
A Compilation Framework for Irregular Memory Accesses on the Cell
Broadband Engine

Pramod K. Bhatotia
High Performance Computing Group,

IBM India Research Laboratory,
New Delhi-110070, INDIA

Email:{pbhatoti}@in.ibm.com

Sanjeev K. Aggarwal and Mainak Chaudhuri
Department of Computer Science and Engineering,

Indian Institute of Technology,
Kanpur-208016, INDIA

Email:{ska and mainakc}@cse.iitk.ac.in

Abstract

A class of scientific problems represents a physical sys-
tem in the form of sparse and irregular kernels. Paral-
lelizing scientific applications that comprise of sparse data
structures on the Cell Broadband Engine (Cell BE) is a
challenging problem as the memory access pattern is irreg-
ular and cannot be determined at compile time. In this pa-
per we present a compiler framework for the Cell BE that
provides automatic run-time support for memory commu-
nication and parallelization to indirectly indexed applica-
tions. The memory communication scheme generates DMA
communication schedule after performing data flow anal-
ysis and facilitates the gather and scatter operations. The
run-time parallelization technique judiciously partitions the
data and computational work taking into account any co-
herence issues that may arise due to irregular accesses. We
evaluate the performance of our compiled code on a3.2
GHz Cell processor and demonstrate a parallel speedup of
up to factor of4.7 when using eight threads.

1. Introduction and Motivation

Irregular memory access kernels arise in diverse scien-
tific applications like molecular dynamics, computational
fluid dynamics (CFD) solvers, n-body solvers, etc. These
kernels frequently become computational bottlenecks re-
quiring a tremendous amounts of computational power.
Hence, it is important to develop efficient parallel codes for
applications in which memory accesses are made through
levels of indirection. The Cell BE is an attractive platform
for carrying out parallel computation on a single chip with
very high peak GFLOPS [12]. The high performance com-
puting power of the Cell BE can be utilized to accelerate an
application if and only if the application is effectively par-
allelized with proper memory communication between the

Synergistic Processor Elements (SPEs) and the Power Pro-
cessing Element (PPE). To take advantage of the coarse-
grain parallelism available in the form of multiple SPEs,
a parallelizing compiler needs to generate Single-Program-
Multiple-Data (SPMD) parallel model of execution. The
Cell BE performs extremely well for the applications where
the memory access pattern is regular. As the access pattern
can be predicted at compile time, the computation can be
overlapped with communication, which yields better per-
formance. However, parallelizing irregular accesses auto-
matically and efficiently on the Cell BE [2] is a particularly
challenging problem for the following reasons.

• Compiler Analysis for Irregular Memory Accesses:
A memory access is irregular if no closed-form ex-
pression, in terms of the loop indices and constants,
for the subscripts of the accessed variable is avail-
able at compile-time. The access patterns in irregu-
lar kernel would be known at run-time only. This re-
sults in lack of compile-time knowledge about where
the DMA communication schedule for gather and scat-
ter operation is to be placed. Hence, traditional static
analysis and loop transformation techniques cannot be
used for irregular memory accesses. When static anal-
ysis cannot produce the information needed, run-time
techniques must be employed. A dataflow analysis
framework based on run-time preprocessing of the ker-
nel is needed.

• Run-time Parallelization of Irregular Reduction
Loops (Sparse Updates): Parallelization of loops
with irregular reads and writes leads to loop carried de-
pendence that cannot be estimated at compile-time. As
a result, loops with sparse updates may end up produc-
ing wrong results because the local stores (LS) of the
SPEs are not kept coherent by the hardware. Hence,
run-time analysis is required to determine the cross-
iteration dependency for loops with sparse updates.

Sequential Input
 program

Dataflow Variable
Analysis

Runtime System

SPMD Cell Code

 Compiler
Transformation

Memory
Communicat ion

 Runtime
 Parallelization

Figure 1. Overview of the compiler framework

The run-time parallelization system must provide sup-
port for automatic partitioning of computational work
and data by avoiding sparse updates using barrier and
other synchronization primitives.

• Explicit Dynamic Memory Management: The SPEs
can operate only on their small LS memory (256 KB),
which is shared for both instruction and data. SPEs
cannot access data directly from the main memory.
The data must be explicitly transferred for computa-
tion from the shared main memory into the LS through
DMA operations. And due to the limited amount of LS
memory per SPE, fitting all the code and data into the
LS can be difficult for most applications. As the SPEs
are specially designed to do large amounts of compu-
tation quickly, dynamic management of LS is needed.
For this, efficient loop tiling is required to minimize
the number of bus transfers between the main mem-
ory and the LS by overlapping the communication with
computation.

• Challenges Faced in Getting Better Performance
from the Cell Architecture: The SPEs are designed
for streaming workload computation while the PPE
manages the workload partitioning and monitors the
control flow among the SPEs. So it is necessary to par-
tition the computation and the data efficiently to get
the maximum performance. Secondly, the Cell BE in-
cludes branch prediction in the PPE, but the SPEs do
not include dynamic branch prediction hardware. In-
stead, they rely on the compiler generated branch hints.
Hence, control transfer should be minimized for effi-
cient implementation. Lastly, Since the SPEs are vec-
tor processors, scalar operations turn out to be costly.
This is because an SPE is able to load and store only
16 bytes at a time from the local store locations, which
are aligned on the 16-byte boundaries.

In this work, we have developed a parallelizing com-
pilation framework for sparse scientific applications. The
overview of the framework is shown in Figure 1. The
dataflow framework, after performing flow variable anal-
ysis, describes accurately where the direct memory access
(DMA) communication schedules are to be generated for

Loop Flow
 Graph Builder

Result Flow
Variable
Analysis

Bit-Vector
Library

 Global
Information

Builder

global flow
 analysis

result flow
 analysis

Dependence Analyzer

Local Flow
Analysis

Global Flow
Analysis

Result Flow
Analysis

Source
Loop
Flow

Graph

Global
Info-DS

c2suif
AST

(SUIF IR)

Inspector
Output

Figure 2. Dataflow analysis framework

gather and scatter operations. Then compiler framework
performs transformations to facilitate the data communica-
tion and the actual computation. It also exploits situations
to reuse communication schedule for amortizing the cost of
the dataflow analysis. The run-time system provides sup-
port for memory communication and parallelization. The
memory communication scheme provides dynamic man-
agement of data transfers between the LS and the main
memory, thereby avoiding the programmer managed local
stores. We have also implemented compiler-directed multi-
buffering to overlap on-chip communication and SPE com-
putation. The run-time parallelization technique judiciously
partitions the data and computational work taking into ac-
count any coherence issues that may arise due to irregular
accesses.

The rest of this paper is organized as follows. Section
2 explains the dataflow variable analysis for the Cell BE.
Section 3 describes the compiler transformations and code
generation phase. Section 4 presents the run-time system
for memory communication and parallelization scheme to
avoid concurrent sparse updates to the same location. Sec-
tion 5 provides a brief overview of related work in the area
of compilation for irregular problems. Section 6 reports per-
formance results and Section 7 concludes the paper.

2 Dataflow Variable Analysis for the Cell BE

To generate an optimized code for the Cell memory ar-
chitecture, the compiler has to schedule explicit memory
communication between the main memory and the LS. To
accomplish this the compiler has to transform the kernel af-
ter analyzing: (i) the kernel data access patterns and (ii)
the available memory space in the LS. The dataflow analy-
sis framework for the Cell BE analyzes the sequential input
program to determine the points in the program for memory
communication. Figure 2 shows the block diagram of the
dataflow analysis framework for memory communication.

The dataflow framework analyzes [11] the input ker-
nel based on run-time preprocessing to build the memory

Algorithm 1 : Local Flow Analysis
input : Set ofLFG basic nodesω, global program

information ofAP

output: Local flow variables(LFV)

for l← 1 to ω do
GET(l) : The portions read inl from LS.

{p|stmt in l readsportion p}

PUT(l) : The portions written froml into the LS.

{p|stmt in l assigns to portion p}

TILE(l) : The portions tiled into blocks. These
portions are large compared to the memory
available in the LS.

{p|portions in l requiresmemory more than

block size in l}

BUF(l) : The portions buffered into LS on exit from
l.

{GET (l) ∪ PUT (l)} ∩ (TILE(l))

KILL(l) : The portions that may be made invalid in
l by overwriting a part of or the full portions.

{p|stmt in l invalidates portionp}

end
return

communication schedule. During program execution, the
framework examines the data references made by processor
and calculates which off-processor data needs to be fetched
and where this data will be stored once it is received. The
framework is implemented on SUIF 2.0 [1] compiler frame-
work, where it analyzes the loop flow graph for communi-
cation of array portions.

Definition 1: An array portion (AP) Y [X(1 : n)] ac-
cesses arrayY at subscripts generated from arrayX , which
has lower bound1 and upper boundn.

Definition 2: A loop flow graph (LFG) of a program
P is a control flow graph(N, E, begin, end), where each
nodenǫN representsL ∪ P . HereL is the set of loops and
P contains one entry pad and one exit pad for each loop. An
edge(n, n′)ǫE represents a possible flow of control from
noden to noden′. The two distinguished nodes,begin and
end, represent, respectively, the unique entry and exit of the
programP .

The dependence analyzer for local flow variable analysis
is described in Algorithm 1, global and result flow variable
analysis are explained in Algorithm 2.

Algorithm 2 : Global and Result Flow Analysis
input : Set ofLFG basic nodesω, Local flow variables

(LFV), global program information ofAP

output: Result flow variable

for l ← 1 to ω do
Global Flow Variable Analysis:

LIVE any/all(l): The portions needed inl or along
any/all paths starting inl.

GET (l)∪
T

sǫsuccessor(l)(LIV Eall(s)\KILL(l))

GET (l) ∪
S

sǫsuccessor(l)(LIV Eany(s)\KILL(l))

BUFFD (l): The portions already available when
enteringl.

BUF (l) ∪
T

pǫpredecessor(l)(BUFFD(p)\KILL(l))

HOIST (l): The portions for which gather should
be hoisted ahead ofl.
T

pǫpredecessor(l)(LIV Eall(p) ∪BUFFD(p))

FETCH(l): The portions needed inl or some later
loop. These can be hoisted beforel.

GET (l) ∪
T

sǫsuccessor(l)(HOIST (s)∩

FETCH(s))

Result Flow Variable Analysis:

The result flow variable describes which portions
have to be gathered before enteringl.

FETCH(l)\
T

pǫpredecessor(l)(FETCH(p)∪

BUFFD(p))

end
return

3 Compiler Transformations and Code Gen-
eration

Once the memory communication schedule is built, then
compiler transforms the input sequential program to gener-
ate Single-Program-Multiple-Data (SPMD) parallel model
of execution. Then, the transformed parallelized version
performs the actual communication and computation using
run-time system. The block diagram of compiler transfor-
mations and code generation is shown in Figure 3.

3.1 Kernel Transformations for Double-
Buffering Scheme

Since DMA transfers for gather and scatter of data take a
lot of time, a great deal of cycles of SPEs gets wasted wait-
ing for the data. In order to speed up the process, the com-

Run-Time
 Library

Loop
Transformations

Kernel
Transformations

Communication
Builder

Compiler Transformations and Code Generation

Communication
Transformations

Multi-Buffering
Builder

Tiling Info
Builder

Inspector
Output

Global
Info-DS

Input
Source
SUIF IR

suif2c

Transformed
SUIF IR

SPMD
 Cell
Code

Figure 3. Compiler transformations and code
generation

putation at SPE must be overlapped with the DMA com-
munication. The current implementation of our compiler
modifies the kernel’s array portions wherever they are ac-
cessed, for implementing double-buffering technique. This
maximizes the time spent in the compute phase and min-
imizes the time spent waiting for the completion of DMA
transfers. It allocates two buffers for every array portion
accessed in the kernel. To implement double buffering, we
use unique DMA tag IDs for each buffer of an array portion
using tag manager function. The tags are grouped based on
the array portion, using fence command for ordering within
a tag group. To ensure the ordering of DMA transfers within
the MFC, barriers are implemented.

3.2 Loop Transformations for Tiling

The scientific kernels are mostly abstracted as a series of
multilevel nested loops that access multi-dimensional data
arrays. There is always a possibility that the data arrays
needed to execute the kernel are too large to fit in the LS
memory. Loop tiling is a key compilation transformation to
accommodate both code and data within the limited size of
the LS memory. The tiling of the loop must ensure that at all
the times the data required must fit in the LS. It must also
minimize the number of data transfers between the main
memory and the LS thereby exploiting reuse of the data re-
siding in the LS memory.

3.3 Communication Schedule Reuse

In iterative kernels, the access patterns repeat. Hence,
the same communication schedule can be reused, provided
there is no possibility of the referenced arrays having been
modified. The compiler stores the communication schedule
computed for the first iteration, and reuses it for subsequent
iterations. To amortize the cost of the flow analysis phase
used for determining the communication requirement, the
current implementation of the compiler performs compile
time analysis to reuse the communication schedule [7]. Al-

Algorithm 3 : Communication Schedule Reuse
input : A forall loop that containsm data arrays

xi
L,1 ≤ i ≤ m, andn indirection arrays,ind

j

L,

1 ≤ j ≤ n.

Define:
1. DAD(Zp

L) Data access descriptor associated with
Z

p

L whereZ
p

L = {xi
L, ind

j

L} .
2. L.DAD(Zp

L) Recorded data access descriptor
associated withZp

L whenL carried out its last analysis .
3. last mod(DAD(ind

j

L)) last modified for
indirection arrayDAD(ind

j

L).
4. L.last mod(L.DAD(ind

j

L)) Recorded last
modified for indirection arrayDAD(ind

j

L) whenL

carried out its last analysis.

Record: Each time analysis forL is carried out, store
the following information:
1. DAD(xi

L) for each unique data array
xi

L, 1 ≤ i ≤ m

2. DAD(ind
j

L) for each unique indirection array
ind

j

L, 1 ≤ j ≤ n

3. last mod(DAD(ind
j

L)), for ind
j

L, 1 ≤ j ≤ n

Check: The following checks are performed before the
subsequent execution ofL. If any of the following
conditions is false, the analysis must be repeated forL.
1. DAD(xi

L) == L.DAD(xi
L), 1 ≤ i ≤ m

2. DAD(ind
j

L) == L.DAD(ind
j

L), 1 ≤ j ≤ n

3. last mod(DAD(ind
j

L)) ==
L.last mod(L.DAD(ind

j

L)), 1 ≤ j ≤ n

return

gorithm 3 iterates over the loop flow graph to analyzes the
schedule reuse. A data array descriptor (DAD) stores the
current distribution of the array and its size. Block distri-
bution of data arrays is implemented in our scheme. The
information produced by the dataflow analysis for loopL

can be reused only if the following conditions are met since
the last invocation.

• Distribution of data arrays referenced in the loopL re-
main unchanged.

• Indirection arrays associated with loopL have not
been modified.

The first time dataflow analysis for a forall loopL is car-
ried it performs all the preprocessing. After that checks are
performed before the subsequent execution of theL.

4 Compiler Controlled Runtime System

4.1 Compiler-Directed Memory Commu-
nication Mechanism

The main memory can be accessed in the following
ways: (i) regular block fashion; (ii) irregular manner for

Algorithm 4 : Memory communication mechanism
for the Cell processor

input : Number of program pointsτ , gather-setG,
scatter-setS, dead-setD

output: Data transfer through DMA

Retain-set::R[0 : τ]=φ

Operate-set::O[0 : τ]=φ

for j ← 1 to τ do
DetermineG[j], S[j], andD[j] using the dataflow
analysis result obtained forjth program point
R[j] = R[j − 1] - (S[j] + D[j])
O[j] = G[j] - R[j]
ω = length(O[j])
for i← 1 to ω do

if O[j][i].access type = regular accessthen
Allocate twin buffer and exerciseBlock
Access Method for Regular Accessesfor
O[j][i]th portion

else
Allocate twin buffer and exerciseBlock
Access Method for Regular Accessesfor
the indirection portion inO[j][i]th portion
if read-only accessthen

Bounded Method for Irregular Read
else

Compiler Controlled Cache
end

end
end
n = length(S[j])
for i← 1 to n do

if S[j][i].access type = regular accessthen
Write back using
Block Access Method

else
Compiler Controlled Cache

end
end

end
return

read-only operations; and (iii) irregular manner for read as
well as write operations. For each type of data access to the
main memory, there is a unique way of performing the data
communication. In this section, we describe the algorithm
for performing the data communication between the SPE
LS and the main memory. The data communication is done
through direct memory access (DMA) at the program points
determined after dataflow analysis. Iterating over each pro-
gram point, depending on the type of the access, Algorithm
4 implements the memory communication as discussed be-
low.

1. Block Access Method for Regular Accesses:To
gather the portions that are accessed in a regular way,
we need to retrieve the bounding box determined by

tile size. For this we use the MFC block read opera-
tion. The run-time system ensures that the last 4 bits
of the effective address (EA) in the main memory and
the LS address are same to avoid bus errors. It also
makes sure that the data is cache line aligned to utilize
the bandwidth effectively.

2. Bounded Method for Irregular Read Accesses:Ir-
regular read access means that the elements needed
may reside in non-contiguous areas of the main mem-
ory. To access the irregular arrays, three methods for
performing the data communication was proposed in
Titanium [9]. The bulk method of fetching the en-
tire indirectly accessed array into the LS is not fea-
sible for the Cell BE because of the limited size of lo-
cal memory. The gather method is too slow to run on
the Cell BE because translating indirect array accesses
and fetching individual elements wastes the available
bandwidth.

The bounded method with appropriate modification is
useful for the Cell BE. To utilize the LS effectively,
instead of finding a single bounding box that contains
all the needed elements, we prepare a list of bounding
boxes of all the needed elements. Since the data trans-
fer unit of the DMA engine is a multiple of 128 bytes,
we keep the size of the box 128 bytes. The executor
prepares the list of boxes and initiates the communica-
tion with the MFC DMA-list command. The compiler
prepares a single bounding box within the same tile
for duplicated values of the referenced array to prevent
communicating the same element twice. It does mem-
copy of the bounded box of duplicated values across
tiles while implementing double buffering.

3. Compiler Controlled Cache for Sparse Updates:To
prevent intra-SPE coherence glitches resulting from
sparse updates, the compiler must ensure that the re-
cent copy of the data is fed to the kernel instead of
prefetching the stale copy from the main memory. In
each SPE, the compiler simulates a direct mapped
cache that has 128 lines, each of which is 128-byte
long. The compiler fetches the referenced array using
the block access method. It looks up the cache main-
tained for each indirect reference. If the line does not
contain the required data, the miss handler fetches the
required data from the main memory. While transfer-
ring data from the cache of an SPE to the main mem-
ory, there is a risk of data being overwritten by the
garbage values in the shared cache lines residing in
other SPEs. To avoid this, only the modified data items
are moved to the main memory, using simulated dirty
bits.

Name Description Problem size 1 Problem size 2 Problem size 3
IRREG Irregular CFD mesh 2,048 nodes 4,096 nodes 10,240 nodes
NBF Non-bonded force (GROMOS) 8,192 nodes 16,384 nodes 32,000 nodes

MOLDYN Molecular dynamics (CHARMM) 4,096 molecules 8,192 molecules 16,384 molecules

Table 1. Scientific applications kernels

Figure 4. Run-time parallelization of irregular
reduction loops

4.2 Runtime Parallelization of Irregular
Reduction Loops (Sparse Updates)

Automatic parallelization of irregular applications is dif-
ferent from and difficult than regular problems due to the
presence of indirectly indexed array subscripts. There can
be three types of dependencies between two statements de-
pending on the memory access patterns due to duplicated
values: flow dependence (read after write), anti dependence
(write after read), and output dependence (write after write).
A loop can be parallelized without synchronization con-
structs only if the loop does not have any cross-iteration
dependencies. To determine whether there are any cross
iteration dependencies inside the loops or not, the depen-
dence analysis must be performed.

In our framework we have implemented the run-time
parallelization of loops as shown in Figure 4. The run-time
parallelization [3] system determines the cross-iteration de-
pendence relationship by examining the data access values
of the referenced arrays at run-time. And, then preserves
the dependencies in accordance with the output produced
by the dependence analysis. This is done by inserting syn-
chronization constructs at proper points to respect the serial
dependencies.

We gather the dependence information for the iterations

Figure 5. Parallel construction of serial de-
pendence chain

that access the same memory locations. The dependence
information gets stored in the ticket table that is shared
amongst all the SPEs. Every chain of dependencies built in
the ticket table represents the order of the memory accesses
to the same location. The dependency chains are used for
imposing the ordering. The iteration spaces that are not part
of the dependence chain can be executed in parallel with-
out any synchronization constructs. However, the shared
memory accesses present in the dependence chain use syn-
chronization to ensure the serial dependence.

We have implemented parallel construction of the ticket
table to speedup the construction as shown in Figure 5.
The ticket table is built at run-time in two phases using the
inter-processor communication mechanism. To minimize
the communication overhead, firstly, the local table is built
at each SPE locally. And then, the global ticket table is built
using the communication primitives (signals, mailbox, and

do t =
do i = numedges

n1 = left[i]
n2 = right[i]
force = (x[n1]-x[n2])/4
y[n1] += force
y[n2] += force

Figure 6. Irregular memory access kernel

DMA) in the PPE.
Once the ticket table is built, each SPE speculatively ex-

ecutes the iteration space assigned to it as a do-all loop and
at the same time it issues DMA commands to fetch the de-
pendence chain from the main memory. In course of the
execution of loop, the run-time system does the data depen-
dence test by examining whether the accessed element is a
part of the dependence chain. This is done to determine if it
had any cross-iteration dependencies; if the test fails, then
the current iteration gets en-queued in a buffer.

The iterations in the buffer get re-executed serially in ac-
cordance to the dependence chain. The iteration at the head
of the dependence chain gets the recent copy of the accessed
shared variables from the signal’s inbound registers sent by
the predecessor SPE in the dependence chain. The compiler
inserts synchronizing constructs in order to get the recent
copy of the value from the predecessor SPE in the depen-
dence chain. Every next iteration in the buffer uses the re-
cent copy from the current SPE. Every SPE sends the latest
copy of the values to the successor SPE in the dependence
chain using the signal notification channel.

5 Experiments and Results

We now present experimental results to show the perfor-
mance gain of our compiler framework. We evaluated the
performance of the compiler framework with three scien-
tific applications. The real application kernels we have cho-
sen consists of irregular reads and writes of data arrays. As
an example of irregular access, consider the kernel shown
in Figure 6. Here, irregular access means that subscript ex-
pressions of the data arrays x and y are not affine but are
indexed through the values of other arrays. We have mea-
sured and analyzed the behavior of three kernels shown in
Table 1. All our experiments are performed on a 3.2GHz
Cell processor. The achieved speedup against number of
active SPEs are shown in Figure 7, 8, and 9.

Results show there is no linear speedup in terms of the
number of SPEs. The reason for the performance decrease
is the overhead of synchronization primitives for paral-
lelization as the number of SPEs increases.

Figure 7. Performance measures for IRREG

Figure 8. Performance measures for NBF

Figure 9. Performance measures for MOLDYN

6 Related Work

The Cell BE offers massive parallelism at the cost
of unconventional architecture and complex programming
model. Researchers have developed several strategies for

overcoming the compilation challenges on the Cell BE. The
IBM compiler [5] performs automatic generation of SIMD
code for SPEs but follows the OpenMP based approach for
parallelism. CellSs [6] proposed an alternative program-
ming model for exploiting functional parallelism based on
building task dependence graph at run-time with the help
of explicit annotation. A dependence-based compiler ap-
proach for automatically generating parallel and vector code
for the Cell was proposed in [13].

Researchers have investigated efficient ways for the
compile-and run-time supports based on the inspector-
executor technique developed by Berryman and Saltz [4].
The concept of dynamic scratch pad memory management
is well-known in the context of embedded systems [10]. We
use the same basic idea for managing the LS of the SPE.
Prior work on run-time parallelization on multiple proces-
sors includes work and data partitioning for irregular appli-
cations [8]

In contrast to these studies, the work presented in this pa-
per extends the compiling support for the Cell BE in the line
of inspector-executor paradigm. Our compiler is able to au-
tomatically generate code for memory communication and
run-time parallelization for sparse scientific applications.

7 Conclusions

In this paper, we have investigated compile-and run-time
support for sparse scientific computations. We have de-
veloped automatic run-time support for memory commu-
nication and parallelization for irregular memory accesses
on the Cell BE. The dataflow variable analysis generates
and places the communication schedule within the limited
memory available in the LS of the SPEs. The compiler facil-
itates the automatic data movement between the main mem-
ory and the LS of the SPEs and performs the actual compu-
tation. The run-time system overcomes the problems of data
alignment constraints and explicitly managed DMAs. We
have also implemented compiler-directed multi-buffering
to overlap on-chip communication and SPE computation.
The run-time parallelization system judiciously partitions
the data and computational work to avoid sparse updates
among the SPEs. It also reuses the communication sched-
ule for amortizing the cost of dataflow analysis phase, if
possible.

We have evaluated the performance of the compiler
framework for irregular applications. Our preliminary re-
sults demonstrate a substantial speedup on 3.2 GHz Cell
processors. Thus, we can conclude that this compiler frame-
work would help utilize the massive parallelism in the Cell
processor for irregular scientific application while relieving
the programmer of the burden of carefully parallelizing the
sequential code.

References

[1] Suif-2 compiler system, http://suif.stanford.edu/suif/suif2/.

[2] David A. Bader, Virat Agarwal, and Kamesh Madduri. On
the design and analysis of irregular algorithms on the cell
processor: A case study of list ranking. InIPDPS, pages
1–10. IEEE, 2007.

[3] Ding-Kai Chen, Josep Torrellas, and Pen-Chung Yew. An ef-
ficient algorithm for the run-time parallelization of doacross
loops. InSupercomputing ’94: Proceedings of the 1994 con-
ference on Supercomputing, pages 518–527, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

[4] R. Das, M. Uysal, J. Saltz, and Yuan-Shin S. Hwang. Com-
munication optimizations for irregular scientific computa-
tions on distributed memory architectures.Journal of Par-
allel and Distributed Computing, 22(3):462–478, 1994.

[5] A. Eichenberger. Optimizing compiler for the cell processor,
2005.

[6] Josep M. Pérez, Pieter Bellens, Rosa M. Badia, and Jesús
Labarta. Cellss: Making it easier to program the cell broad-
band engine processor.IBM Journal of Research and Devel-
opment, 51(5):593–604, 2007.

[7] Ravi Ponnusamy, Joel H. Saltz, and Alok N. Choudhary.
Runtime compilation techniques for data partitioning and
communication schedule reuse. InSupercomputing, pages
361–370, 1993.

[8] L. Rauchwerger, N. Amato, and D. Padua. Run-time meth-
ods for parallelizing partially parallel loops, 1995.

[9] Jimmy Su and Katherine Yelick. Array prefetching for irreg-
ular array accesses in titanium. InSixth Annual Workshop on
Java for Parallel and Distributed Computing.

[10] Sumesh Udayakumaran and Rajeev Barua. Compiler-
decided dynamic memory allocation for scratch-pad based
embedded systems. InCASES ’03: Proceedings of the 2003
international conference on Compilers, architecture and syn-
thesis for embedded systems, pages 276–286, New York, NY,
USA, 2003. ACM.

[11] Reinhard von Hanxleden, Ken Kennedy, Charles Koelbel,
Raja Das, and Joel H. Saltz. Compiler analysis for irregular
problems in fortran d. InProceedings of the 5th International
Workshop on Languages and Compilers for Parallel Com-
puting, pages 97–111, London, UK, 1993. Springer-Verlag.

[12] Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil,
Parry Husbands, and Katherine Yelick. The potential of the
cell processor for scientific computing. InCF ’06: Proceed-
ings of the 3rd conference on Computing frontiers, pages 9–
20, New York, NY, USA, 2006. ACM.

[13] Yuan Zhao and Ken Kennedy. Dependence-based code gen-
eration for a cell processor. In19th International Workshop,
LCPC 2006, New Orleans, LA, USA, November 2-4, 2006,
pages 64–79, New Orleans, LA, USA, 2006. Springer Berlin
/ Heidelberg.

