
The Impact of Negative Acknowledgments
in

Shared Memory Scientific Applications

Mainak Chaudhuri
School of Electrical and Computer Engineering

Cornell University

Mark Heinrich
School of EECS

University of Central Florida

Introduction

Why Negative Acknowledgments (NACKs)?

• Transactions are inherently non-atomic

– Distributed nature of directory-based cache coherence
protocols

– A transaction may involve multiple messages taking the
machine into transient unstable states

– Need for serialization to resolve races and enforce a
valid total order

• Deadlock avoidance

– Every transaction requires certain amount of resources

– Cannot hold and wait

Need a mechanism to delay and retry transactions:
Extra network traf�c and Controller occupancy

Contributions

• Novel technique of request combining in the coherence pro-
tocol

• Read combining speeds up 64-node parallel execution time
by

– 6% to 93% compared to a base bitevector protocol and
upto 41% compared to amodi�ed version of Origin 2000
protocol

• An extensive quantitative analysis of NACKs on a family
of previously designed as well as novel bitvector protocols

Outline

• Baseline Protocols

– Base Bitvector

– SGI Origin 2000

• Nack-free Protocols

– Piranha/GS320

– Pending Request Combining

• Evaluation

• Summary

Base Node Controller Architecture

MAGIC: Memory And General Interconnect Controller from
Stanford FLASH multiprocessor [Heinrich et al, ASPLOS
1994][Kuskin et al, ISCA 1994]

NI

NETWORK

NIPI

PROCESSOR

SOFTWARE
QUEUE HEAD

PROTOCOL PROCESSOR DCACHE

ICACHE

DATA
BUFFER

ALLOCATOR

DISPATCH

DRAM

DATA
BUFFER

SEND UNIT

PI

Processor Interface has an Outstanding Transaction Table
(OTT)

Base Bitvector Protocol

Directory Entry

• 32-bit sharer vector

• Two state bits: Pending and Dirty

Protocol Features

• Collects Invalidation Acknowledgments at the home node

• Relaxes consistency model with eager-exclusive replies

• Generates NACKs both from the home node and the third
party nodes

Base Bitvector: NACKs from Home (I)

R/W

W H S

S

S

Base Bitvector: NACKs from Home (I)

Inval

R/W

PENDINGReadX

ReplyX

Inval

Inval

W H S

S

S

Base Bitvector: NACKs from Home (I)

Read/ReadX

ReadX

ReplyX

Inval

Inval

Inval

Nack

W H S

S

S
R/W

PENDING

Base Bitvector: NACKs from Home (II)

DR/W

R/W

H

Base Bitvector: NACKs from Home (II)

FwdRead/ReadX
H D

PENDING
Read/ReadX

R/W

R/W

Base Bitvector: NACKs from Home (II)

Read/ReadX

PENDING

Nack

Read/ReadX FwdRead/ReadX
R/W

R/W

H D

Base Bitvector: NACKs from Late Interventions

R/W
H D

Base Bitvector: NACKs from Late Interventions

FwdRead/ReadX

D

Writeback

Read/ReadX

R/W
H

Base Bitvector: NACKs from Late Interventions

FwdRead/ReadX

Writeback

Nack

Read/ReadX

R/W
H D

Base Bitvector: NACKs from Early Interventions

W

R/W

H

Base Bitvector: NACKs from Early Interventions

ReplyX

R/W

H

ReadX

W

Base Bitvector: NACKs from Early Interventions

FwdRead/ReadX

ReplyX

Nack

Read/ReadX

W

R/W

H

ReadX

Modi�ed SGI Origin 2000 Protocol

[Laudon and Lenoski, ISCA 1997]

Directory Entry

• 32-bit sharer vector

• Four state bits: Pending shared, Pending dirty, Dirty, Local

Protocol Features

• Collects invalidation acknowledgments at the writer

• Relaxes consistency model with eager-exclusive replies

• Generates NACKs only from the home node

Modi�ed SGI Origin 2000 Protocol: Nacks

Eliminating early intervention Nacks

• Buffer the intervention at the owner (in OTT) until write
reply arrives

Eliminating late intervention Nacks
• Home is responsible for forwarding the writeback to the
requester

FwdRead/ReadX

3 Reply

Read/ReadX

R/W
H D

Writeback2b

2a1

• Need mechanism to distinguish late and genuine interven-
tions: Writeback buffer

Only home can generate Nacks if the directory entry is in one
of the pending states

Eliminating the Remaining Nacks

Why do we need the pending states?

FwdReadX1 2

3a

3b

3b

FwdReadRead

SWB/RWB

PSH

R H D

Reply

ReadX

ReplyX

W H D

PDEX

CLR_PDEX

1 2

3a

Eliminating the Remaining Nacks

Two Possibilities

• Eliminate pending states (Piranha/GS320 Protocol)

– Accept all requests

– Change directory entry immediately to re�ect the new
sharer or the owner

– Off-load the resolution of races to the periphery (third
party nodes)

• Buffer pending requests at the home node (Our Request
Combining Protocol)

– Reserve moderate buffering space in main memory

– Any message clearing the pending state is responsible
to trigger pending replies for corresponding cache lines

Piranha Inter-node Protocol

[Piranha: Barroso et al, ISCA 2000]

[GS320: Gharachorloo et al, ASPLOS 2000]

Eliminating the Pending Dirty State

• On a read exclusive or upgrade request change the owner
to re�ect the new owner

• Forward the intervention to the old owner if the state is
dirty

• Home node expects the old owner to always be able to
supply the cache line

Eliminating the Pending Dirty State

W

W H D

W

Eliminating the Pending Dirty State

FwdReadX

H D

W W

ReadX

W

Eliminating the Pending Dirty State

FwdReadX

W W

ReadX

ReadX

FwdReadX

W H D

Eliminating the Pending Dirty State

FwdReadX

ReadX

ReadX ReadX

FwdReadX

FwdReadX

W H D

W W

Eliminating the Pending Dirty State

FwdReadX

ReadX ReadX

ReplyX
FwdReadX

FwdReadX

W H D

W W

ReadX

Eliminating the Pending Dirty State

FwdReadX

ReadX

ReplyX

ReplyX

FwdReadX

FwdReadX

W H D

W W

ReadX

ReadX

Eliminating the Pending Dirty State

FwdReadX

ReplyX

ReplyX

ReplyX

FwdReadX

FwdReadX

W H D

W W

ReadX

ReadX ReadX

• We call it Write String Forwarding (WSF)

Eliminating the Pending Shared State

FwdRead

Read

Reply
R

FwdRead

FwdRead

H D

Read
Reply

Reply

Read

R

R

• Treats forwarded read and read exclusive requests simi-
larly

• Called Dirty Sharing (DSH)

• Many two-hop transactions are converted to three-hop
transactions

Eliminating the Pending States

Changes in Node Controller

• Writeback buffer needs to hold written back data until
acknowledged by home

Changes in Cache Subsystem

• Cache controller should be able to supply cache lines in
shared state for intervention replies

• Cache controller needs to generate writebacks on replacing
shared owned cache lines

The Alternative: Buffer at the Home Node

Key observation: the order in which the home node services
incoming requests does not matter

Protocol Features and Directory States

• Reserves space in main memory at boot time for two pend-
ing request lists: read and write

• Maintains states in directory entry to indicate if anything
is pending for the corresponding cache line

• Maintains two entry indices (one for each list) in directory
entry to indicate the start of pending request chain for
the corresponding cache line

• Queues the �rst pending reader in the directory entry
itself: favors short sharing sequences

Enabling Read Combining (RComb)

R5

W

R1

R2

R3 R4

H D

Enabling Read Combining (RComb)

R5
R2

R3 R4

H D

PSH FwdReadRead

W

R1

Enabling Read Combining (RComb)

R5

H D

PSH FwdReadRead

Read

D_ENTRY

R2

W

R1

R2

R3 R4

Enabling Read Combining (RComb)

R5

PSH FwdReadRead

Read

D_ENTRY

R2

W

ReadX

W

R1

R2

R3 R4

H D

Enabling Read Combining (RComb)

R5

Read

Read

D_ENTRY

R2

W

Read

R3

ReadX

W

R1

R2

R3 R4

H D

PSH FwdRead

Enabling Read Combining (RComb)

R5

D_ENTRY

R2

W

Read

Read
ReadX

R4 R3

W

R1

R2

R3 R4

H D

PSH FwdReadRead

Read

Enabling Read Combining (RComb)

R5

W

Read

Read
ReadX

R5

Read

R3R4

W

R1

R2

R3 R4

H D

PSH FwdReadRead

Read

D_ENTRY

R2

Enabling Read Combining (RComb)

Reply

Read
ReadX

R5

Read

R3R4R5SWB

W

R1

R2

R3 R4

H D

PSH FwdReadRead

Read

D_ENTRY

R2

W

Read

Enabling Read Combining (RComb)

SW Queue

SWB

Reply

R4 R3

Reply

Reply

CLR_PL
Addr

W

R1

R2

R3 R4

H D

FwdReadRead

Read

D_ENTRY

W

Read

Read
ReadX

R5

Read

Enabling Read Combining (RComb)

Reply

SWB

Reply

Reply

Reply

CLR_PL
Addr

SW Queue

Reply

W

R1

R2

R3 R4

H D

FwdReadRead

Read

D_ENTRY

W

Read

Read
ReadX

R5

Read

Enabling Read Combining (RComb)

ReplyX

R5

Read

SWB

Reply

Reply

Reply

Reply
Reply

W

R1

R2

R3 R4

H D

FwdReadRead

Read

Read

Read
ReadX

Enabling Write Combining (RWComb+WSF)

• We borrow the idea of WSF from Piranha

• Software queue handler sends out as many write interven-
tions from the write pending chain as possible using two
virtual lanes

• May hurt performance of heavily contended read-modify-
writes and large critical sections
LL; BRANCH
INCREMENT
SC; BRANCH
CRITICAL SECTION
UNLOCK

• Number of failed SC increases

Improving Read-modify-write Performance

[Similar to Rajwar et al, HPCA 2000, excluding the time-out]

Simple Changes in the L1 Cache Controller

DELAY INTERVENTION

SC FAILED ?

INTER. ADDR

LAR
SAME L1 LINE?

DL1 TAG

DIRTY ?

• An LL instruction needs to unblock a pending intervention
if it is looping: requires a one-bit state (No time-out)

• A SC instruction (not necessarily successful) unblocks a
pending intervention

Request Combining: Overheads

Sizing the Pending Lists

• Theoretical bound: P ∗min(SizeMSHR,SizeOTT)

• In practice: contention happens for a single cache line

• Our design uses 128 entries: if �lls up we revert to NACKs

• One entry: entry id (a 32 bit integer), a 64-bit vector
encapsulating requester id and quad word offset of the
requested physical address, a next pointer (32 bits)

• DRAMoverhead per node (for 128 entries): 16*128*2 bytes
i.e. 4KB

Residual Nacks

They still remain! (very small in number)

• Remaining Nacks arise from read-invalidate races

5

3

4a

4b

Inval Ack

Inval

ReadX

ReplyX

Read

Reply
R1 H W2

1

2

• Necessary to preserve write atomicity

• GS320 sends a marker message to �lter useless invali-
dations (due to not having replacement hints)

– Invalidations arriving before the marker are dropped:
requires point-to-point ordering in network

Evaluated Protocols

• BaseBV: Base bitvector

• OriginMod: Modi�ed Origin 2000 protocol

• OriginMod+RComb: Read combining with OriginMod

• OriginMod+RWComb+WSF: Read and write combining with
OriginMod

• OriginMod+RWComb+WSF+OPT: Read and write combining
with delayed intervention improvement on LL/SC

• OriginMod+DSH+WSF(+OPT): Dirty sharing andwrite string
forwarding

All protocols run with coarseness of 2 (64 nodes) or 4 (128
nodes)

Evaluation

Applications from SPLASH-2

• Ocean, Barnes Hut, LU, Water, Radix-Sort, 1D FFT

Simulation Environment

• 1GHz processor, IL1: 32KB/64B/2-way/LRU, DL1: 32KB/32B/2-
way/LRU, UL2: 2MB/128B/2-way/LRU, ITLB: 8/FA/R, DTLB:
64/FA/R, Page size: 4KB

• 400MHz system clock, split transaction bus

• Memory controller: 8-entry OTT, 4-entry WBB

• Latencies: 125ns DRAM latency to the �rst 64 bits

Evaluation

Simulation Environment
• Network con�gurations:

– FT150ns/FT50ns: fat tree connected crossbars, 16-
port switch, 150ns/50ns routing delay, Link BW 1GB/s

– Mesh50ns: 2D mesh, 6-port switch, 50ns routing de-
lay, Link BW 1GB/s

Fat Tree Connected Crossbar (32 nodes)

8

4 4 4 44444

8 8
8

8 Nodes 8 Nodes 8 Nodes 8 Nodes

Water

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
Ti

m
e

on
 6

4
P

ro
ce

ss
or

s

Flag
Lock
Barrier
Read+Write
Busy

B
as

eB
V

O
ri

gi
nM

od

O
ri

gi
nM

od
+R

C
om

b

O
ri

gi
nM

od
+R

W
C

om
b+

W
S

F

O
ri

gi
nM

od
+R

W
C

om
b+

W
S

F+
O

P
T

O
ri

gi
nM

od
+D

S
H

+W
S

F+
O

P
T

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

M
e

m
o

ry
 O

p
e

ra
tio

n
−

b
a

se
d

 D
is

tr
ib

u
tio

n
 o

f
N

A
C

K
s

in
 6

4
−

n
o

d
e

 O
ri
g

in
M

o
d

Prefetch
Normal Store
Normal Load
SC
LL

RComb is (93%, 25%, 21%) faster compared to BaseBV
(41%, 2%, 8%) faster compared to OriginMod
Combining in RComb: (60, 60, 60), RWComb: (39, 56, 48)

Water [Nacks]

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
N

or
m

al
iz

ed
 N

um
be

r o
f N

AC
Ks

 o
n

64
 P

ro
ce

ss
or

s

BaseBV
OriginMod
OriginMod+RComb
OriginMod+RWComb+WSF
OriginMod+RWComb+WSF+OPT
OriginMod+DSH+WSF+OPT

Barnes Hut with 64K Locks

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
Ti

m
e

on
 6

4
P

ro
ce

ss
or

s

Flag
Lock
Barrier
Read+Write
Busy

B
as

eB
V

O
ri

gi
nM

od

O
ri

gi
nM

od
+R

C
om

b

O
ri

gi
nM

od
+R

W
C

om
b+

W
S

F

O
ri

gi
nM

od
+R

W
C

om
b+

W
S

F+
O

P
T

O
ri

gi
nM

od
+D

S
H

+W
S

F+
O

P
T

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

M
e

m
o

ry
 O

p
e

ra
tio

n
−

b
a

se
d

 D
is

tr
ib

u
tio

n
 o

f
N

A
C

K
s

in
 6

4
−

n
o

d
e

 O
ri
g

in
M

o
d

Prefetch
Normal Store
Normal Load
SC
LL

RComb is (51%, 10%, 15%) faster compared to BaseBV
(8%, -2%, 1%) faster compared to OriginMod
Combining in RComb: (35, 40, 30), RWComb: (21, 25, 42)

Barnes Hut with 64K Locks [Occupancy]

FT150ns Mesh50ns FT50ns
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
N

or
m

al
iz

ed
 M

ax
im

um
 P

ro
to

co
l P

ro
ce

ss
or

 O
cc

up
an

cy
 C

yc
le

s BaseBV
OriginMod
OriginMod+RComb
OriginMod+RWComb+WSF
OriginMod+RWComb+WSF+OPT
OriginMod+DSH+WSF+OPT

Barnes Hut with 64K Locks [SC]

FT150ns Mesh50ns FT50ns
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
D

yn
am

ic
 C

ou
nt

 o
f S

to
re

 C
on

di
tio

na
l I

ns
tru

ct
io

ns
 o

n
64

 P
ro

ce
ss

or
s

BaseBV
OriginMod
OriginMod+RComb
OriginMod+RWComb+WSF
OriginMod+RWComb+WSF+OPT
OriginMod+DSH+WSF+OPT

Barnes Hut with 2K Locks [Mesh50ns]

Barnes[2K Locks] Barnes[64K Locks]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
Ti

m
e

on
 6

4
P

ro
ce

ss
or

s

Flag
Lock
Barrier
Read+Write
Busy

B
as

eB
V

O
rig

in
M

od

O
rig

in
M

od
+R

C
om

b

O
rig

in
M

od
+R

W
C

om
b+

W
SF

O
rig

in
M

od
+R

W
C

om
b+

W
SF

+O
PT

O
rig

in
M

od
+D

SH
+W

SF
+O

PT

Unoptimized LU

FT150ns Mesh50ns FT50ns
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
Ti

m
e

on
 6

4
P

ro
ce

ss
or

s

Flag
Lock
Barrier
Read+Write
Busy

B
as

eB
V

O
ri

gi
nM

od

O
ri

gi
nM

od
+R

C
om

b

OriginMod+RWComb+WSF

O
ri

gi
nM

od
+R

W
C

om
b+

W
S

F+
O

P
T

O
ri

gi
nM

od
+D

S
H

+W
S

F+
O

P
T

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

M
e

m
o

ry
 O

p
e

ra
tio

n
−

b
a

se
d

 D
is

tr
ib

u
tio

n
 o

f
N

A
C

K
s

in
 6

4
−

n
o

d
e

 O
ri
g

in
M

o
d

Prefetch
Normal Store
Normal Load
SC
LL

RComb is (39%, 8%, 11%) faster compared to BaseBV
(20%, 2%, 2%) faster compared to OriginMod
Combining in RComb: (60, 56, 39), RWComb: (34, 57, 51)

Unoptimized LU [Occupancy]

FT150ns Mesh50ns FT50ns
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
N

or
m

al
iz

ed
 M

ax
im

um
 P

ro
to

co
l P

ro
ce

ss
or

 O
cc

up
an

cy
 C

yc
le

s BaseBV
OriginMod
OriginMod+RComb
OriginMod+RWComb+WSF
OriginMod+RWComb+WSF+OPT
OriginMod+DSH+WSF+OPT

Unoptimized LU [SC]

FT150ns Mesh50ns FT50ns
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
D

yn
am

ic
 C

ou
nt

 o
f S

to
re

 C
on

di
tio

na
l I

ns
tru

ct
io

ns
 o

n
64

 P
ro

ce
ss

or
s

BaseBV
OriginMod
OriginMod+RComb
OriginMod+RWComb+WSF
OriginMod+RWComb+WSF+OPT
OriginMod+DSH+WSF+OPT

Ocean

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
Ti

m
e

on
 6

4
P

ro
ce

ss
or

s

Flag
Lock
Barrier
Read+Write
Busy

B
as

eB
V

O
rig

in
M

od

O
rig

in
M

od
+R

C
om

b

O
rig

in
M

od
+R

W
C

om
b+

W
SF

O
rig

in
M

od
+R

W
C

om
b+

W
SF

+O
PT

O
rig

in
M

od
+D

SH
+W

SF
+O

PT

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

M
e

m
o

ry
 O

p
e

ra
tio

n
−

b
a

se
d

 D
is

tr
ib

u
tio

n
 o

f
N

A
C

K
s

in
 6

4
−

n
o

d
e

 O
ri
g

in
M

o
d

Prefetch
Normal Store
Normal Load
SC
LL

RComb is (28%, 17%, 21%) faster compared to BaseBV
(21%, 11%, 13%) faster compared to OriginMod
Combining in RComb: (34, 45, 32), RWComb: (40, 54, 49)

Radix-Sort

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
Ti

m
e

on
 6

4
P

ro
ce

ss
or

s

Flag
Lock
Barrier
Read+Write
Busy

B
as

eB
V

O
ri

gi
nM

od

O
ri

gi
nM

od
+R

C
om

b

O
ri

gi
nM

od
+R

W
C

om
b+

W
S

F

O
ri

gi
nM

od
+D

S
H

+W
S

F

FT150ns Mesh50ns FT50ns
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

M
e

m
o

ry
 O

p
e

ra
tio

n
−

b
a

se
d

 D
is

tr
ib

u
tio

n
 o

f
N

A
C

K
s

in
 6

4
−

n
o

d
e

 O
ri
g

in
M

o
d

Prefetch
Normal Store
Normal Load
SC
LL

Ocean: 128 nodes

128 Nodes 64 Nodes 128 Nodes 64 Nodes 128 Nodes 64 Nodes
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 P
ar

al
le

l E
xe

cu
tio

n
Ti

m
e

fo
r O

ce
an

Flag
Lock
Barrier
Read+Write
Busy

B
as

eB
V

O
rig

in
M

od

O
rig

in
M

od
+R

C
om

b

FT150ns Mesh50ns FT50ns

128 nodes: RComb is 69% faster compared to Origin
64 nodes: RComb is 17% faster compared to Origin

Hardwired Protocol Execution [Ocean]

400MHz PP
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

No
rm

al
ize

d
Pa

ra
lle

l E
xe

cu
tio

n
Ti

m
e

on
 6

4
Pr

oc
es

so
rs

Flag
Lock
Barrier
Read+Write
Busy

Relative to
BaseBV[400MHz]

Relative to
BaseBV[800MHz]

800MHz PP

Ba
se

BV

O
rig

in
M

od

O
rig

in
M

od
+R

Co
m

b

O
rig

in
M

od
+R

W
Co

m
b+

W
SF

O
rig

in
M

od
+R

W
Co

m
b+

W
SF

+O
PT

O
rig

in
M

od
+D

SH
+W

SF
+O

PT

Summary: The Best Protocol

Apps FT150ns Mesh50ns FT50ns

Water RComb, RWComb+WSF, RComb, RComb, RWComb+WSF,
RWComb+WSF+OPT RWComb+WSF+OPT RWComb+WSF+OPT

Barnes RComb OriginMod OriginMod,
(64K) RComb

LU RComb, RComb, RComb,
RWComb+WSF+OPT RWComb+WSF+OPT RWComb+WSF+OPT

Ocean RComb RComb RComb

Radix DSH+WSF DSH+WSF DSH+WSF

FFT OriginMod, RComb, RComb

RWComb+WSF RWComb+WSF

Summary: Speedup of RComb

Apps Relative to BaseBV Relative to OriginMod

FT150ns Mesh50ns FT50ns FT150ns Mesh50ns FT50ns

Water 1.93 1.25 1.21 1.41 1.02 1.08
Barnes 1.51 1.10 1.15 1.08 0.98 1.01
LU 1.39 1.08 1.11 1.20 1.02 1.02
Ocean 1.28 1.17 1.21 1.21 1.11 1.13
Radix 1.06 1.09 1.07 1.00 1.00 0.99
FFT 1.11 1.11 1.20 0.98 1.02 1.03

Conclusions

• Negative acknowledgments are important

• In general importance increases as the network gets slower
and more contended

• Read combining emerges the best for majority of the cases

– It accelerates contended read-modify-writes and large
scale producer-consumer sharing

• Aggressive write forwardingmay hurt performance of heav-
ily contended read-modify-writes: requires some form of
delayed intervention scheme

• Dirty sharingmay hurt performance of large-scale producer-
consumer sharing

• Read combining remains free of all these problems, but still
improves load balance and overall performance by eliminat-
ing NACKs

The Impact of Negative Acknowledgments
in

Shared Memory Scientific Applications

