
Cooling the Hot Sets: Improved Space Utilization in Large Caches via
Dynamic Set Balancing

Mainak Chaudhuri
Department of Computer Science and Engineering

Indian Institute of Technology
Kanpur 208016

INDIA
mainakc@cse.iitk.ac.in

30th November, 2008

Abstract

Multi-megabyte on-chip last-level caches are commonplace in high-end computing platforms. Even though

these caches are often designed to have very high associativity, they suffer from non-uniform utilization of the sets

leading to a high volume of conflict misses. Clustering of physical addresses to a few hot sets happens partly due

to poor locality in the access stream and partly due to a mismatch in the access pattern and the virtual address to

physical address translation algorithm. In this paper, we propose the first fully dynamic mechanism to improve the

utilization of sets by adaptively migrating data blocks from hot sets to the relatively cold sets. We present robust

and scalable algorithms for identifying the hot sets and suitable cold sets for holding the migrated data blocks

that flow from the hot regions. We discuss a number of optimizations on the basic design to address different

aspects of such a mechanism, thereby progressively improving the performance. Our detailed execution-driven

simulation results show that with just 5.5% extra book-keeping overhead in a 2 MB 16-way set-associative L2

cache, the dynamic block migration mechanism reduces execution time by 12% on average (geometric mean) for

nine memory-intensive applications selected from the SPEC 2000 and SPEC 2006 benchmark suites. Further,

when applied to an eight-core chip-multiprocessor with a shared 4 MB 16-way set-associative L2 cache, our

technique reduces execution time by 18.1% on average (geometric mean) for a set of multi-threaded kernels and

applications. We also present a thorough energy analysis of the proposed cache architecture and a quantitative

evaluation of how it interacts with an aggressive multi-stream stride prefetcher.

1

1. Introduction

The recent high-end computing chips have housed highly associative multi-megabyte last-level caches with the

hope of bridging the latency gap between the on-chip caches and the off-chip DRAM modules. However, poor

locality in the access stream of applications often leads to clustering of physical addresses to a few sets in the

last-level cache leading to a high volume of conflict misses. The situation is often worsened by the fact that the

physical addresses are assigned to virtual pages on a demand basis when the page is accessed for the first time

without having much knowledge about the set of pages that will be accessed together during the subsequent phases

of execution. The end-result is an uneven distribution of addresses to the cache sets and severe under-utilization

of the silicon estate devoted to the last level of the on-chip cache hierarchy.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
L
2
 c

a
c
h
e
 m

is
s
e
s

>=1000
[100, 1000)
[10, 100)
[2, 10)
1

168.w
up

171.s
w

im

172.m
grid

173.a
pplu

179.a
rt

181.m
cf

183.e
quake

188.a
m

m
p

254.g
ap

256.b
zi

p2

401.b
zi

p2

403.g
cc

429.m
cf

433.m
ilc

434.z
eusm

p

462.li
bquant

470.lb
m

482.s
phin

x

(a)

M
e

d
ia

n
 e

v
ic

ti
o

n
 c

o
u

n
t

F
ill

 c
o

u
n

t
s
ta

ti
s
ti
c
s
 a

c
ro

s
s
 s

e
ts

std
max−min

1

10

10
2

10
3

10
4

10
5

10
6

10
7

1

10

10
2

10
3

10
4

10
5

168.w
up

171.s
w

im

172.m
grid

173.a
pplu

179.a
rt

181.m
cf

183.e
quake

188.a
m

m
p

254.g
ap

256.b
zi

p2

401.b
zi

p2

403.g
cc

429.m
cf

433.m
ilc

434.z
eusm

p

462.li
bquant

470.lb
m

482.s
phin

x

168.w
up

171.s
w

im

172.m
grid

173.a
pplu

179.a
rt

181.m
cf

183.e
quake

188.a
m

m
p

256.b
zi

p2

401.b
zi

p2

403.g
cc

429.m
cf

433.m
ilc

434.z
eusm

p

254.g
ap

462.li
bquant

470.lb
m

482.s
phin

x

(b)

Figure 1. (a) Distribution of cache block addresses in the L2 cache miss stream, (b) Top panel: Median of the number
of L2 cache evictions between the eviction and the reuse of a particular L2 cache block; Bottom panel: Distribution
statistics of the number of refills (same as the number of misses) across the L2 cache sets. We have taken the liberty of
shortening “wupwise” to “wup”, “libquantum” to “libquant”, and “sphinx3” to “sphinx”.

To re-assert the severity of conflict misses, in Figure 1(a), we present the distribution of cache block addresses

in the L2 cache miss stream for 18 applications with at least 0.5 misses per kilo instructions (MPKI) chosen

from the SPEC 2000 and SPEC 2006 suites running on a 2 MB 16-way set-associative L2 cache having 128-byte

blocks and exercising LRU replacement policy. Each application is run for a representative sample of one billion

dynamic instructions. Virtual to physical address translations are carried out by implementing the demand-based

bin-hopping algorithm, which is known to be one of the cache-friendly schemes [12].1 In this figure, we classify

each missing L2 cache block address into one of the five categories depending on how many times that address has
1 More details of the simulation environment will be discussed in Section 3.

2

appeared in the miss stream. For example, in 179.art, block addresses repeated hundred to thousand times in the

miss stream constitute about 49% of all the L2 cache misses while those repeated thousand or more times account

for the remaining 51% of misses. In 181.mcf, the situation is even worse. In this case about 71% of the L2 cache

misses come from addresses repeated thousand or more times. These two applications suffer most due to conflict

misses. On the other hand, 434.zeusmp has about 85% of L2 cache misses covered by blocks appearing only once

in the miss stream. Similar behavior, at a slightly smaller scale, is exhibited by 168.wupwise. Such applications

are unlikely to observe improvements due to techniques that attempt to resolve conflict misses.

While Figure 1(a) helps us identify the probable candidate applications that may benefit from conflict resolution

techniques (179.art, 181.mcf, 429.mcf, and 482.sphinx3 among the top few), it is also important to know how

far apart the reappearance of a block address in the miss stream from its last eviction is. The upper panel of

Figure 1(b) shows the median of the number of evictions between the eviction and the next miss of an L2 cache

block address (the y-axis is in log scale).2 This number ranges from 551 in 179.art to 1067142 in 171.swim. For

all applications, except 179.art, this number is bigger than thousand, and for 13 out of the 18 selected applications,

this is bigger than ten thousand. This data clearly brings out the difficulty of any technique that tries to retain the

repeatedly missing addresses. A conventional fully associative victim cache of reasonable size is bound to fail.

We will return to this particular aspect in Section 2.2.3 when presenting our technique.

Finally, the lower panel of Figure 1(b) presents the root cause of the conflict misses. For each application, we

show two pieces of statistics (the y-axis is in log scale). The left bar shows the standard deviation of the number

of L2 cache block refills (same as the number of misses) across the cache sets. The right bar shows the difference

in the number of refills between the hottest (having the most number of refills) and the coldest (having the least

number of refills) sets. This data clearly explains the behavior depicted in Figure 1(a). For example, 179.art,

181.mcf, 188.ammp, 429.mcf, 470.lbm, and 482.sphinx3 are among the top few applications that suffer most due

to uneven distribution of addresses to cache sets. While 470.lbm does not have as much of block address repetition

as 179.art or 181.mcf has in the L2 cache miss stream, it has significant non-uniformity in its refill distribution

across the cache sets.

There is a significant body of research that has tried to improve the conflict behavior of caches. We discuss

some of these in Section 1.1. In this paper, we present the first fully dynamic design that adaptively migrates L2

cache blocks from hot sets to the cold ones so that the overall retention of the cache improves significantly. We

progressively present refinements on the basic design so that a designer has several options to choose from. The
2 Blocks appearing in the miss stream only once are not considered in this statistic.

3

basic design involves an algorithm that identifies the cold sets (through a meaningful metric of “coldness”) in the

L2 cache and every replaced block is migrated to a suitably chosen cold set. However, a block replaced due to

a migration is not migrated again. A migration tag cache (MTC), separate from the main cache, keeps track of

the migrated blocks. We find that having only half the tags in the MTC compared to the main cache is enough

to realize the full potential of conflict resolution via block migration. The most attractive aspect of this design

is that the size of the MTC offers an important tuning parameter and helps the designer trade performance for

area accurately. We build upon this basic design and propose three important optimizations. First, we propose

an algorithm to track the hot sets and selectively migrate the blocks replaced from the hot sets only. Second, we

implement an algorithm to impose a dynamic limit on the number of blocks that can be migrated from a single set.

This limit is increased dynamically in steps only when our algorithm senses that the opportunity lost has crossed

a threshold. Third, we propose a new replacement policy for our cache architecture so that the retention of the

migrated blocks is optimized. This is important because just migrating the hot blocks is not enough; they have to

be retained in the cache also. We discuss the basic design and the optimizations in Section 2.

The highlights of our simulation results (Sections 3 and 4) include an average 12% reduction in execution time

for nine memory-intensive applications (with more than four MPKI) chosen from the SPEC 2000 and SPEC 2006

suites running on a 2 MB 16-way set-associative L2 cache. The improvement for multi-threaded workloads is

even more encouraging. On an eight-core chip-multiprocessor (CMP) with a 4 MB 16-way set-associative shared

L2 cache, a set of multi-threaded kernels and applications selected from the SPLASH-2, SPEC OMP, and FFTW

suites exhibits an average 18.1% reduction in execution time. Further, our technique convincingly outperforms

the related proposals such as a reasonably sized fully associative victim cache [11], XOR indexing [8], prime

displacement and prime modulus indexing [13], V-way cache [18], dynamic insertion policy [19], and shepherd

cache [20]. This excellent performance is achieved at the cost of only 5.5% extra storage overhead for book-

keeping. We also present a thorough dynamic as well as leakage energy analysis of the proposed cache architecture

and quantitatively evaluate how our technique interacts with an aggressive multi-stream stride prefetcher.

1.1. Related Work

There is an impressive body of research attempting to improve the cache performance in all types of processors.

Since it is impossible to do justice to this large body of research in a brief note like this, in the following we discuss

some of the studies most relevant to our proposal. We divide the discussion into three parts respectively addressing

cache indexing schemes, new cache organizations, and cache replacement policies proposed to reduce the volume

4

of conflict misses.

Among the cache indexing schemes, the hash-rehash algorithm [1] and the column-associative algorithm [2]

were originally designed for direct-mapped caches. The hash-rehash scheme uses two indexing functions to access

the cache. If the first access misses, the alternate function is used to access a different set. The column-associative

cache amends a serious performance pathology of the hash-rehash scheme which could cause significant amount

of thrashing. Overall, under ideal conditions, the column-associative cache can offer performance equivalent to a

two-way set-associative cache.

A generalization of the idea of using multiple indexing functions is presented in [23] in the form of skew-

associative caches. The skew-associative cache partitions the entire cache into banks and accesses each bank

with a different indexing function. The indexing functions are designed in such a way that the addresses that

map to the same set in one bank are most likely to map to different sets in other banks. The proposed indexing

functions are XOR-based hash functions involving a circularly shifted version of the tag and the normal index.

The original proposal was for a two-way banked cache, but the central idea can be extended to more banks by

properly designing the index functions.

An excellent treatment of a range of XOR-based indexing schemes can be found in [8]. We choose to compare

our proposal against a simple scheme described in [8]. If a block address is A[n− 1 : 0] (obtained after removing

the block offset bits), the traditional cache index is A[s− 1 : 0] where the number of sets is 2s. The XOR scheme

that we compare our proposal with uses A[2s− 1 : s] XOR A[s− 1 : 0] as the cache index.

The possibility of using a prime modulus (as opposed to a power of two) for computing the cache index has

been explored in [13]. In the simplest form, the prime number p closest to the number of sets in the cache is

chosen and the cache index for block address A is computed as Amod p. Note that in this case the tag may have

to be extended by a few bits depending on the choice of p and the availability of a divider for computing the exact

tag. The authors also propose a prime displacement scheme, which computes the cache index as (c.A[n − 1 :

s] +A[s− 1 : 0]) mod p, where c is an appropriately chosen multiplication factor applied to the tag. We compare

our proposal against both simple prime modulus and prime displacement schemes.

Perhaps the most notable contribution in the category of new cache organizations comes from the proposal

of fully associative small victim caches [11]. However, such caches work best with direct-mapped or small-

associativity caches. We have already indicated in Figure 1 that such a cache may not be very useful for the large

last-level caches with high associativity. Nonetheless, we will compare our proposal with a reasonably large fully

associative victim cache. A recent proposal [3] shows how to design very large victim caches that are organized

5

as direct-mapped arrays but are functionally equivalent to fully associative caches. That proposal also shows how

to identify the most frequently missing blocks dynamically so that they can be retained in this large victim cache.

The indirect index cache organization [9] involves decoupled tag and data stores and a generational global

replacement policy. The tags are organized into a primary 4-way set-associative hash table and a secondary

direct-mapped table. On a primary table miss, the secondary table is used to walk the hash collision chain. The

generational replacement policy maintains multiple queues of tags. If a tag is not accessed for a long period of

time, it is gradually demoted to the lowest priority queue. A replacement tag is always selected from the lowest

priority queue.

The V-way cache [18] doubles the tag store compared to a conventional set associative cache while keeping the

decoupled data store size unchanged. As a result, the tag store gains one extra index bit allowing the conflicting

tags to get distributed over two sets. Each tag maintains a pointer to the corresponding data block. Since the

number of tags is twice that of the data blocks, within a set with a very high probability an invalid tag can be found.

When searching for an invalid tag, the V-way cache implements a reuse-based global data block replacement policy

where the block with the minimum reuse count is found by sequentially examining the reuse counters. The authors

impose an upper bound of five cycles for this search. We compare our proposal with the V-way cache.

To resolve conflict misses in large direct-mapped caches, OS-assisted dynamic page remapping is explored

in [4]. The pages suffering from a high volume of conflicts are detected dynamically and remapped subsequently

by the OS. The group-associative cache presented in [17] shares some similarities with our proposal. The authors

propose to keep track of a few MRU blocks in a direct-mapped L1 cache. When one such block is replaced, it

is moved to an alternate set so that the block can be retained for some more time. However, locating a suitable

alternate set requires a localized search. Our proposal has important differences with this design. First, MRU

blocks may not be good migration candidates in a highly associative L2 cache. Second, our proposal does not

require any search operation for locating the “cold” sets. Finally and most importantly, we show that retaining a

migrated block for a sufficiently long time is absolutely necessary to enjoy the full benefit of block migration in a

large highly associative L2 cache.

Among the recent replacement policy proposals, the adaptive cache [25] proposes to dynamically pick the

better of the two replacement policies (e.g., LRU and LFU) on a per-set basis. However, the design requires two

auxiliary partial tag arrays to keep track of the performance of the two competing policies. Dynamic insertion

policy (DIP) [19] improves cache performance by deciding where to insert a newly allocated block. In traditional

LRU algorithms, a new block is always made the MRU within a set. DIP explores the potential of dynamically

6

choosing between the LRU and MRU positions for a newly incoming block. A block inserted in the LRU position

is promoted to the MRU position only after it is accessed once more. If the working set is much larger than the

cache and exhibits a cyclic access pattern, such a policy succeeds in retaining some part of the working set in

the cache. Finally, the shepherd cache [20] dedicates a few of the main cache ways to buffer newly incoming

blocks and observe the “future” references with respect to the misses that brought these blocks. These dedicated

ways are referred to as the shepherd ways. When a block must be replaced from the shepherd ways (uses a FIFO

replacement policy), it is moved to a non-shepherd way by replacing the block with the least imminent access

within the shepherding window of the shepherd block that is being moved. Thus the shepherd ways help emulate

the optimal replacement within the non-shepherd ways. We compare our proposal with DIP and the shepherd

cache.

2. Conflict Resolution via Block Migration

This section presents the proposed cache architecture. First we discuss the basic design and then present a few

performance optimizations.

2.1. The Basic Design

The basic design concept was introduced in Section 1: every data block replaced from the L2 cache is migrated

to a set “colder” than the parent set (the original set holding the replaced block will be referred to as the parent set of

that block). Such a design involves two major components. First, on every replacement a simple hardware should

help identify a suitable set where the replaced block can be migrated to. This will be referred to as the destination

of migration. Second, auxiliary storage and logic should be in place to locate a block after it is migrated. We

discuss these two aspects in the following.

2.1.1 Finding the Destination of Migration

The number of blocks filled into the sets in the L2 cache is used as a metric to rank them according to their

congestion. A saturating counter is associated with each set. This counter, referred to as the occupancy counter, is

incremented whenever a block is filled into the set either due to an external refill or due to an internal migration.

As soon as the counter reaches a value equal to the associativity of the cache, a global counter is incremented.

Note that the width of the occupancy counter is chosen such that it can count up to four times the associativity

7

minus one. When the global counter reaches a value equal to the number of sets in the cache, the entire occupancy

counter RAM is reset.

The sets in the cache are divided into smaller clusters of 16 consecutive sets each. For each cluster we maintain

a coarse occupancy counter which is incremented whenever any of the occupancy counters of the cluster is incre-

mented. The coarse occupancy counter RAM is reset when the occupancy counter RAM is reset. We assume that

the entire L2 cache is divided into smaller banks. In this paper, the bank size is assumed to be 1 MB. Whenever an

occupancy counter is incremented, a comparator tree within that bank first computes the new minimum among the

coarse occupancy counters. In our design, this comparator tree has 31 comparators organized in a depth-five tree.

In a 2 MB cache, there are two banks and a combining comparator computes the minimum among each bank’s

minimum. In Section 2.3, we will discuss how to scale this design to larger caches. Finally, a comparator tree

of depth four computes the minimum among the occupancy counters belonging to the set cluster with minimum

coarse occupancy count. It is important to note that the entire latency of these comparator trees can be comfortably

hidden under the tag array and data array access required for filling the block (it is common to have serial tag and

data access in large L2 caches for saving dynamic energy). The end-result of this hardware is that at the time of

every replacement, the set with minimum occupancy count is known. The ties can be broken arbitrarily.

On a replacement from the L2 cache, the minimum occupancy count (as determined above) is compared against

the occupancy count of the parent set. If the parent set has a higher occupancy count, the replaced block is

flagged as a candidate for migration to the set with minimum occupancy count. Within this target set, the baseline

replacement policy (LRU in this paper) is applied to determine the way where the migrated block will be filled.

The secondary replacement originating from the target set (to make room for the migrated block) is not migrated

recursively and is handled by the baseline replacement protocol.

�����
�����
�����

�����
�����
�����

�
�
�

�
�
�

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

��������
��������
��������

��������
��������
��������

�
�
�

�
�
�

�
�
�

�
�
�

������������

������
������
������

������
������
������

������
������
������

������
������
������

�
�
�

�
�
� ���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
������������

���
���

���
���
��� ��������

��������
��������
��������

�
�
�
�

�
�
�
�����

����
����

����
����
����

���
���
���
���
����
����
����
����

����
����
����
����

Way0HPTRV V Way1 V

k

n

Tag

k

n n

Tag
PTR
Way0

Tag
PTR
Way1

r

q

pk

FPTR

Set
Parent
Set

Target

Migration Tag Cache

r

q

p

H T

1 0

0 1

0 0

Figure 2. A logical description of the basic design.

8

2.1.2 Locating the Migrated Blocks

Figure 2 shows the basic storage and logic required for locating a block in the proposed cache architecture. For

brevity, in this figure, we show the necessary storage and logic for a baseline cache with two ways (marked Way0

and Way1). The first migrated block from a set initiates a tag list in the migration tag cache (MTC), which is

organized as a direct-mapped array. Each set maintains a head pointer (HPTR) and a head pointer valid bit. This

pointer indicates the position of the first migrated tag in the MTC for that set. For example, in the figure, the tag of

the first migrated block from set k is located at entry r of the MTC. The position r is recorded in the HPTR entry

of set k. Each migration tag cache entry contains six logical fields, namely, the tag itself, the parent set index,

the target set index where the migrated data block can be found, a forward pointer (FPTR) to the next entry in the

migration tag list, a head bit (H), and a tail bit (T). The FPTR and the HT RAMs are shown physically separate

from the MTC in the figure. The target set field of an MTC entry is slightly bigger than the parent set field because

the former also includes the target way where the block can be found. More specifically, in an A-way L2 cache,

the target set field is extended by dlog2(A)e bits and its least significant dlog2(A)e bits hold the target way.

Continuing with the example, the target set field of entry r of the MTC points to set n where the migrated data

block resides. A direct lookup of the target way data array at that set will return the block (in this case the block

is in Way1). The parent set field of entry r of the MTC points to set k of main cache. The H bit of entry r of the

MTC is set, since this is the head of a migrated tag list for some set (in this case, set k). Subsequent migrations

originating from the set k are linked up in the MTC to form a tag list. In the figure, two more tags are shown at

entries p and q of the MTC. The FPTR field of entry r of the MTC points to entry p and the FPTR field of entry p

points to entry q, which is the tail of the list (signified by the T bit of that entry).

The above description clearly indicates a straightforward protocol for locating a block in the proposed cache

architecture. The lookup begins with a conventional associative tag comparison at the cache index derived from

the requested address (in the above example, set k). At the same time a lookup is initiated in the MTC at the

entry indicated by the HPTR entry of that set, provided the HPTR entry is valid (actually the MTC lookup begins

slightly later due to the access latency of the HPTR RAM). The tag list in the MTC is followed up to the tail until

a hit is encountered either in the MTC or in the main cache; if the tag is found neither in the main cache nor in the

MTC, a miss is flagged. In case of a hit in the MTC, the target set in the main cache is looked up and the requested

block is retrieved. To avoid false hits, each main cache tag is extended by an extra state bit to mark the migrated

blocks. For example, a migrated block residing in set k of the main cache should not return a hit even if its tag

9

matches the tag of a primary lookup. Thus, a primary lookup in the main tag array now has an additional condition

for hit, namely, the migrated state must be reset. On the other hand, a secondary lookup carried out due to a hit in

the MTC need not check that the migrated state is turned on before flagging a hit because the MTC entry provides

the target set as well as the target way. However, to take care of false primary hits, it is absolutely necessary to

turn on the migrated state for a migrated block.3 On an MTC hit, the migrated block is swapped with the LRU

block in the parent set. This policy helps improve the average hit latency if the same block is accessed in the near

future. In summary, a hit in the primary lookup leaves the hit latency unaltered. But an MTC hit lengthens the hit

latency by the latency of a second lookup in the main cache at the migrated set index in addition to any exposed

latency of the tag list walk. Note that the second lookup directly accesses the data array of the target way at the

target index. It also needs to access the state/tag array of the target set to update the LRU age bits.

While the logic involved in the aforementioned protocol is straightforward, the performance improvement may

not be encouraging if proper care is not taken. We address a few important performance and implementation

concerns in the following.

Handling Replacement of Migrated Blocks: If a replaced block (due to primary or secondary replacement)

from the main cache turns out to be an already migrated one, the involved protocol is slightly more complex. If

the block is decided to be replaced from the cache, its entry must be removed from the MTC. To speed up the

process, we associate a tag pointer with each block in the main cache. In the figure, these are shown as the Tag

PTR RAMs for Way0 and Way1. The tag pointer of a migrated block holds the index of the corresponding MTC

entry. A replaced block reads its tag pointer entry provided the migrated state is set and removes itself from the

MTC. For this purpose, a backward pointer (henceforth referred to as BPTR) is added to each MTC entry, thereby

making each tag list a doubly-linked one (in the interest of brevity, this detail is not shown in the figure). Note that

depending on the situation the H/T bits may require modifications leading to changes in the HPTR entry of the

parent set. For example, the removal of the tail entry of a list requires updating the T bit of the previous entry and

the removal of the head entry of a list requires updating the H bit of the next entry and the HPTR of the parent set.

If a replaced migrated block is selected for re-migration, only the target set/way field of its MTC entry requires

a modification.

Managing the Migration Tag Cache Entries: At reset, the MTC entries are organized in the form of a free

list. A register holds the index of the current free list head entry. An empty bit indicates if the free list is empty.
3 It is important to note that the migrated state is not enough to ascertain a secondary lookup hit because there may be multiple migrated

blocks residing in the same set with the same tag.

10

When a tag is allocated in the MTC, the head of the free list is claimed and the next entry in the free list is made

the new head. When a tag is freed from the MTC, its entry is returned to the head of the free list and this entry

becomes the new free list head. If the free list is found to be empty at the time of allocating a newly migrated tag

in the MTC, a randomly chosen entry is first reclaimed before beginning the migration process. While this is an

admittedly ad-hoc choice, we have found that a better reclamation protocol does not have a significant impact on

performance.

Hit/Miss Critical Path: The critical path of the hit/miss signal plays an important role in any cache archi-

tecture. Our preliminary experiments showed that the straightforward lookup protocol depicted above leads to a

significant loss of potential performance improvement even though the gains in terms of cache hit rates are high.

We implement two notable optimizations to reduce the hit/miss critical path. First, we observe that making the

MTC equipped with two read ports doesn’t affect the access latency much. We exploit this fact along with the

doubly-linked nature of the tag lists to walk the lists in both the directions, namely, from the head and from the tail.

This clearly halves the worst case list traversal latency. Such a solution requires maintaining a tail pointer (along

with the already existing head pointer) with each main cache set. The head and the tail pointers are read out

simultaneously and the MTC lookups are initiated from both ends of the list. We note that replacement of the tail

entry of a list in the MTC now requires modifications of the tail pointer in the parent set. For each set, the head

and tail pointers are combined into a single entry and will be referred to as the list terminal pointer (LTPTR).

The second optimization for hit/miss critical path aims at shortening the miss path only. With each main cache

set, we incorporate a 60-bit filter. The goal of the filter attached to a set is to maintain an approximate summary

of the tags that have been migrated from that set. While the filter can return false positives indicating the presence

of a tag in the list when actually it is not there, it never returns false negatives. As a result, a negative indication

from the filter obviates the need for looking up the MTC. We discuss the functioning of the filter in the following.

The 60 bits devoted to the filter are divided into nine segments. Each of the lower eight segments is seven bits

in size. The most significant segment is four bits in size. When a tag T is presented to the filter as a query, the

lower three bits of the tag (T [2 : 0]) are used to access one of the lower eight segments of the filter. Let the

contents of the corresponding segment be F0[6 : 0]. Further, let the contents of the most significant segment

of the filter be F1[3 : 0]. The filter returns a positive answer if (F0[6 : 0] AND T [9 : 3]) equals T [9 : 3] and

(F1[3 : 0] AND T [13 : 10]) equals T [13 : 10]. A newly migrated tag T is hashed into the filter in a similar

fashion. First, T [2 : 0] is used to access one of the lower eight segments of the filter and then T [9 : 3] is ORed with

the contents of that segment. At the same time T [13 : 10] is ORed with the contents of the most significant segment

11

of the filter. It is important to note that when a migrated tag is replaced from the MTC or moved elsewhere, the

filter associated with its parent set is not updated. The filter of a set is updated only when it returns a false positive

answer. On a false positive, all the tags in the list have to be visited anyway and the filter contents can be accurately

rebuilt. Given the simplicity of the filter, we are adequately satisfied to find that it delivers reasonably low false

positive rates for the applications that seldom hit in the MTC. These results are discussed in Section 4.

2.2. Performance Optimizations

A thorough understanding of the performance results of the basic design motivated us to explore three important

optimizations. We discuss them in the following.

2.2.1 Selective Migration

All replaced blocks are not of equal importance. Ideally, we would like to migrate the blocks that miss frequently.

While it is possible to adopt a Bloom filter in conjunction with a pipelined priority queue proposed in [3] to identify

the top frequently missing block addresses, in this paper we propose a much simpler solution. Our solution relies

on the observation that the blocks that often miss map to a few hot sets. As a result, it is enough to identify the hot

sets and migrate the blocks that are replaced from the hot sets. A set is said to be hot if a sufficiently large number

of misses originates from that set.

Each cache set is associated with a counter to count the number of external refills into that set caused by the

cache misses (note that refills caused by internal migrations are not counted here). These counters will be referred

to as the refill counters. Each refill counter can count up to four times the associativity of the cache minus one (i.e.,

63 for a 16-way set-associative cache). Whenever a refill counter reaches its maximum value, all the refill counters

in that cache bank (we assume 1 MB 16-way set-associative banks having 512 sets with 128-byte block size) are

reset. Each cache bank has two additional registers maintaining the total number of external refills to that bank

and the maximum number of refills to a set in that bank (i.e., the number of refills to the hottest set of the bank).

Both these registers are reset when the refill counters are reset. A set k is identified as hot if RefillCount(k) >

AvgRefillCount+ (MaxRefillCount−AvgRefillCount) >> δ, where RefillCount(k) is the refill count

of set k, AvgRefillCount is the refill count of the bank containing set k averaged over all the sets of that

bank (obtained by shifting the total refill count of the bank by a constant amount to the right), MaxRefillCount

is the refill count of the hottest set within the bank, and δ is a dynamically adjusted parameter maintained per

bank. Here, the primary intuition is that a set is hot if its refill count exceeds the average refill count by a fraction

12

of the difference between the maximum and the average. The parameter δ is initialized to three at reset or at

context switch. Whenever the number of replaced blocks within a bank that are rejected for migration exceeds a

pre-defined threshold T , an attempt is made to increase δ, if required. At this point, if the number of successful

migrations originating from that bank is found to be less than T , the value of δ is increased by one; otherwise δ is

left unchanged. We set a reasonably large upper limit on δ, which, in this paper, is 16. The threshold T is set to

1024 in this work.

In summary, selective migration is achieved when a block is replaced from a set which satisfies the aforemen-

tioned inequality involving the refill counts. This block is migrated to a suitable set identified by the algorithm

discussed in Section 2.1.1.

2.2.2 Per-set Migration Limit

Given a limited space in the MTC, it is important to give a fair share to all the hot sets. One possible way of

implementing this constraint is to impose a limit on the length of the migration tag list belonging to one parent

set. However, it is important to adjust this length according to the demand during the execution. Each main cache

set has a saturating counter to hold the current length of the migration tag list belonging to that set. At reset or

at context switch the limit on this length is set to 16. However, this limit is monitored periodically based on the

demand and increased if needed according to the following algorithm. If the total number of replaced blocks within

a bank that are rejected for migration (either due to small list length limit or due to small value of δ discussed in

the last section) exceeds a pre-defined threshold T , an attempt is made to increase the list length limit or δ, as

required. If the number of successful migrations originating from that bank is found to be less than T , the list

length limit for that bank is doubled provided the number of rejected migrations due to inadequate value of list

length limit exceeds that due to small value of δ; otherwise the value of δ is increased by one. The threshold T is

set to 1024 in this paper.

2.2.3 Retaining the Migrated Blocks

Once the blocks replaced from the hot sets are migrated, it is important to retain them in the cache for a suffi-

ciently long time. As already shown in Figure 1(b), the number of replacements (and hence refills) between the

replacement of a block and its reuse tends to be large. Therefore, to experience the full benefit of block migration,

it is necessary to modify the replacement policy of the cache so that the hot blocks which are migrated are retained

long enough to be reused.

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti
o
n
 o

f
fi
lle

d
 b

lo
c
k
s
 i
n
 L

2
 c

a
c
h
e

>16
[9, 16]
[5, 8]
[2, 4]
1

168.w
up

171.s
w

im

172.m
grid

173.a
pplu

179.a
rt

181.m
cf

183.e
quake

188.a
m

m
p

254.g
ap

256.b
zi

p2

401.b
zi

p2

403.g
cc

429.m
cf

433.m
ilc

434.z
eusm

p

462.li
bquant

470.lb
m

482.s
phin

x

Figure 3. Use distribution of L2 cache blocks.

A recent capacity retention proposal, namely, dynamic insertion policy (DIP) [19], makes the observation that

most of the L2 cache blocks are used only once before getting evicted. Based on this observation the authors

propose a new insertion policy such that the single-use blocks get filled and immediately evicted on the next

miss to the same set leaving the rest of the set undisturbed. Initially, we explored the possibility of using DIP in

conjunction with block migration to improve the capacity retention of the cache. However, we find that the number

of single-use blocks is small when the ratio between the L2 cache block size and the L1 data cache block size is

more than one, which should be the natural choice for exploiting spatial locality in an inclusive cache hierarchy.

In Figure 3, we show the use distribution of the blocks filled into the L2 cache during the entire execution. The

L2 cache is 2 MB 16-way set-associative with 128-byte block size and the L1 data cache is 32 KB 4-way set-

associative with 32-byte block size. It is clear that the dominant use count ranges from two to four. For example,

470.lbm has more than 75% of blocks with use count in this range. The reason for this bias is that the ratio of

the L2 cache block size to the L1 data cache block size is four and this defines the “natural use count” of the L2

cache blocks. Nonetheless, we note that 179.art, 181.mcf, and 429.mcf still have significantly high percentages of

single-use blocks. However, a robust capacity retention algorithm that does not rely on any specific ratio of the

L2 cache block size to the L1 data cache block size must cater to the larger fraction of the applications where the

dominant use count is more than one.

Our solution for retaining the migrated blocks classifies the cache sets into two categories, namely, the sets that

enjoy a sufficiently high volume of hits and those that do not. For the sets that enjoy a high volume of hits, the

baseline LRU replacement policy is left unchanged. However, for the sets that experience a low volume of hits,

the non-migrated blocks are given priority in the replacement policy. A saturating counter for maintaining the

14

number of hits is associated with each main cache set. Note that a hit in the migrated block is counted as a hit for

the parent set. The hit counters are reset when the refill counters are reset.

A set is classified as a low-hit set if the number of hits experienced by the set is at most a constant h times

the number of external refills to that set. Also, it is necessary for the refill count of the set to be bigger than a

constant r before a reliable classification can be determined. If the refill count of a set is less than or equal to

r, it is automatically classified as a high-hit set. We fix h at four so that high-hit sets have more than 80% hit

rate. Note that this is the minimum “natural hit rate” of an application with good spatial locality, where the notion

of “natural use count” of an L2 cache block was introduced above. We set r to one-eighth of the associativity.

However, a simulation study revealed that some of the sets take longer to reach a stable behavior and requires a

slightly higher target hit rate to avoid misclassification. So we settle with two values of the pair (h, r), namely,

(h1, r1) = (5, associativity/2) and (h2, r2) = (4, associativity/8). To obtain a unified solution, we employ a

set sampling technique [19]. Every 64th set is dedicated to measure the effectiveness of the first value pair (h1, r1).

Every 32nd set which is not an even multiple of 32 is dedicated to measure the effectiveness of the second value

pair (h2, r2). The rest of the sets follow the current winning value pair. There is a global saturating counter H ,

which is incremented if one of the dedicated sets in the first category experiences a hit. It is decremented if one

of the dedicated sets in the second category experiences a hit. The rest of the sets use the pair (h1, r1) if the value

in H is greater than or equal to a threshold TH ; otherwise they use the pair (h2, r2). In this paper, TH is set to

the mid-point of the value range of H . This is also the value with which the counter is initialized. The hit counter

associated with each set is sized such that it can count up to 2max(h1, h2) times the maximum range of the per-set

refill counter. H is chosen to be a 32-bit counter.

BANK

PAIR

C0

C1 C2

C3

C4

C5
C6C7

BP0

BP1

CORE

IL1 DL1

Pipeline

B0 B1

(a) (b)

Figure 4. (a) A two-bank single-core architecture. (b) An architecture with more than two banks and/or more than one
core. In this particular case, we show eight cores (C0 to C7) and four L2 cache banks (organized as two bank pairs:
BP0 and BP1) connected over a bidirectional ring.

15

2.3. Scaling to Larger Caches and CMPs

Large caches are usually divided into smaller banks. In this paper, we assume that each L2 cache bank is 1 MB

16-way set-associative with 128-byte blocks. Larger L2 caches are built by aggregating multiple such banks. For

example, an 8 MB 16-way set-associative L2 cache would have eight banks. The associativity of each bank is

same as the aggregate cache. Only the sets are distributed across the banks in a cyclic fashion. Each bank gets

512 sets. In Figure 4, we show two architectures. The left one is an example of a single-core architecture with two

L2 cache banks. For architectures with more than two L2 cache banks and/or more than one core, we resort to an

organization shown on the right. Here we group the L2 cache banks into pairs and connect each pair to a switch

on a bidirectional ring. The cores with their private L1 caches also connect to the ring. For chip-multiprocessors

simulated in this paper, we assume that the entire L2 cache is shared among the cores.

To simplify the block migration protocol, we allow block migration among a pair of banks that are connected

to the switch. Of course, if an architecture has only two L2 cache banks, this policy boils down to allowing

migration between any two sets. For larger caches such as those shown in Figure 4(b), we find that the performance

improvement achieved by allowing cross-switch migration is not justified when the increase in coherence protocol

complexity is considered. While a full description of the coherence protocol in the presence of cross-switch

migration is beyond the scope of this paper, we would like to mention that the primary difficulty arises from the

fact that a request now may involve a series of interconnect transactions. This introduces a significant number of

deadlock cases involving the virtual channel buffer management in the switches. One possible solution could be

to inform the cores about the new location of each migrated L2 cache block. This is equivalent to sending the

information stored in the MTC to the cores so that an L1 cache miss request can be directly routed to the target L2

cache bank. However, this solution requires replicating the full MTC information at each core, thereby increasing

the storage overhead significantly. So we do not consider this solution.

Allowing migration only between two adjacent L2 cache banks makes our solution scale seamlessly to arbitrar-

ily large caches. Each bank is equipped with its own MTC keeping track of the blocks migrated from that bank.

The target set can belong to either the same bank or the adjacent bank. Therefore, if each bank has 512 sets, the

target set can be encoded in 14 bits for a 16-way cache and the parent set in 9 bits. In addition to the MTC, each

bank maintains the other auxiliary structures discussed in the previous sections. For example, Figure 2 can be

considered as showing just one bank of a 2-way set-associative L2 cache. Most of the storage and logic can be

designed on a per-bank basis. There are only two pieces of hardware that span two adjacent banks. First, we need

16

a comparator to connect the per-bank local comparator trees discussed in Section 2.1.1. Second, the global counter

H discussed in Section 2.2.3 is maintained per-bank pair.

2.3.1 Synergy with Proximity Management

Non-uniform cache access (NUCA) architectures as shown in Figure 4(b) lead to different access latencies for

different L2 cache banks from the viewpoint of the same core. The primary reason for this is the distributed

nature of the L2 cache resulting in different interconnect latencies to different banks from the same core. A few

studies have been done to improve the proximity of data by migrating them to L2 cache banks closer to the core

requiring the data. The choice of disallowing cross-switch migration for conflict resolution makes it orthogonal to

the migration for proximity enhancement. Proximity enhancing migration will be necessarily cross-switch because

proximity of a particular piece of data does not improve unless the number of interconnect hops between the core

and the bank holding the data improves. Once a piece of data is migrated over the interconnect for improving the

proximity (the grain of this migration can be one cache block or a suitable number of consecutive cache blocks if

the book-keeping overhead is a concern), the exact location within the target pair of banks can be chosen to reduce

the chance of conflict misses by using the technique proposed in this paper. We leave the quantitative evaluation

of this synergy to future work and focus only on conflict resolution via block migration in this paper.

2.4. Implications on Memory System

Before closing this section, we discuss a rather unexpected impact of block migration on the DRAM perfor-

mance. Consider a string of L2 cache miss addresses M1,M2, . . . ,Mk and the corresponding string of evicted

addresses E1, E2, . . . , Ek. The addresses in the miss string cause DRAM reads, while the dirty blocks belonging

to the eviction string cause DRAM writes. Often the DRAM bank number is derived from the upper few bits of

the last-level cache index. For example, according to the DRAM bank computation scheme suggested in [22], we

derive the bank number of a 4 GB DRAM module (four 1 GB DIMMs) with each DRAM chip having four internal

banks as follows. The lowest three bits of the physical address are the column offset within a DRAM column4,

the next 11 bits form the column, the next two bits are the bank number within a DIMM, the next two bits are the

DIMM number, and the upper 14 bits form the row number. Thus, the bits [17:14] of the physical address are used

to compute the DIMM number and bank number. On the other hand, in a 2 MB 16-way L2 cache with 128-byte

blocks, the set index is derived from the bits [16:7] of the physical address.
4 The 64-bit columns are distributed among 16 x4 DRAM chips in a DIMM [15].

17

Now consider an application that sequentially streams through a large amount of data updating a significant

fraction of that leading to a large number of dirty evictions. Since the L2 cache set index of Mi is exactly same as

that of Ei, we can conclude that the set index of Ei differs from that of Mj only in the lower few bits if |i− j| is

small (i.e. within a time window). As a result, the eviction addresses increase the chance of DRAM bank conflicts

significantly because the DRAM bank number is derived from the upper few bits of the L2 cache set index. To

reduce the volume of such bank conflicts, the bank number can be calculated by XORing the actual bank number

bits and the lower few bits of the L2 cache tag [26]. Since the address Mi necessarily has a different tag compared

to Ei, such a scheme reduces the chance of bank conflicts.

In the presence of block migration, such bank conflicts are reduced dramatically. This is because the replaced

block Ei may get migrated to some other cache set s and the final evicted address will originate from the set s.

Since set s may belong to a completely different region of the cache compared to the sets that generate the misses

Mi, the chances of the evicted blocks conflicting with the miss addresses in DRAM reduce significantly.

Table 1. Simulated single-core system
Parameter Value Parameter Value

Process/Vdd/Vt 65 nm/1.1 V/0.18 V FP div. latency 12 (SP)/19 (DP) cycles
Frequency 4 GHz ITLB, DTLB 64/fully assoc./Non-MRU
Pipe stages 18 Page size 4 KB
Front-end width 4 L1 Icache 32 KB/64B/4-way/LRU
Commit width 8 L1 Dcache 32 KB/32B/4-way/LRU
BTB 256 sets, 4-way Store buffer 32
Branch predictor Tournament (Alpha 21264) L1 MSHR 16+1 for retiring stores
RAS 32 entries L1 cache hit latency 3 cycles
Br. mispred. penalty 14 cycles (minimum) L2 cache 2 MB/128B/16-way/LRU
ROB 128 entries L2 MSHR 16 per bank×2 banks
Branch stack 32 entries L2 bank tag latency 9 cycles
Integer/FP registers 160/160 L2 bank data latency 4 cycles (one way)
Integer/FP/LS queue 32/32/64 entries Memory cntr. freq. 2 GHz
ALU/FPU 8 (two for addr. calc.)/3 System bus width/freq. 64 bits/2 GHz
Int. mult./div. latency 6/35 cycles SDRAM bandwidth 6.4 GB/s
FP mult. latency 2 cycles SDRAM access time 80 ns+20 ns transfer

3. Simulation Environment

We simulate two types of systems, namely, one with a single core and the other with eight cores. Table 1 presents

the relevant details of our MIPS ISA-based single-core baseline system. The cache latencies are determined using

CACTI [10] assuming a 65 nm process. For L2 cache access, we assume serial tag/data access where only one

way of the data bank is accessed if the lookup hits in the tag array. The baseline L2 cache has two banks each of

size 1 MB with 16-way set-associativity and 128-byte block size. In addition to the L2 cache configuration shown

18

in Table 1, we explore a 32-way set-associative configuration of the same size (i.e., 2 MB) where tag access takes

10 cycles.

The eight-core CMP uses the core depicted in Table 1 as the basic building block. For the CMP, we simulate

a 4 MB 16-way set-associative shared L2 cache by connecting two pairs of 1 MB 16-way set-associative banks

to two switches on a bidirectional ring. Thus, a number of basic 2 MB 16-way set-associative L2 cache modules

can be glued to the interconnect to build bigger caches. Each core with its own L1 caches (same configuration as

in Table 1) connects to the ring via a switch. This leads to an architecture shown in Figure 4(b). Each switch on

the ring takes one cycle for port scheduling i.e., the hop time is one cycle. The L1 caches are kept coherent via a

distributed directory-based coherence protocol. Each L2 cache block maintains a directory entry with an eight-bit

sharer vector and four states, namely, M, S, pending, and dirty in L1 (the E state is merged into the M state as

in [14]). In both single-core and eight-core configurations, the cache hierarchy maintains inclusion.

Our dynamic energy model is based on an improved version of Wattch [5]. Our subthreshold and gate leakage

models are developed using the techniques proposed in [6] and [21]. The model is improved at several places by

validating against HSPICE simulations. Our L2 cache data RAM banks implement the drowsy cells [7], which

switch a 128 KB subbank to a low voltage supply while retaining the data, if the subbank is not accessed for 1000

clock cycles. Our DRAM energy model is based on published data of highly loaded DDR2-400 512 Mb x4 chip

available from the Micron technical notes [15, 16]. We scale up the frequency-dependent power components by a

factor of two to match our 400 MHz frequency. The DIMM id and DRAM bank id are extracted from a requested

physical address as discussed in Section 2.4. A virtual page is mapped to a physical page frame by the bin-hopping

algorithm [12] when the page suffers from a page fault.

Table 2. MPKI of single-threaded programs
168.wupwise 171.swim 172.mgrid 173.applu 179.art 181.mcf 183.equake 188.ammp 254.gap

0.5 5.2 1.5 2.3 16.8 50.8 7.0 0.5 1.8
256.bzip2 401.bzip2 403.gcc 429.mcf 433.milc 434.zeusmp 462.libquantum 470.lbm 482.sphinx3

0.9 1.0 1.0 22.2 8.8 1.1 5.7 8.44 4.42

The single-threaded applications used in this study are drawn from a subset of 33 applications of the SPEC 2000

and SPEC 2006 suites. We select 18 applications that have at least 0.5 MPKI on the baseline system. The selection

set of 33 applications includes all the SPEC 2000 applications except the C++ and the Fortran 90 applications and

a subset of the SPEC 2006 suite.5 The selected 18 applications were shown in Figures 1 and 3. For each of the
5 Specifically, the applications considered from SPEC 2000 include 164, 168, 171, 172, 173, 175, 176, 177, 179, 181, 183, 186, 188,

197, 253, 254, 255, 256, 300, and 301. The applications considered from SPEC 2006 include 401, 403, 429, 433, 434, 435, 445, 456, 458,

19

applications, we execute a representative sample of one billion dynamic instructions chosen with the help of the

SimPoint toolset [24]. All the applications use the ref input set. The MPKI for each of the applications on the

baseline 2 MB 16-way L2 cache is shown in Table 2.

Table 3. Simulated multi-threaded programs
Name Input Source MPKI

Art MinneSPEC SPEC OMP 25.4
Equake MinneSPEC, ARCHduration 0.5 SPEC OMP 1.1
FFT 256K complex doubles SPLASH-2 1.0
FFTW 2048×16×16 complex doubles FFTW 5.9
LU 768×768 matrix, 16×16 tiles SPLASH-2 0.1
Radix 2M keys, radix 32 SPLASH-2 2.8

We use six multi-threaded programs in this paper for evaluating our proposal on an eight-core CMP. The details

of these applications are presented in Table 3 along with their MPKI on the baseline 4 MB 16-way set-associative

shared L2 cache. These applications use carefully hand-optimized array locks and tree barriers. All these applica-

tions are run to completion.

Before closing this section, we present the details of the additional storage structures needed by our proposal

in Table 4. Since the auxiliary data and control can be designed separately for each independent 1 MB 16-way

set-associative L2 cache bank, we present the overhead for one bank only. The number of tags the migration tag

cache (MTC) RAM can hold is half the number of tags in the main cache. Therefore, for a 1 MB L2 cache bank

with 128-byte block size, the number of entries in the MTC is 4096. The MTC requires two read ports and one

write port. All other RAMs require one read port and one write port. We have verified with CACTI that each RAM

can be accessed comfortably within two cycles. We note that in a baseline 2 MB 16-way set-associative L2 cache,

one 1 MB 16-way set-associative bank requires 1048576 bytes for data and 29696 bytes of tag and state (23 bits of

tag, 2 bits of block state, and 4 bits of LRU state). We assume a single-core node with a 40-bit physical address.6

Thus, the single-core baseline system requires 1078272 bytes for each bank. As shown in Table 4, our proposal

adds 58856 bytes on top of this leading to an overall storage overhead of 5.5%.

4. Simulation Results

This section evaluates our proposal in terms of performance as well as energy. We first discuss the single-core

results and then show how our proposal scales to an eight-core CMP. We conclude this section with an evaluation

462, 464, 470, and 482. These are the applications that we can compile and execute with ref inputs on our simulation infra-structure.
6 In our simulator, each node simulates a 4 GB DRAM and the upper 8 bits of the physical address are used for node id and ASID in

multi-node simulations.

20

Table 4. Storage overhead of conflict resolution via block migration per 1 MB bank

Structure Cross Ref. Configuration Size
Migration Tag Cache RAM Section 2.1.2 Width: Tag+target set+parent set=23+14+9 4096 entries×46 bits/entry

=46 bits, 4096 entries, 4-way banked = 23552 bytes
Head/Tail RAM Section 2.1.2 Width: Head bit+Tail bit=2 bits, 4096 entries, 4096 entries×2 bits/entry

4-way banked = 1024 bytes
FPTR RAM Section 2.1.2 Width: log2(4096)=12 bits, 4096 entries 4096 entries×12 bits/entry

4-way banked = 6144 bytes
BPTR RAM Section 2.1.2 Width: log2(4096)=12 bits, 4096 entries 4096 entries×12 bits/entry

4-way banked = 6144 bytes
LTPTR RAM Section 2.1.2 Width: valid+head ptr.+tail ptr.=1+12+12=25 bits, 512 entries×25 bits/entry

one entry per cache set = 1600 bytes
Tag PTR RAM Section 2.1.2, Width: valid+MTC bank (within a pair)+MTC index 8192 entries×14 bits/entry

Figure 2 = 1+1+12 = 14 bits, one entry per cache block, = 14336 bytes
4-way banked

Auxiliary per-set RAM Sections 2.1.1, Fields: replacement count (6 bits) [Section 2.1.1], 512 entries×94 bits/entry
2.1.2, 2.2.1, filter (60 bits) [2.1.2], refill count (6 bits) [2.2.1], = 6016 bytes
2.2.2, 2.2.3 list length (12 bits) [2.2.2], hit count (10 bits) [2.2.3];

width: 98 bits, one entry per set
Coarse replacement count Section 2.1.1 Width: 10 bits 32 entries×10 bits/entry

= 40 bytes
TOTAL — — 58856 bytes

of our proposal in the presence of a hardware prefetcher.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 L

2
 c

a
c
h
e
 m

is
s
 c

o
u
n
t

32 way
Extra way
32 KB VC
MigrateAll
MigrateOpt
MigrateOptQ
MigrateOptF

171.s
w

im

179.a
rt

181.m
cf

183.e
quake

429.m
cf

433.m
ilc

462.li
bquant

470.lb
m

482.s
phin

x

gm
ean

gm
ean

482.s
phin

x

470.lb
m

462.li
bquant

433.m
ilc

429.m
cf

183.e
quake

181.m
cf

179.a
rt

171.s
w

im

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 L

2
 c

a
c
h
e
 m

is
s
 c

o
u
n
t

MigrateAll
MigrateSelect
MigrateSelectL
MigrateOpt

171.s
w

im

179.a
rt

181.m
cf

183.e
quake

429.m
cf

433.m
ilc

462.li
bquant

470.lb
m

482.s
phin

x

gm
ean

171.s
w

im

179.a
rt

181.m
cf

183.e
quake

429.m
cf

433.m
ilc

462.li
bquant

470.lb
m

482.s
phin

x

gm
ean

(b)

Figure 5. (a) Normalized execution time (upper panel) and L2 cache miss count (lower panel) for applications with
more than 4 MPKI. (b) Evaluation of the optimizations presented in Section 2.2.

4.1. Performance and Energy Comparison

Based on the data presented in Table 2, we cluster the single-threaded applications into two categories. One

category includes all the applications with more than 4 MPKI. The other category contains the rest, all of which

have less than 2.5 MPKI. Figure 5 presents the performance results for the applications with more than 4 MPKI.

21

In Figure 5(a), we compare the execution time (upper panel) and L2 miss count (lower panel) of seven different

configurations. All the results are normalized with respect to the baseline 2 MB 16-way set-associative L2 cache.

The left three bars respectively present the results for a 2 MB 32-way set-associative L2 cache, an L2 cache having

the same number of sets as the baseline cache with an additional way, and the baseline cache with a 16 KB fully

associative victim cache (128 entries×128-byte block) per 1 MB bank giving a total of 32 KB victim caching

space. Note that the “Extra way” configuration is a simple way of “giving back” the extra storage needed by our

proposal. This configuration has slightly higher storage requirement compared to our proposal. The hit latency

of this configuration is conservatively assumed to be the same as the baseline. For the configuration with the

victim cache, we implement a not-most-recently-filled random replacement policy and assume that the victim

cache lookup is done in parallel with the main cache and its latency is completely hidden under the main cache

lookup latency.

The remaining four bars present the results for our proposal. The “MigrateAll” bar represents the design that

migrates every replaced block. The “MigrateOpt” bar represents the optimized design after incorporating the op-

timizations discussed in Section 2.2. The “MigrateOptQ” bar shows the impact of making the number of tags in

the MTC one quarter of the tags in the main cache. The “MigrateOptF” bar shows the effect if the MTC can hold

the same number of tags as the main cache. Recall that the “MigrateOpt” design sizes the MTC so that it can

hold half the number of tags in the main cache. Figure 5(b) further quantifies the transition from “MigrateAll” to

“MigrateOpt” as three optimizations are applied progressively: selective migration (“MigrateSelect”), list length

limit (“MigrateSelectL”), retention of migrated blocks (“MigrateOpt”). In this figure also the results are normal-

ized to the baseline configuration.

From the upper panel of Figure 5(a) we observe that optimized block migration reduces execution time by

3.7% (433.milc) to 37.3% (179.art) with an average reduction of 12%. 429.mcf is the only application that suffers

from a nominal slowdown of 1.7%. The lower panel of Figure 5(a) shows that optimized block migration helps

reduce the L2 cache misses by 7.2% (470.lbm) to 56% (179.art) with an average reduction of 15%. A comparison

of these two charts shows that 433.milc and 462.libquantum enjoy respectively 3.7% and 12.8% reduction in

execution time with optimized block migration, but do not observe any reduction in the L2 cache miss count.

We find that these two applications have very high number of DRAM bank conflicts in the baseline configuration

caused by a large volume of dirty evictions. With block migration, the percentage of bank conflicts reduces

dramatically, as explained in Section 2.4. Compared to baseline, percent DRAM bank conflict reduces by 24.9%

and 91% in 433.milc and 462.libquantum, respectively. 462.libquantum has the largest volume of dirty evictions

22

among these applications. Other applications observe an at most 5% drop in percent DRAM bank conflicts due

to block migration. We observe that the “Extra way” configuration and the configuration with a victim cache

also enjoy similar benefits for these two applications. The reason why a victim cache helps reduce DRAM bank

conflicts is similar to block migration because the miss address and the corresponding replaced address from the

VC are likely to be unrelated. Understanding this phenomenon for the “Extra way” configuration requires closer

examinations and we find that a prime associativity (17 in this case) staggers the contents of a set in such a way

that the miss address and the replaced address become less correlated. A detailed explanation of this phenomenon

is beyond the scope of this paper.

Figure 5(b) helps us understand the impact of the three optimizations discussed in Section 2.2. We find that

selective migration (“MigrateSelect”) does not hurt performance of any of the applications, but improves that of

181.mcf. It is encouraging to note that putting a dynamic limit on the length of the migrated tag list does not hurt

the performance at all (“MigrateSelectL”). Finally, our algorithm for retaining the migrated blocks has positive

impact on 181.mcf, 470.lbm, and 482.sphinx3 (“MigrateOpt”). In fact, without this algorithm in place, 470.lbm

would not experience any improvement at all. However, we note that this algorithm is the sole cause of a 1.7%

performance loss in 429.mcf. Referring back to Figure 5(a), we find that “MigrateOptQ” hurts the performance of

181.mcf, 470.lbm, and 482.sphinx3 significantly when compared to “MigrateOpt”. On the other hand, doubling

the tag store, as in “MigrateOptF”, does not improve performance beyond what “MigrateOpt” already achieves.

Therefore, we conclude that for this set of applications, the number of migrated tags need not be more than half of

the number of main cache tags.

Finally, we note that the 32-way configuration fails to improve performance and, in fact, it increases the execu-

tion time of 179.art by 8% due to bigger hit latency. The “Extra way” configuration and the 32 KB VC significantly

improve the L2 cache miss count of 179.art, but fail to match the performance of block migration. Referring back

to the upper panel of Figure 1(b), we note that 179.art has the lowest median eviction count between the eviction

and reuse of an L2 cache block. So it is not surprising that this application would benefit most from a victim cache.

Figure 6(a) presents the normalized execution time (upper panel) and L2 cache miss count (lower panel) for

the remaining applications. As expected, none of the applications show any significant improvement. However,

188.ammp and 401.bzip2 exhibit notable reduction in L2 cache misses for “MigrateOpt” (31.9% and 13%, respec-

tively). But they fail to convert this reduction into performance improvement of more than 4%. It is important to

note that these two applications have only 0.5 and 1.0 MPKI, respectively.

23

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
N

o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 L

2
 c

a
c
h
e
 m

is
s
 c

o
u
n
t

32 way
Extra way
32 KB VC
MigrateAll
MigrateOpt
MigrateOptQ
MigrateOptF

168.w
up

172.m
grid

173.a
pplu

188.a
m

m
p

254.g
ap

256.b
zi

p2

401.b
zi

p2

403.g
cc

434.z
eusm

p

gm
ean

gm
ean

434.z
eusm

p

403.g
cc

401.b
zi

p2

256.b
zi

p2

254.g
ap

188.a
m

m
p

173.a
pplu

172.m
grid

168.w
up

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 e
ne

rg
y

Dynamic
Leakage

B
as

el
in

e
M

ig
ra

te
O

p
t

168.w
up

171.s
w

im

172.m
grid

173.a
pplu

179.a
rt

181.m
cf

183.e
quake

188.a
m

m
p

254.g
ap

256.b
zi

p2

401.b
zi

p2

403.g
cc

429.m
cf

433.m
ilc

434.z
eusm

p

462.li
bquant

470.lb
m

482.s
phin

x

gm
ean

(b)

Figure 6. (a) Normalized execution time (upper panel) and L2 cache miss count (lower panel) for applications with at
most 4 MPKI. (b) Comparison of block migration and baseline in terms of energy consumption.

Figure 6(b) presents the normalized energy consumption for all the 18 applications. For each application,

we show the normalized energy for baseline and optimized block migration broken into leakage and dynamic

components. The last group of bars shows the normalized average total energy. The applications that fail to

exhibit improvement in execution time with block migration suffer from a slight increase in total energy. This

increase mostly comes from an increased leakage in the additional storage structures. The filter turns out to be

quite effective in restricting the dynamic energy lost in MTC lookup for these applications (explained further

below). On the other hand, the applications that enjoy improvement in execution time also enjoy reduced energy

consumption. These are 179.art, 181.mcf, 462.libquantum, 470.lbm, and 482.sphinx3. We note that the reduction

in energy in these applications comes mostly from reduced dynamic energy while the leakage component improves

only slightly. The major components of this reduction in dynamic energy come from reduced DRAM activities due

to less number of L2 cache misses and reduced core pipeline activities due to shortened execution time. Overall,

optimized block migration consumes 3.4% less energy on average compared to baseline.

Table 5. Normalized CoV of refill distribution in “MigrateOpt”
168.wupwise 171.swim 172.mgrid 173.applu 179.art 181.mcf 183.equake 188.ammp 254.gap

0.50 1.34 1.50 1.65 0.11 0.57 0.64 0.30 2.98
256.bzip2 401.bzip2 403.gcc 429.mcf 433.milc 434.zeusmp 462.libquantum 470.lbm 482.sphinx3

0.39 0.48 0.64 0.52 1.07 2.12 3.18 0.78 0.45

To further understand the effectiveness of block migration, in Table 5, we present the coefficient of varia-

tion (CoV) of the number of refills across the sets in “MigrateOpt” normalized to the baseline CoV. In “Migra-

24

teOpt”, a newly incoming block is filled in its parent set by replacing a block as usual, but the replaced block

may get migrated to a target set. In such as situation, the refill is accounted to the target set. The goal of this

CoV analysis is to see how well the cache contents get distributed across the sets in the presence of block mi-

gration. It is encouraging to note that the applications that enjoy reduction in L2 cache miss count due to block

migration exhibit significant improvement in CoV. These applications are 179.art, 181.mcf, 188.ammp, 401.bzip2,

470.lbm, and 482.sphinx3. We also note that there are applications, such as 171.swim, 172.mgrid, 173.applu,

254.gap, 433.milc, 434.zeusmp, and 462.libquantum, for which the CoV degrades in the presence of block migra-

tion. However, this does not lead to extra L2 cache misses in these applications. Finally, there are applications,

such as 168.wupwise, 183.equake, 256.bzip2, 403.gcc, and 429.mcf, for which the CoV improves, but these appli-

cations fail to exhibit any improvement in L2 cache miss count. Our algorithm for capacity retention fails to keep

the migrated blocks in cache for sufficiently long time to enjoy any reuse for these applications.

Table 6. MTC characteristics for “MigrateOpt”
Application Avg. lookup Percent migrated Percent hits Percent false positives

168.wupwise 10.9 12.2 0.8 12.0
171.swim 10.4 45.7 0.1 21.0
172.mgrid 8.6 42.0 0.4 15.9
173.applu 8.7 26.9 0.3 12.8
179.art 3.2 64.1 40.5 62.0
181.mcf 5.3 25.4 23.5 40.8
183.equake 6.6 14.6 0.6 16.9
188.ammp 4.7 24.1 1.3 38.8
254.gap 9.4 64.7 ∼0 15.2
256.bzip2 3.9 49.0 4.0 32.7
401.bzip2 4.2 53.5 4.3 44.5
403.gcc 5.1 26.5 1.3 27.7
429.mcf 4.9 12.6 2.8 43.0
433.milc 10.5 30.3 0.2 15.4
434.zeusmp 7.6 47.7 0.2 29.3
462.libquantum 8.3 67.4 ∼0 16.9
470.lbm 10.4 7.9 2.8 31.5
482.sphinx3 5.0 19.1 8.1 47.5

Before concluding this discussion, we analyze some of the characteristics of the MTC in Table 6. The second

column shows the average number of MTC lookups before a hit/miss can be confirmed in the cases where the

lookup misses in the main cache and the filter indicates the presence of the requested address in the MTC. As a

result, this data summarizes the critical path when the MTC’s outcome is important. Recall that two concurrent

lookups to the MTC can be completed in two cycles. Therefore, for 168.wupwise, which has the maximum number

of average MTC lookups, the MTC critical path is 5.5 cycles on average. It is important to note that this is not

the overall average critical path. The overall average will be much smaller if the negative responses from the filter

25

and the main cache hits are taken into consideration. The applications that benefit significantly enjoy less number

of MTC lookups on average because they are likely to hit before traversing the entire tag list. The third column

presents the number of migrated cache blocks as a percentage of all replaced blocks. This result clearly shows the

success of selective migration. It is encouraging to note that by migrating only a quarter of the replaced blocks,

181.mcf enjoys significant performance benefit. For 482.sphinx3, only 19.1% replaced blocks are migrated. There

are only four applications that migrate more than half of the replaced blocks. The fourth column shows the number

of hits in the MTC as a percentage of all hits. As expected, 179.art enjoys 40.5% hits in the MTC, followed by

181.mcf with 23.5% and 482.sphinx3 with 8.1% hits. The last column lists the false positive rate of the MTC

access filter as a percentage of the total number filter accesses. Recall that a false positive occurs when a queried

address is not present in the MTC, but the filter indicates otherwise. It is encouraging to note that the applications

that do not benefit much from block migration have reasonably low false positive rates. The filter plays a critical

role for these applications by eliminating most of the futile accesses to the MTC. 179.art has an extremely high

false positive rate. This is because the filter is not updated when a hit is encountered in the MTC and the block is

swapped with a block in the parent set. It is important to note that 179.art experiences frequent hits in the MTC.

Art Equake FFT FFTW LU Radix gmean
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
o
rm

a
liz

e
d
 e

xe
cu

tio
n
 t
im

e

32 way
Extra way
64 KB VC
MigrateOpt
MigrateOptQ
MigrateOptF

Art Equake FFT FFTW LU Radix gmean
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

N
o
rm

a
liz

e
d
 L

2
 c

a
ch

e
 m

is
s

co
u
n
t

(a)
Art Equake FFT FFTW LU Radix gmean

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

Dynamic
Leakage

(b)

Figure 7. (a) Normalized execution time (upper panel) and L2 cache miss count (lower panel) for multi-threaded appli-
cations. (b) Comparison of block migration and baseline in terms of energy consumption on an eight-core CMP.

4.2. Scaling to CMPs

This section evaluates how our proposal scales to an eight-core CMP having a 4 MB 16-way set-associative

shared L2 cache. Figure 7(a) presents the normalized execution time (upper panel) and L2 cache miss count (lower

panel) for the multi-threaded applications running on the CMP. The configurations are same as those shown in

26

Figures 5(a) and 6(a), except for the fact that we have dropped the “MigrateAll” configuration. We also note that

in the configuration with a 16 KB victim cache per 1 MB bank, the total victim caching space has increased to

64 KB, since there are four 1 MB banks. Block migration (“MigrateOpt”) helps reduce the execution time by

3.2% (Equake) to 48.2% (Art) with an average reduction of 18.1%. The corresponding reduction in the L2 cache

miss is 32.4% on average. LU enjoys a dramatic 85% reduction in L2 cache miss count. However, this translates

into an 11% reduction in execution time because LU does not have too many L2 cache misses (MPKI of 0.1 only).

On the other hand, it is surprising to note that for Art and Radix, 16.8% and 4.3% reductions in the L2 cache miss

count respectively result in 48.2% and 10.6% reductions in the execution time. For these two applications, we

found that the number L2 cache load misses decreases dramatically. But block migration converts some of the

store hits of the baseline configuration into misses. In the baseline configuration, these store hits were happening

mostly in the cold sets. But block migration disturbs the cold sets and evicts some of these blocks prematurely.

In Art, the L2 cache load miss count decreases by 31.5% and in Radix, this reduction is 6.7%. In Radix, an

11.9% reduction in percent DRAM bank conflicts also plays a significant role. As in the case of the single-

threaded applications, “MigrateOptQ” delivers significantly worse performance compared to “MigrateOpt” while

“MigrateOptF” does not offer better performance compared to “MigrateOpt”. Turning to the other configurations,

we find that a 32-way set-associative cache is helpful only for Art signifying that this application suffers from a

very high volume of conflict misses. However, this configuration increases the execution time of FFTW by more

than 10%. The “Extra way” configuration also helps Art while the 64 KB victim cache affects only Radix in a

positive way (that too due to a reduction in DRAM bank conflicts).

Finally, Figure 7(b) compares block migration against baseline in terms of energy consumption in the eight-

core CMP. The results are very encouraging and the trends closely follow the gains in execution time. Overall,

optimized block migration saves 13.8% energy on average compared to baseline.

4.3. Comparison with Related Proposals

In this section, we compare the performance of optimized block migration with a number of relevant propos-

als such as XOR indexing [8], prime displacement indexing and prime modulo indexing [13], V-way cache [18],

dynamic insertion policy (DIP) [19], and shepherd cache [20]. These techniques were briefly discussed in Sec-

tion 1.1. For prime displacement and prime modulo indexing, we use 511 as the prime modulus and 9 as the tag

multiplication factor. Note that 511 is the prime closest to 512, which is the number of sets in a 1 MB bank. We

apply these techniques to each bank independently. The V-way cache doubles the number of tags in the base-

27

line cache. For DIP, we use 32 dedicated sets per 1 MB bank, 1/32 as the BIP epsilon, and an 11-bit saturating

counter for DIP insertion policy chooser. Finally, the shepherd cache dedicates four ways (out of 16) in a set for

shepherding.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

XOR
PrimeDisp
PrimeMod
Vway
DIP
Shepherd
MigrateOpt

171.s
w

im

179.a
rt

181.m
cf

183.e
quake

429.m
cf

433.m
ilc

462.li
bquant

470.lb
m

482.s
phin

x

gm
ean

(a)
Art Equake FFT FFTW LU Radix gmean

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 e

xe
cu

tio
n
 t
im

e

XOR
PrimeDisp
PrimeMod
Vway
DIP
Shepherd
MigrateOpt

(b)

Figure 8. Comparison of optimized block migration with the related proposals: (a) Single-threaded applications with
more than 4 MPKI. (b) Multi-threaded applications running on an eight-core CMP.

Figure 8(a) presents the execution time comparison for the single-threaded applications with more than 4 MPKI.

All the bars are normalized to the baseline results. Across the board, “MigrateOpt” turns out to be the best

technique. Only in 181.mcf, DIP performs better than “MigrateOpt” and in 433.milc, “PrimeDisp” is slightly

better than “MigrateOpt”. As was evident from Figure 3, DIP improves performance only in 179.art and 181.mcf.

The V-way cache turns out to be more robust than DIP and improves the performance of a number of applications,

buts fails to perform as well as “MigrateOpt”. It is encouraging to note that “MigrateOpt” with only 50% extra tags

for keeping track of the migrated blocks outperforms the V-way cache which uses 100% more tags. The shepherd

cache succeeds in improving the performance of 179.art only by a small amount. Since most of the non-shepherd

ways in a set remain untouched within the shepherding window, this technique frequently falls back to the baseline

LRU policy. Among the indexing techniques, “PrimeDisp” turns out to be the best on average. Overall, optimized

block migration reduces the execution time by 12%. The V-way cache follows closely with a 9.6% reduction in

execution time. The DIP and prime displacement indexing techniques reduce the execution time by 7.4% and

5.8%, respectively.

Figure 8(b) presents similar comparison for the multi-threaded applications running on an eight-core CMP. Here

also optimized block migration emerges the best. On average, it reduces the execution time by 18.1% followed

by the V-way cache delivering a 10.6% reduction in execution time. The XOR indexing, prime displacement

28

indexing, and DIP deliver similar performance achieving an average reduction of around 6% in execution time.

4.4. Comparison with Fully Associative L2 Caches

Unconstrained dynamic block migration between any two sets in any two banks allows the L2 cache controller

to place a block in any set of the cache. This is equivalent to the functionality of a fully associative L2 cache. While

this particular observation alone makes unconstrained dynamic block migration important, the replacement policy

of such a cache now becomes the key determinant of end-performance. We have proposed a new replacement

policy in this paper to improve the retention of the migrated blocks in a constrained migration environment. In

this section, we compare our design against a fully associative L2 cache exercising a global LRU replacement

policy (FA-LRU). Since it may not be feasible to implement one such design within reasonable latency budget,

we do not compare the execution time and focus solely on the number of L2 cache misses. For the experiments

involving the single-threaded applications, we simulate a single bank of fully associative 2 MB L2 cache. For the

experiments on the CMP platform, we simulate two banks of fully associative caches, each of size 2 MB. These

two banks are connected to the two switches that used to connect the bank pairs in the baseline design.

Table 7. L2 cache misses normalized to baseline
Configuration 179.art 188.ammp 401.bzip2 Art FFTW LU

FA-LRU 0.31 0.64 1.06 1.21 0.26 0.32
MigrateOpt 0.44 0.68 0.87 0.83 0.83 0.15

Table 7 summarizes the number of L2 cache misses normalized to baseline only for those applications that get

noticeably affected by the FA-LRU configuration. For these applications, we also show the normalized L2 cache

miss count achieved by “MigrateOpt”. “MigrateOpt” turns out to be inferior to a global LRU policy in 179.art,

188.ammp, and multi-threaded FFTW. However, in 401.bzip2 and multi-threaded Art, the FA-LRU configuration

performs worse than the baseline. Finally, there are several applications (that do not appear in this table) where

FA-LRU fails to affect the L2 cache miss count, while our policy exhibits significant improvement. In general, we

observe that the applications with relatively small working sets benefit from FA-LRU because once the working

set mostly fits in the fully associative cache, a global LRU should be close to the best. On the other hand, if

the working set cannot fit in the cache, it becomes more important to carefully separate the most frequently used

blocks from the rest and retain them. An approximate way to measure the frequency of use of cache blocks over a

large span of time is to track the frequency of misses originating from different sets of the cache. This is precisely

what our replacement policy tries to achieve.

29

4.5. Interaction with Prefetching

All the results presented up to this point do not take into account the effects of hardware prefetchers. In this

section, we integrate a multi-stream stride prefetcher into the system and evaluate our proposal. Since we are

exploring optimizations for the L2 cache, the ideal place to integrate the prefetcher is the L2 cache controller so

that the prefetcher can monitor the accesses to the L2 cache and learn the stride patterns. However, our preliminary

results revealed that such a design performs poorly even for applications with fairly regular stride patterns. The

primary reason for this is that the accesses seen by the L2 cache are often a re-ordered version of the original

stream. This re-ordering mostly happens due to out-of-order issue in the load/store pipeline, re-ordering of L1

cache miss requests in the virtual channel buffers of the on-chip interconnect, and non-deterministic behavior

of the L1 cache replacement policy. Therefore, to make the evaluation fair, we integrate a multi-stream stride

prefetcher with each core’s L1 cache controller. Each prefetcher keeps track of sixteen simultaneous load and

store streams. The stream size is chosen to be 4 KB to match the page size. The strides are calculated from

the committed loads and stores so that speculative wrong path execution does not pollute the prefetcher. The

prefetcher prefetches six strides ahead in each stream. It is important to note that since the prefetchers prefetch

into the L1 caches, their performance is likely to be better than L2 cache optimization techniques. However, we

are interested to see how our proposal performs in the presence of an aggressive hardware prefetcher.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 e

xe
cu

tio
n
 t
im

e

Art Equake FFT FFTW LU Radix gmean
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
liz

e
d
 e

xe
cu

tio
n
 t
im

e

Base+Pref.
MigrateOpt
MigrateOpt+Pref.

17
1.

sw
im

17
9.

ar
t

18
1.

m
cf

18
3.

eq
uak

e

42
9.

m
cf

43
3.

m
ilc

46
2.

lib
quan

t

47
0.

lb
m

48
2.

sp
hin

x

gm
ea

n

Figure 9. Evaluation of block migration in the presence of a hardware prefetcher. Upper panel: single-threaded appli-
cations with more than 4 MPKI. Lower panel: multi-threaded applications running on an eight-core CMP.

Figure 9 presents the execution time for three configurations, namely, baseline with a prefetcher, optimized

block migration without a prefetcher, and optimized block migration with a prefetcher. All the execution times are

normalized with respect to the baseline. The upper panel shows the results for the single-threaded applications with

30

more than 4 MPKI and the lower panel shows the results for the multi-threaded applications running on an eight-

core CMP. While the “Base+Pref.” bar shows the efficiency of the L1 cache prefetcher, we are more interested

in comparing this bar with the “MigrateOpt+Pref.” bar. It is encouraging to note that even in the presence of

hardware prefetching our proposal continues to improve performance for 179.art, 181.mcf, 462.libquantum, and

482.sphinx3. In fact, block migration without a prefetcher turns out to be better than the baseline with a prefetcher

for 179.art, 181.mcf, 433.milc, and 462.libquantum. On average, the hardware prefetcher reduces the execution

time of the baseline configuration by 15.6%. When block migration is enabled on top of this, the execution time

is reduced by 28.9% compared to the baseline. The trends are similar for the multi-threaded applications. In these

applications, on average, the hardware prefetcher helps reduce the execution time of the baseline configuration by

15.6%, while block migration in the presence of the prefetcher achieves a reduction of 26.4% in execution time.

5. Summary

We have explored the application of dynamic block migration to resolve conflicts in the last-level cache (L2 in

this case) and improve the space utilization of the cache. The central idea is to migrate replaced blocks from hot

sets to relatively “colder” regions of the cache. While the idea is conceptually simple, we explore some of the key

aspects that need to be addressed to convert the concept into an implementable and scalable design. We present

a modular design where each cache bank can be architected independently and block migrations can be confined

to a pair of adjacent banks in the interest of scalability. Our design offers the migration tag cache size as a key

design parameter that can be chosen appropriately to trade area for performance. Our execution-driven simulation

results show that for a 2 MB 16-way set-associative L2 cache, our proposal reduces the execution time by 12% and

energy by 3.4% on a set of nine memory-intensive single-threaded applications drawn from the SPEC 2000 and

SPEC 2006 suites. On an eight-core chip-multiprocessor with a 4 MB 16-way set-associative shared L2 cache,

our proposal reduces the execution time by 18.1% and energy by 13.8% on a set of multi-threaded kernels and

applications. This excellent performance comes at the cost of only 5.5% of extra storage.

One of the major contributions of our modular design is that it makes block migration for conflict resolution

independent of data migration for proximity management in the emerging non-uniform cache architectures. As

the next step toward making such large caches most effective, we will explore the synergy of conflict resolution

via block migration and data migration (perhaps at a coarse grain) to enhance on-chip data proximity.

31

Acknowledgments

The author thanks the Intel Research Council for funding this effort. Gautam Doshi pointed out the importance

of comparing our proposal against a fully associative L2 cache.

References

[1] A. Agarwal, J. L. Hennessy, and M. Horowitz. Cache Performance of Operating System and Multiprogramming Workloads. In ACM

Transactions on Computer Systems, 6(4): 393–431, November 1988.

[2] A. Agarwal and S. D. Pudar. Column-associative Caches: A Technique for Reducing the Miss Rate of Direct-mapped Caches. In

Proceedings of the 20th International Symposium on Computer Architecture , pages 179–190, May 1993.

[3] A. Basu et al. Scavenger: A New Last Level Cache Architecture with Global Block Priority. In Proceedings of the 40th International

Symposium on Microarchitecture, pages 421–432, December 2007.

[4] B. N. Bershad et al. Avoiding Conflict Misses Dynamically in Large Direct-mapped Caches. In Proceedings of the 6th International

Conference on Architectural Support for Programming Languages and Operating Systems, pages 158–170, October 1994.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-level Power Analysis and Optimizations. In Pro-

ceedings of the 27th International Symposium on Computer Architecture, pages 83–94, June 2000.

[6] X. Chen and L-S. Peh. Leakage Power Modeling and Optimization in Interconnection Networks. In Proceedings of the International

Symposium on Low Power Electronics and Design, pages 90–95, August 2003.

[7] K. Flautner et al. Drowsy Caches: Simple Techniques for Reducing Leakage Power. In Proceedings of the 29th International Sympo-

sium on Computer Architecture, pages 148–157, May 2002.

[8] A. González et al. Eliminating Cache Conflict Misses through XOR-based Placement Functions. In Proceedings of the International

Conference on Supercomputing, pages 76–83, July 1997.

[9] E. G. Hallnor and S. K. Reinhardt. A Fully Associative Software-managed Cache Design. In Proceedings of the 27th International

Symposium on Computer Architecture, pages 107–116, June 2000.

[10] HP Labs. CACTI 4.2. Available at http://www.hpl.hp.com/personal/Norman Jouppi/cacti4.html.

[11] N. P. Jouppi. Improving Direct-mapped Cache Performance by the Addition of a Small Fully Associative Cache and Prefetch Buffers.

In Proceedings of the 17th International Symposium on Computer Architecture, pages 364–373, June 1990.

[12] R. E. Kessler and M. D. Hill. Page Placement Algorithms for Large Real-indexed Caches. In ACM Transactions on Computer Systems,

10(4): 338–359, November 1992.

[13] M. Kharbutli et al. Using Prime Numbers for Cache Indexing to Eliminate Conflict Misses. In Proceedings of the 10th International

Conference on High-Performance Computer Architecture, pages 288-299, February 2004.

[14] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Proceedings of the 24th International Symposium

on Computer Architecture, pages 241–251, June 1997.

32

[15] Micron Technology Inc. DDR2 Offers New Features and Functionality. Micron Technical Note TN-47-02.

[16] Micron Technology Inc. Calculating Memory System Power for DDR2. Micron Technical Note TN-47-04.

[17] J-K Peir, Y. Lee, and W. W. Hsu. Capturing Dynamic Memory Reference Behavior with Adaptive Cache Topology. In Proceedings

of the 8th International Conference on Architectural Support for Programming Languages and Operating Systems, pages 240–250,

October 1998.

[18] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-way Cache: Demand-based Associativity via Global Replacement. In Proceed-

ings of the 32nd International Symposium on Computer Architecture, pages 544–555, June 2005.

[19] M. K. Qureshi et al. Adaptive Insertion Policies for High Performance Caching. In Proceedings of the 34th International Symposium

on Computer Architecture, pages 381–391, June 2007.

[20] K. Rajan and R. Govindarajan. Emulating Optimal Replacement with a Shepherd Cache. In Proceedings of the 40th International

Symposium on Microarchitecture, pages 445–454, December 2007.

[21] R. M. Rao et al. Efficient Techniques for Gate Leakage Estimation. In Proceedings of the International Symposium on Low Power

Electronics and Design, pages 100–103, August 2003.

[22] S. Rixner. Memory Controller Optimizations for Web Servers. In Proceedings of the 37th International Symposium on Microarchi-

tecture, pages 355–366, December 2004.

[23] A. Seznec. A Case for Two-way Skewed-associative Caches. In Proceedings of the 20th International Symposium on Computer

Architecture, pages 169–178, May 1993.

[24] T. Sherwood et al. Automatically Characterizing Large Scale Program Behavior. In Proceedings of the 10th International Conference

on Architectural Support on Programming Languages and Operating Systems, pages 45–57, October 2002.

[25] R. Subramanian, Y. Smaragdakis, G. H. Loh. Adaptive Caches: Effective Shaping of Cache Behavior to Workloads. In Proceedings

of the 39th International Symposium on Microarchitecture, pages 385–396, December 2006.

[26] Z. Zhang, Z. Zhu, and X. Zhang. A Permutation-based Page Interleaving Scheme to Reduce Row-buffer Conflicts and Exploit Data

Locality. In Proceedings of the 33rd International Symposium on Microarchitecture, pages 32–41, December 2000.

33

