache usually drops because
an entire L2 cache block is brought into the L1 cache in one
shot. In Figure 10, we evaluate TADIP, ASP, and peLIFO
on a cache hierarchy with L1 and L2 cache block size equal
to 128 bytes.> Our other experiments with smaller equal
block sizes, such as 64 bytes (not shown here), reveal that
the baseline performance degrades sharply due to loss of
opportunity in exploiting spatial locality in the L2 cache.
In Figure 10, while the situation has dramatically improved
in some of the workloads for TADIP and ASP, the overall
performance is still nowhere close to peLIFO.

Finally, to confirm the hypothesis that dbpLIFO does
gain importance over dbpConv as the cache capacity in-
creases and the near-term conflicts reduce in volume, Fig-
ure 11 shows a performance comparison between dbpConv,
dbpLIFO, and peLIFO on a 16 MB 16-way set associative
shared L2 cache. Since we allocate a 2048-entry dead block
history table for each core per 1 MB L2 cache bank (see Sec-
tion 3), the total auxiliary storage allocated for dbpConv and
dbpLIFO also increases proportionately with cache capacity.
In several workloads, dbpLIFO performs better than dbp-
Conv on a 16 MB cache. This is an interesting design point
because dbpConv and peLIFO perform equally well. How-

3 We also simulated PIPP on this configuration, but did not
observe any noticeable change in the average performance.

ever, dbpConv uses 464 KB of auxiliary storage, while the
requirement of peLIFO is only 144 KB. Once the dead block
predictor has enough storage to perform well, the choice of
the dead block victim within a set becomes important and
is reflected in the performance difference between dbpConv
and dbpLIFO. Although the average performance gap be-
tween dbpLIFO and dbpConv is still not significant, we ex-
pect this gap to grow as the L2 cache capacity increases.

4.3 Shared Memory Parallel Applications
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Figure 12: Performance of the multi-threaded work-
loads.

Normalized execution cycles

Figure 12 evaluates the performance of various policies
on the multi-threaded applications. Victim caching (VC)
performs reasonably well on FFTW reducing the execution
time by 22.5% (see Figure 12(a)). TADIP also reduces the
execution time of FFTW by nearly 30%. This is supported
by the L2 cache block reuse data of Figure 3(b) in Sec-
tion 1. UCP performs surprisingly well on FFTW reduc-
ing the execution time by almost 50%. ASP shows notice-
able performance improvement in Art, Equake, and FFT.
The dbpConv, dbpLIFO, and peLIFO policies perform re-
markably well across the board (see Figure 12(b)). While
dbpLIFO emerges the best among all the policies reducing
execution time by 18.6% on average, peLIFO comes close
saving 17.2% execution time on average. It is important to
note that peLIFO has less than 1% storage overhead, while
dbpLIFO is provisioned with large history tables for carry-
ing out dead block prediction. In these applications, UCP
falls significantly behind peLIFO in overall performance be-



cause the former slows down Equake, Ocean, and Radix due
to thrashing within the threads’ partitions.

4.4 Interaction with Prefetching

We conclude the discussion on the simulation results by
presenting the performance of peLIFO in the presence of
prefetching. We observe that the accesses seen by the L2
cache from a core are often a re-ordered version of the orig-
inal stream. This re-ordering happens due to out-of-order
issue in the load/store pipeline, re-ordering of L1 cache miss
requests in the virtual channel buffers of the on-chip inter-
connect, and non-deterministic behavior of the L1 cache re-
placement policy. Therefore, to enable proper learning of the
stride pattern, we integrate a multi-stream stride prefetcher
with each core’s L1 cache controller (as opposed to L2 cache
controller). Each prefetcher keeps track of sixteen simul-
taneous load and store streams and prefetches into the L1
caches. The stream size is chosen to be 4 KB matching the
page size. The strides are calculated from the committed
loads and stores so that speculative wrong path execution
does not pollute the prefetcher. The prefetcher prefetches
either on an L1 cache hit to a prefetched block or on an L1
cache miss and stays six strides ahead in each stream. Note
that the L1 cache prefetch requests that miss in the L2 cache
automatically prefetch into the entire cache hierarchy.

Our simulation results show that (details omitted in the
interest of space), on average, peLIFO continues to reduce
execution cycles by 12.2% for the single-threaded applica-
tions, 19.2% for the multiprogrammed workloads, and 15.3%
for the multi-threaded applications compared to a baseline
that uses the same multi-stream stride prefetcher. We briefly
mention an interesting phenomenon that we observed in
peLIFO after turning on prefetching. The prefetcher hurts
the baseline performance of some of the single-threaded and
multiprogrammed workloads. However, when the prefetcher
is turned on in the presence of peLIFO, none of the work-
loads suffer from any slowdown compared to the baseline
peLIFO. The peLIFO policy victimizes L2 cache blocks as
early as possible from the upper part of the fill stack within a
set. As a result, in the applications where accurate prefetch-
ing is hard, the blocks prefetched into the L2 cache due
to wrong address prediction in the prefetcher quickly get
evicted from the set because they do not get used. These
blocks get evicted from the L1 caches as well due to L1-1.2
inclusion. The end-result is that unnecessary blocks do not
hold up cache space for long. This improves the overall ef-
fectiveness of prefetching in a number of single-threaded and
multiprogrammed workloads.

5. SUMMARY

We have presented a new family of replacement policies
named pseudo-LIFO for the last-level caches. The members
of this family evict blocks from the upper part of the fill
stack, thereby retaining a large fraction of the working set
in the cache. We have discussed the design of three mem-
bers of this family. The first member, named dead block
prediction LIFO, leverages the existing dead block predic-
tors to victimize the dead blocks residing close to the top
of the fill stack. The second member, named probabilistic
escape LIFO, dynamically learns the most preferred evic-
tion positions within the fill stack and prioritizes the ones
close to the top of the stack. The third member, named
probabilistic counter LIFO, is a simple derivative of proba-
bilistic escape LIFO. The probabilistic escape LIFO policy,
while using less than 1% of extra storage for book-keeping,
outperforms a large array of contemporary proposals on a se-
lected set of single-threaded, multiprogrammed, and multi-
threaded workloads. This preliminary study points to more
rigorous evaluation of the pseudo-LIFO family on more re-
alistic workloads.
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