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Abstract

The emerging trend of larger number of cores or pro-
cessors on a single chip in the server, desktop, and mobile
notebook platforms necessarily demands larger amount of
on-chip last level cache. However, larger caches threaten
to dramatically increase the leakage power as the indus-
try moves into deeper sub-micron technology. In this pa-
per, with the aim of reducing leakage energy we introduce
LEMap (Low Energy Map), a novel virtual address transla-
tion scheme to control the set of physical pages mapped to
each bank of a large multi-banked non-uniform access L2
cache shared across all the cores. Combination of profiling,
a simple off-line clustering algorithm, and a new flavor of
Irix-style application-directed page placement system call
maps the virtual pages that are accessed in the L2 cache
roughly together onto the same region of the cache. Thus
LEMap makes the access windows of the pages mapped to a
region roughly identical and increases the average idle time
of a region. As a result, powering down a region after the
last access to the clusters of the corresponding virtual pages
saves a much bigger amount of L2 cache energy compared
to a usual virtual address translation scheme that is oblivi-
ous to access patterns. Our execution-driven simulation of
an eight-core chip-multiprocessor with a 16 MB shared L2
cache using a 65 nm process on eight shared memory par-
allel applications drawn from SPLASH-2, SPEC OMP, and
DIS suites shows that LEMap, on average, saves 7% of to-
tal energy, 50% of L2 cache energy, and 52% of L2 cache
power while suffering from a 3% loss in performance com-
pared to a baseline system that employs drowsy cells as well
as region power-down without access clustering.

1. Introduction

Over the last decade the DRAM latency has emerged
as the biggest bottleneck to the evolution of high-end
computers and has severely hampered the performance
growth in the desktop, server, and mobile notebook com-
puters. To mitigate this high off-chip data access latency,
the microprocessor industry has incorporated large on-chip
caches [20, 25]. With the increasing number of cores on the

same die, the size of on-chip cache is expected to increase
further in future. However, large on-chip caches threaten
to dramatically increase the leakage energy as the indus-
try moves further into deep sub-micron processes. The left
bar of each group in Figure 1 shows the energy dissipated
by a 16 MB shared L2 cache designed with 65 nm nodes
in a simulated eight-core chip-multiprocessor as a fraction
of the total energy for eight explicitly parallel shared mem-
ory applications chosen from SPLASH-2, SPEC OMP, and
DIS (Data Intensive Stressmark) suites. The last group of
bars shows the harmonic mean. On average, 37% of to-
tal energy is dissipated in the L2 cache 97% of which (not
shown) comes from leakage for these applications when no
leakage optimization technique such as drowsy cells [7],
sleep transistors, or power gating is applied.

On the other hand, the right bar in each group of Fig-
ure 1 shows the average dead time of a page (4 KB in size)
residing in the L2 cache as a fraction of the total execution
time. The dead time of a page is calculated by excluding the
cycles starting from the first L2 cache access to any block
in this page from any core till the last L2 cache access to
this page. For six applications the average dead time of a
page is more than 15% of the total execution time. On av-
erage, a page remains powered on unnecessarily in the L2
cache for 10% of the total execution time. Past proposals
have explored various leakage reduction techniques to ex-
ploit this dead time at cache block granularity. However,
as the caches grow bigger, the book-keeping overhead per
cache block becomes prohibitive. The page-level dead time
statistic shows that there is considerable potential of manag-
ing leakage at a much higher grain than cache blocks. Also,
page-level techniques allow smart involvement of the oper-
ating system in leakage management.

In addition to the page dead time, a second important
property of a program is that a set of pages are usually ac-
cessed together over a time window. These pages form the
working set of the program over that time window. Follow-
ing these two observations, we present LEMap (Low En-
ergy Map), a novel profile-guided virtual address translation
technique to control leakage in large chip-multiprocessor
caches. The central idea is to assign physical addresses to
the pages that are accessed together such that all of them get
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Figure 1. The left bar shows the L2 cache energy
as a fraction of the total energy without drowsy
cells. The right bar shows the average dead time
of a page as a fraction of the total execution time.

clustered into one small region of the L2 cache as opposed
to getting scattered all over the cache. The average dead
time of each of these regions improves dramatically due to
access clustering allowing us to apply drowsy and power-
down modes more efficiently to each of these regions.

We collect the page access timestamps in the L2 cache
via a profile run and cluster the pages that are accessed to-
gether. The number of pages in a cluster depends on the
grain of the region to which we would like to apply leakage
control. Next, we assign physical addresses to the pages
in a cluster through a new flavor of Irix-style application-
directed page placement system calls such that all these
pages get mapped to a region in the L2 cache. Finally, we
insert a special system call in the application to power down
a region of the L2 cache after the last access to the clus-
ter(s) mapped to that region. In the background, we keep the
drowsy mode enabled in each of the regions so that during
the idle cycles of a region, it can be put to a data preserving
low voltage supply according to the drowsy protocol. We
summarize the major contributions of this paper below.
� For the first time, this paper presents a virtual address

translation scheme for region-based leakage control in
chip-multiprocessor caches. We present a new flavor
of application-directed page placement system call to
realize our proposal (Section 2).

� Our execution-driven simulation results (Sections 3
and 4) show that LEMap, on average, saves 7% of total
energy, 50% of L2 cache energy, and 52% of L2 cache
power while suffering from a 3% loss in performance
for eight shared memory parallel applications chosen
from SPLASH-2, SPEC OMP, and DIS suites running
on an eight-core chip-multiprocessor with a 16 MB
shared L2 cache at 65 nm compared to a baseline that
employs drowsy as well as power-down modes but
does not take advantage of access clustering.

2. Virtual Address Translation Schemes

Virtual memory management layer of an operating sys-
tem assigns a physical address to a virtual address when

the corresponding virtual page is brought into main memory
from the next level of storage, which is usually a disk. At a
very high level, this involves hashing the virtual page num-
ber into a color bin and picking a free physical page frame
from that bin. In a non-uniform memory access (NUMA)
kernel, a node number is also decided following a round-
robin, first-touch, or some other policy. The selected phys-
ical page frame resides in the main memory of this node,
which is called the home node of the page. In this pa-
per, we focus only on single-node systems. The physical
address assigned to a virtual address naturally decides its
location within the caches. Most importantly, in a multi-
banked L2 cache it decides the bank number where this
address resides [4]. In general, the bank number can be
formed out of any part of the cache index bits. For exam-
ple, in a block-interleaved scheme, the lowest
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bits

of the cache index are used to decide the bank number in
an
�

-way banked cache. Similarly, in a page-interleaved
scheme, the lowest
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bits of the physical page num-

ber are used to decide the bank number. In this paper, we
use the upper
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bits of the cache index to decide the

bank number. This banking scheme allows a large chunk
of contiguous data to be mapped onto a single bank and in-
creases the idle time of all the banks on average because
part of one single bank is often accessed for a long time
due to spatial locality. As a result, with standard leakage
optimization techniques such as drowsy cells [7], applied
at a 128 KB grain to amortize the book-keeping cost, our
baseline L2 cache architecture enjoys very low leakage en-
ergy dissipation (roughly 1 W/MB) and offers a challenging
starting point for further energy optimization. In the follow-
ing, we discuss the LEMap proposal in detail including the
necessary application and operating system modifications
to take advantage of LEMap.
�������������������! "��#$����%'&�(*)�+-,/.102�3%

LEMap aims at increasing the dead time of regions of a
large L2 cache so that these regions can be powered down
after the last access without fearing any data loss. In this
paper, we statically fix the region size to be 128 KB. Each
region is a contiguous portion of area within each bank and
will be referred to as a subbank. As an example, consider
a 16-way set associative 16-way banked 16 MB L2 cache.
Thus, each bank is 1 MB in size, 16-way set associative, and
has eight 128 KB subbanks. Assuming a 128-byte block
size and a 4 KB page size, a 40-bit physical address in our
system is broken down into several L2 cache components
according to Figure 2. Notice that the subbank number
could be chosen from any part of the cache index within
a bank. However, since we would like to control the place-
ment of pages in the L2 cache, we do not want to have pages
split across subbanks. Therefore, we need to pick the sub-
bank number from the part of the physical page number that
overlaps with the cache index within a bank. We choose the
bits right after the bank number so that a contiguous range
of 64 address sets (lower six bits from cache index) forms
one subbank (see Figure 2).

LEMap exploits two fundamental properties of pro-
grams. First, as already mentioned in Section 1, a page is
dead during a reasonable portion of the application execu-
tion time. Second, a group of pages is accessed together in
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Figure 2. Address bits for accessing an example
16 MB L2 cache. Organization of one bank is
shown below. BO is block offset, PO is page off-
set, B# is bank number, and SB# is subbank num-
ber within a bank.

time and this group forms the working set of the application
at the given point in time. Therefore, if we can map a group
of pages that are accessed together onto a subbank, we can
turn off the entire subbank after the last access to the group.
This technique leads to an increase in the idle time of each
subbank, since the virtual address to physical address map-
ping is now aware of the temporal behavior of the accesses.
In the following, we discuss the entire process in detail.
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We collect the timestamp, source core id, and the virtual
page number of each L2 cache access during a profile run.
We use this profile data to build clusters each spanning at
most 128 KB data or equivalently 32 pages that are accessed
roughly at the same time. Our clustering algorithm mimics
a hierarchical agglomerative procedure. Initially, each dis-
tinct page belongs to a singleton cluster. We define the birth
time BDC of a cluster E to be the timestamp of the earliest
access to any page belonging to that cluster. Similarly, we
define the death time FGC of a cluster E to be the timestamp of
the last access to any page in that cluster. Clearly, the differ-
ence between the death time and the birth time of a cluster E
can be defined as the life time H C of the cluster. At every step
of the clustering algorithm, for every pair of clusters I andJ
, we compute KMLON/PRQ BSLUTVBWN@Q and XYLZN/P[Q F@L\T-F]N@Q . We pick

the cluster pair
� I_^ J 
 such that K`LZNbacXVLON is minimum andd L3a d Nfehg
i where

d C is the number of pages in clusterE . We combine these two clusters into a bigger cluster. The
birth and death times of the new cluster become jYk�l � BmLn^_BWN 

and jYo]p � F@LW^qF?N 
 , respectively. This completes one step of
the algorithm. The algorithm terminates when no more ag-
glomeration is possible while maintaining the size of each
cluster within a bound of 32 pages. Therefore, at the end of
the clustering phase we get a number of clusters each with
at most 32 pages such that the pages belonging to a cluster
have similar active and idle phases. The next step is to map
these clusters of virtual pages to the physical subbanks of
the L2 cache so that each subbank will have pages that are
accessed roughly together.
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We number the subbanks such that we visit all the sub-
banks within a bank first and then move on to the next bank.
A simple algorithm to map the virtual pages in clusters to
the physical subbanks would first rank the clusters by in-
creasing value of birth time and then assign the clusters
from this ranked list to the subbanks in round-robin order.
Thus the first cluster gets mapped to subbank zero of bank
zero, the next one on subbank one of bank zero, and so on.
A problem arises when all the subbanks are exhausted. In
this case we need to wrap back to subbank zero of bank
zero and start overbooking the subbanks. However, since
the clusters are ranked by birth time, the temporal overlap
in life time of two clusters mapped to the same subbank is
reduced. Such a scheme reduces the possibility of conflict
misses in a subbank, although increases the life time of the
subbank. However, we found that an L2 cache miss due to
subbank conflict is much more expensive in terms of energy
compared to the lost opportunity of leakage saving.

An improved mapping algorithm would try to exploit the
proximity information between the cores and the banks in a
non-uniform cache architecture (NUCA), as the one we are
considering in this paper. Suppose we number the pages
in a cluster E from zero to

d CVTyx where
d C is the num-

ber of pages in the cluster E . Further, suppose that a pagez is accessed {}|�~ times by core � . Finally, let the access
latency between core � and bank � be � ~n� . Then we can
define the quantity �MCS��P����!�3�~���� �����U�3�|D�3� {`|m~��=~�� as the
total number of cycles spent by all cores ( � in number) ac-
cessing the pages in cluster E if this cluster is mapped onto
a subbank in bank � . Note that accessing any region within
a bank requires the same amount of time. In other words,
the quantity �'~n� is the worst case access latency between
core � and any part of bank � . Therefore, we would like to
map cluster E to a subbank in bank � such that �`CD� is min-
imized. Our proximity-aware subbank mapping algorithm
prepares a ranked list � C of banks for each cluster E such
that � CS� �\� �W� e�� CD� �?� � � e2���m�=e�� CS� �\� � �3� � for

�
banks.

Before mapping any cluster, it prepares a bitvector of length�
where

�
is the number of subbanks. Initially, the bitvec-

tor is cleared. Whenever a cluster is mapped to a subbank,
the corresponding bit position is set. The mapping algo-
rithm picks clusters according to the birth time rank. When
considering cluster E for mapping, the algorithm selects a
bank � from �`C with as low an �MCS� value as possible such
that there is a subbank in bank � with the corresponding bit
position reset in the bitvector. When all the bit positions in
the bitvector get set meaning that all the subbanks are popu-
lated in this round, the bitvector is cleared and the algorithm
continues until all the clusters are mapped. In the next sec-
tion we discuss how this mapping process is integrated into
the application source.
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The starting addresses of the virtual pages belonging to
each cluster are first translated to the corresponding point-
ers to source-level data structures. For example, if a one-
dimensional integer array � starts at virtual address 0x1000



and spans up to virtual address 0x2fff, a virtual page num-
ber of 0x2 i.e. a virtual page address of 0x2000 (assuming
4 KB pages) would get translated to &A[1024] in C syn-
tax. To carry out this translation, we collect the virtual page
numbers belonging to each data structure of the application
under consideration and store this information into a hash
table during the profile run. Later we pick a virtual page at
a time from a cluster, look up the hash table, and translate
the starting address of the virtual page into a pointer. At the
end of this phase, each cluster is composed of at most 32
pointers to various (possibly identical) parts of data struc-
tures of the application.

The next phase involves passing this cluster composi-
tion to the virtual memory manager of the operating sys-
tem (OS) and map all the virtual pages in a cluster to a phys-
ical subbank of the L2 cache. Usual application-directed
page placement system call, as available in NUMA Irix, al-
lows an application to specify a range of contiguous virtual
addresses (in terms of a starting address e.g. &A[0] and an
ending address e.g. &A[1023]) and a node number. The
system call handler maps this range of virtual addresses
to physical page frames on the specified node. However,
LEMap requires mapping a list of discrete pages as opposed
to a large contiguous range of virtual addresses. It is possi-
ble to use the conventional page placement system call, one
for each page, but the system call overhead will outweigh
all the benefits of the technique. Instead, we introduce a
new flavor of page mapping system call where the applica-
tion passes a list of virtual pages to be mapped to the OS.
For each cluster E , the application prepares a buffer with
the following composition. The first element of the buffer
is the number of pages in the cluster i.e.

d C . The next
d C

elements are the virtual page addresses. If proximity-aware
mapping is enabled, the next element of the buffer is the
number of banks in the L2 cache and the next several ele-
ments contain the ranked list � C of the banks. This ranked
list is prepared offline and stored with the profile data to
minimize run time overhead. Finally, the application passes
the new system call number and the starting pointer of the
buffer as the two arguments to the new system call.

The virtual memory manager in the OS needs to maintain
a list of physical page frame numbers that map to each sub-
bank, in addition to the usual color bins. Thus if there are

�
subbanks in the entire L2 cache, the OS needs to maintain,
for each color bin,

�
different free lists of physical page

numbers corresponding to the subbanks. These lists can be
prepared as a part of the boot sequence. The OS system call
handler for the new page placement call first copies the en-
tire buffer contents from the application area to the kernel
area. Next it follows the subbank mapping algorithm dis-
cussed in the last section. Once it decides a subbank num-
ber § for a cluster E , it picks the first

d C free physical page
frame numbers from the corresponding list and maps the
virtual pages in the cluster to these physical pages. Note
that these one-time system calls do not affect the overall
execution time much. Also, we did not observe any per-
formance loss due to code size inflation resulting from the
insertion of these system calls (one per cluster).

The virtual memory manager also remembers the com-
position of each cluster along with the mapped subbank
number in a table. This information is needed when a page
is swapped back into physical memory. At this time the OS

finds out which cluster the virtual page being swapped in
belongs to and maps it onto the assigned physical subbank
by either picking a free physical page from that bin or re-
placing a physical page belonging to that bin.

Finally, the application needs to instruct the L2 cache
controller to power down a subbank after the last access to
the clusters mapped to that subbank. This is achieved by
introducing another new system call. This system call is in-
serted after all accesses to a subbank are done. The system
call passes the subbank number to be powered down. Note
that if a cluster of pages contains at least one page with un-
ordered shared accesses from a set of threads, a last touch
counter needs to be maintained. The last access to such a
cluster from a thread atomically increments the counter cor-
responding to the accessed cluster and checks if the counter
value has reached the expected number of sharers, in which
case it invokes the system call. In this paper, we detect the
last accesses to clusters of pages from each thread by man-
ual inspection and leave the exploration of the necessary
data-flow analyses to future research.
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Our baseline L2 cache architecture implements the con-
ventional drowsy cells which switch a subbank to a low
voltage supply while retaining the data, if the subbank is
not accessed for a threshold number of cycles. This thresh-
old has to be high enough to be able to accommodate all the
accesses to a subbank from multiple cores in a time window.
In our simulations this threshold is 1000 L2 cache clock cy-
cles. Since all our power management is done at subbank
level, each subbank should be designed in isolation so that
while switching the power supply of a subbank or gating
off the power supply from a subbank, activities in the other
subbanks are not affected. On top of this, LEMap requires
couple more supports. First, it should be able to gate the
power supply off from a subbank when instructed by the
application. Note that since this command comes from the
application, we can safely power down the subbank with-
out writing the dirty blocks back to main memory. We can
be sure that the data in the subbank will not be needed in
the future. Second, LEMap enables a different power-down
mode right after an application starts running. In this mode
if a subbank is not accessed for a threshold number of cy-
cles (we use 50000 L2 cache clock cycles in our simula-
tions), it is powered down. However, this mode is disabled
as soon as the first access to a subbank arrives from one of
the cores marking the birth time of the first cluster mapped
to that subbank. The subbank remains powered up, occa-
sionally venturing into the low power drowsy mode, until
it is powered down by the application. We do not power
down a subbank during the life time of the clusters mapped
onto it even if it has a significantly large number of idle cy-
cles, since a high amount of energy is dissipated while writ-
ing back the dirty blocks to main memory and subsequently
bringing them into the L2 cache, if needed in future.

3. Simulation Environment

We simulate a MIPS ISA-based eight-core chip-
multiprocessor using a detailed in-house execution-driven



simulator. A high-level floorplan is shown in Figure 3. Each
core has its private first level instruction and data caches.
The shared L2 cache is organized into 16 banks and the
bank controllers are connected to the private L1 caches
through a crossbar. Each L1 cache block has four coher-
ence states, namely, M, E, S, and I. The L1 caches are kept
coherent through a directory-based write-invalidate bitvec-
tor protocol. A directory entry is maintained per L2 cache
block and is kept with its tag. When an L1 cache request
is forwarded to its corresponding L2 cache bank, the direc-
tory entry is looked up along with the tag and the necessary
coherence actions are taken.

We size the L2 cache such that the entire chip area bud-
get does not exceed 550 mm « with 65 nm process. First, we
conservatively estimate the out-of-order multiple issue core
size to be 4 mm ¬ 4 mm [16]. Next, we estimate that within a
crossbar area of 20 mm ¬ 5 mm, we can fit 128 bidirectional
128-bit data busses, 40-bit address busses, and 9-bit control
busses (6 bits for L2 cache request/response opcode type
and 3 bits for source/destination core id) assuming the M4
layer wiring pitch of 280 nm [25]. Note that the crossbar
connects 8 cores to 16 banks thereby requiring 128 busses in
each direction. We design each wire in the crossbar with op-
timally placed repeaters [1] and compute the latency of each
core-bank pair interconnect assuming the mid-level metal
capacitance and resistance presented in [1]. The major por-
tion of the remaining area of the chip is devoted to the L2
cache. We assume that the basic memory cell size of the
L2 cache is 0.624 ­ m « [25]. From CACTI [10] we estimate
that the area devoted to the bit cells in a 1 MB bank is about
45% of the total area of the bank when equipped with one
read port and one write port, and providing a 128-bit out-
put. Therefore, we estimate the total area of a 1 MB bank to
be 0.624 ­ m «@¬ (2 «q®$a¯g8xM¬°i � ® )/0.45 or 12 mm « . Note that
each block has 31 bits of tag and state (20 bits of tag, two
state bits to encode MESI, eight bits of sharer vector, and
one MRU bit). We use the aspect ratio of a 1 MB bank from
CACTI to finally compute the height and width of a bank.
Including the L2 cache bank controllers and the four on-
die integrated memory controllers (each shared across four
L2 cache banks), we estimate the chip size to be roughly
20 mm ¬ 27 mm. The other salient features of our simulated
system are shown in Table 1. All the cache latencies are de-
termined with CACTI. We assume serial tag and data access
for L2 cache banks.

Our dynamic power model is significantly influenced by
Wattch [2], but improved considerably on various fronts.
First, we include the power models of register free lists, is-
sue queue payload RAMs, store forwarding logic, miss han-
dling table (MHT), and various off-core components such
as all the buffers between the crossbar and the L1 caches,
the two-phase round-robin crossbar arbiter, the repeaters in
the crossbar, all the buffers associated with the L2 cache
bank controllers, the virtual queues in the L1-L2 interface
to avoid coherence deadlocks, and various buffers, queues,
and arbiters in the memory controller. Second, we use sim-
ple shift register logic instead of elaborate decoders to drive
the wordlines of FIFO and LIFO RAMs. Finally, we have
modified CACTI to compute the subarrays in the tag and
data RAMs so that the energy-delay-squared is optimized.
Our peak core dynamic power has been verified to be within
3% of the published results of the Alpha 21264 [8]. In this
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Table 1. Simulated System

Parameter Value
Number of cores 8 clocked at 3.2 GHz
Process/ ´�µSµ / ´8¶ 65 nm/1.1 V/0.18 V
Pipe stages 18
Front-end/Commit width 4/8
BTB 256 sets, 4-way
Branch predictor Tournament (Alpha 21264)
RAS 32 entries
Br. mispred. penalty 14 cycles (minimum)
Active list 128 entries
Branch stack 32 entries
Integer/FP Register 160/160
Integer/FP/LS queue 32/32/64 entries
ALU/FPU 8 (two for addr. calc.)/3
ITLB, DTLB 64/fully assoc./NMRU
Page size 4 KB
Private L1 Icache 32 KB/64B/4-way/LRU
Private L1 Dcache 32 KB/32B/4-way/LRU
Shared L2 cache 16 MB/128B/16-way/NMRU
L1 MSHR 16+1 for retiring stores
L2 MSHR 16 per bank
Store buffer 32
L1 cache hit 3 cycles
L2 bank tag latency 7 cycles
L2 bank data latency 3 cycles
Memory cntr. freq. 1.6 GHz
SDRAM access time 70 ns (row buffer miss)

30 ns (row buffer hit)
SDRAM bandwidth 6.4 GB/s per controller

paper all the simulations are done with aggressive clock gat-
ing enabled.

Our leakage power model is divided into two parts,
namely, subthreshold leakage model and gate leakage



model. These models are developed based on the tech-
niques proposed in [3] and [23], respectively. However, we
have improved these models wherever possible by cross-
validating the leakage current values with HSPICE simula-
tions. Our SRAM schematic model includes the cell, the
sense amplifiers, the sense isolation circuitry, the write cir-
cuitry, and the precharge circuitry [19]. We appropriately
extrapolate these leakage components from smaller SRAMs
to derive the leakage power of bigger SRAMs. After en-
abling drowsy mode with a 0.3 V low power supply at a
128 KB subbank grain, our SRAM leakage comes down to
roughly 1 W/MB which is usually considered the industry
thumb-rule today. Since we never put the L2 tags in drowsy
mode, the wakeup latency of the L2 data subbank (all 16
ways) from drowsy mode is hidden under tag access latency.
Recall that the L2 cache exercises a serial tag/data access.

Finally, our approximate DRAM energy model is de-
veloped based on Micron technical notes [12, 21]. The
model uses published figures for a highly loaded DDR2-
400 512Mb x4 chip. The DRAM power supply is as-
sumed to be 1.8 V. Since this chip runs at 200 MHz and
we model a 400 MHz DRAM in our simulator, we scale up
the frequency-dependent power components by a factor of
two. Overall, our modeled power per DRAM access turns
out to be 4.3 W when all the 16 participating chips on the
target 1 GB DIMM are accounted for. We multiply this
power by the average DRAM access latency to compute the
DRAM energy per access. In this paper, we do not charge
any power when a DRAM module is idle and assume that
aggressive low power modes are enabled [5, 6, 17]. We also
model the DRAM channel energy by assuming a channel
capacitance of 30 pF [27], a supply voltage of 1.8 V, and
a width of 64 bits. Note that 16 channel transactions are
needed to transfer a 128-byte cache block.

We use eight explicitly parallel shared memory applica-
tions drawn from SPLASH-2, SPEC OMP, and DIS (Data
Intensive Stressmark) suites. The applications along with
their problem sizes are shown in Table 2. The applications
are chosen to represent a good mix of compute-intensive
and communication-intensive workloads. Problem sizes are
chosen to get good parallel efficiency on an eight-core chip
with shared L2 cache. We had to increase the ARCHdura-
tion value in the MinneSPEC input file of Equake to 0.5 to
get good speedup. Both FFT and FFTW are tiled for good
TLB and cache performance. We run all the applications
from beginning to completion.

Table 2. Applications

Name Input Source
Barnes 16384 bodies SPLASH-2
CG 8192 ¬ 8192 matrix, DIS

256K non-zeros, 50 iterations
Equake MinneSPEC, SPEC OMP

ARCHduration 0.5
FFT 256K complex doubles SPLASH-2
FFTW 1024 ¬ 16 ¬ 16 complex doubles FFTW
LU 768 ¬ 768 matrix, 16 ¬ 16 tile SPLASH-2
Radix 2M keys, radix 32 SPLASH-2
Water 1024 molecules SPLASH-2

4. Simulation Results

In this section, we evaluate our proposal by presenting
the L2 cache power, L2 cache energy, total energy (in-
cludes core, clock, L2 cache, DRAM, and various sys-
tem buffers), and parallel execution time. We compare
five points in the design space: baseline with no leak-
age power optimization (Baseline), baseline with drowsy
mode enabled (Drowsy), baseline with drowsy mode and
subbank power-down enabled (Drowsy+PD), access clus-
tering with drowsy mode and subbank power-down en-
abled (Cluster+Drowsy+PD), and proximity-aware access
clustering with drowsy mode and subbank power-down en-
abled (ProxCl.+Drowsy+PD). The last two design points
employ our virtual address translation schemes and we
would be interested to see how these two design points fare
when compared to the third design point. Figures 4, 5, 6,
and 7 show these results normalized to Baseline.
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Figure 4. Power consumed by the L2 cache.

Figure 4 shows the results for L2 cache power. On av-
erage (the last group shows the harmonic mean), drowsy
mode saves 50% of L2 cache power while our proposal
saves another 55% of the remaining L2 cache power. In-
terestingly, drowsy mode with subbank power-down does
not help at all when not employing access clustering. This
brings out the importance of access clustering for effective
application of power-down mode. In fact, we found that
even the drowsy mode becomes more effective with access
clustering because now each subbank shows very regular
active and idle phase patterns. Although proximity-aware
access clustering burns a little extra L2 cache power, on
average, it saves 52% and 75% of L2 cache power com-
pared to Drowsy+PD and Baseline, respectively. Figure 5
shows how this power saving gets translated to L2 cache
energy saving. Here also our proximity-aware access clus-
tering proposal continues to save 50% of L2 cache energy
compared to Drowsy+PD.

Figure 6 shows that in terms of total energy the system
with proximity-aware access clustering emerges the best de-
sign out of the five designs we consider. On average, it saves
7% and 23% of total energy compared to Drowsy+PD and
Baseline, respectively. Only FFTW and Radix are the two
applications that dissipate more energy with access cluster-
ing compared to Drowsy+PD. This is explained by the exe-
cution time chart shown in Figure 7. In Figure 7 we observe
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Figure 5. Energy dissipated by the L2 cache.
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Figure 6. Total dissipated energy.

that across the board, access clustering without proximity
awareness hurts performance due to extra subbank conflicts.
However, proximity-aware access clustering compensates
this loss by making on-chip accesses faster and brings down
the loss in performance to an average of 3%. FFTW and
Radix are the ones suffering from the largest performance
degradation: 10% and 5% compared to Baseline. Overall,
our profile-guided virtual address translation scheme offers
excellent power and energy savings while nominally inflat-
ing the execution time. Introducing proximity awareness in
a NUCA helps improve the performance of seven out of the
eight applications that we consider.

5. Related Work

Power and energy optimization in caches has been ex-
plored extensively over the past years. In the following
we briefly discuss some of the studies most relevant to our
work on leakage optimization in caches. Due to shortage of
space we do not discuss any dynamic power optimization
techniques. The leakage optimization techniques can be
largely divided into three categories, namely, circuit tech-
niques, combination of circuit and architectural techniques,
and compiler-assisted techniques. A comprehensive study
of various components of leakage current in CMOS tran-
sistors and the circuit techniques for leakage optimization
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Figure 7. Parallel execution time.

can be found in [24]. These techniques include channel
design, self-reverse biasing (commonly known as stack-
ing), multi-threshold CMOS (MTCMOS) design, variable
threshold CMOS (VTCMOS) design, dynamic threshold
CMOS (DTCMOS) design, and supply voltage scaling. Re-
duction of leakage power by employing the circuit tech-
nique of leakage-biased bitlines in instruction caches and
register files has been explored in [9].

Drowsy caches [7, 14] put the inactive blocks in a low
supply voltage mode while retaining the data. Cache decay
technique [13] invalidates and turns off the cache blocks
that are unlikely to be used in future. Our proposal of
LEMap uses drowsy cells as the baseline mechanism and
differs significantly from the cache decay technique to take
care of the access pattern in a chip-multiprocessor.

Dynamically resizable instruction cache (DRI i-cache)
and gated- ´ µSµ have been introduced in [22, 26] as ways to
reduce leakage in instruction caches. DRI i-cache monitors
the miss rate in the instruction cache and resizes the cache
by adjusting the index range. Gated- ´ µSµ is a circuit tech-
nique that employs stacking effect to reduce leakage current
in the unused cache portions.

A software-configurable cache is presented in [27] where
the associativity, total size, and block size of the cache can
be configured. Various algorithms to manage the leakage
energy in a multi-level cache hierarchy in the presence of
prefetching are explored in [18]. Dividing the instruction
cache into small “subcaches” for energy reduction and car-
rying out a dynamic page remapping onto subcaches via a
second level of remapping and page migration for enhanc-
ing locality have been explored in [15]. Interaction between
DRAM power saving modes and random and first-touch
page allocation policies of OS has been explored in [17].

Compiler-directed leakage optimization strategies for in-
struction and data caches are presented in [28] and [29], re-
spectively. The only studies that explore compiler-directed
access clustering in single-threaded array-based programs
are [5, 6]. Both the proposals aim at reducing DRAM en-
ergy by mapping variables accessed together onto the same
memory module. However, the first proposal assumes that
the declaration order of the variables is the same as the map-
ping order in the physical memory, which is often not true.
The second proposal combines multiple arrays that are ac-
cessed together into a new single array so that all the ac-
cesses in a time window can be concentrated onto a few



memory modules while the other modules can be put in
a low energy mode. Such a transformation may be easy
for single-threaded programs, but is often very tricky for a
shared memory parallel program, even for array accesses.

6. Summary and Future Directions

We have presented a virtual address translation scheme
to control leakage in large multi-banked non-uniform ac-
cess chip-multiprocessor caches. Our scheme maps subsets
of pages that show similar access behavior onto fixed size
cache regions which we call subbanks. This allows us to
power down a subbank after the last access to it. A baseline
mapping scheme that is oblivious to access patterns can-
not apply power down modes effectively because accesses
to a subbank normally get scattered throughout the entire
execution. Access clustering also helps improve the effec-
tiveness of the subbank-grain drowsy mode because each
subbank now shows regular idle and active phase patterns.
Further, introducing the notion of bank-to-core proximity
while composing the subbanks improves performance. We
evaluate our proposal through profile analysis and find that
it saves 7% of total energy, 50% of L2 cache energy, and
52% of L2 cache power while suffering a 3% performance
loss compared to an otherwise identical system that is obliv-
ious to access patterns. The natural next step is to explore
how the source modifications can be automated with data-
flow analyses and compiler transformations. We would also
like to explore prefetching to bridge the performance gap.
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