CS 671 NLP MACHINE LEARNING

Reading

Christopher M. Bishop, Pattern recognition and machine learning. Springer, 2006.

Learning in NLP

Language models may be Implicit : we can't describe how we use language so effortlessly

Unknown future cases: Constantly need to interpret sentences we have never heard before

Model structures: Learning can reveal properties (regularities) of the language system

- Latent structures / Dimensionality reduction: reduce complexity and improve performance

Feedback in Learning

- Type of feedback:
- Supervised learning: correct answers for each example
- Discrete (categories) : classification
- Continuous : regression
- Unsupervised learning: correct answers not given
- Reinforcement learning: occasional rewards

Inductive learning

Simplest form: learn a function from examples
An example is a pair $(x, y): x=$ data, $y=$ outcome assume: y drawn from function $f(x): y=f(x)+$ noise

$$
f=\text { target function }
$$

Problem: find a hypothesis h
such that $h \approx f$
given a training set of examples
Note: highly simplified model :

- Ignores prior knowledge : some h may be more likely
- Assumes lots of examples are available
- Objective: maximize prediction for unseen data - Q. How?

Inductive learning method

- Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Regression vs Classification

$$
y=f(x)
$$

Regression:
y is continuous

Classification:
y : set of discrete values e.g. classes $C_{1}, C_{2}, C_{3} \ldots$

$$
y \in\{1,2,3 \ldots\}
$$

Precision vs Recall

Precision:
A / Retrieved Positives

Recall:
A / Actual
Positives

Regression

Polynomial Curve Fitting

Linear Regression

$$
y=f(x)=\Sigma_{i} w_{i} \cdot \phi_{i}(x)
$$

$\boldsymbol{\phi}_{\mathrm{i}}(\mathbf{x})$: basis function
w_{i} : weights

Linear : function is linear in the weights
Quadratic error function --> derivative is linear in w

Sum-of-Squares Error Function

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}
$$

$0^{\text {th }}$ Order Polynomial

$1^{\text {st }}$ Order Polynomial

$3^{\text {rd }}$ Order Polynomial

$9^{\text {th }}$ Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{\text {RMS }}=\sqrt{2 E\left(\mathbf{w}^{\star}\right) / N}$

Polynomial Coefficients

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

$9^{\text {th }}$ Order Polynomial

Data Set Size: $N=15$

$9^{\text {th }}$ Order Polynomial

Data Set Size: $N=100$

$9^{\text {th }}$ Order Polynomial

Regularization

Penalize large coefficient values

$$
\widetilde{E}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

Regularization: $\ln \lambda=-18$

Regularization: $\ln \lambda=0$

Regularization: $E_{\text {RMS }}$ vs. $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}^{\star}	0.35	0.35	0.13
w_{1}^{\star}	232.37	4.74	-0.05
w_{2}^{\star}	-5321.83	-0.77	-0.06
w_{3}^{\star}	48568.31	-31.97	-0.05
w_{4}^{\star}	-231639.30	-3.89	-0.03
w_{5}^{\star}	640042.26	55.28	-0.02
w_{6}^{\star}	-1061800.52	41.32	-0.01
w_{7}^{\star}	1042400.18	-45.95	-0.00
w_{8}^{\star}	-557682.99	-91.53	0.00
w_{9}^{\star}	125201.43	72.68	0.01

Binary Classification

Regression vs Classification

$$
y=f(x)
$$

Regression:
y is continuous
Classification:

y : discrete values e.g. 0,1,2... for classes $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2} \ldots$

Binary Classification: two classes

$$
y \in\{0,1\}
$$

Binary Classification

Feature : Length

Feature : Lightness

Minimize Misclassification

Precision / Recall

C1: class of interest

Precision / Recall

C1: class of interest

Precision / Recall

C1: class of interest

Decisions - Feature Space

- Feature selection : which feature is maximally discriminative?
- Axis-oriented decision boundaries in feature space
- Length - or - Width - or Lightness?
- Feature Discovery: construct $g()$, defined on the feature space, for better discrimination

Feature Selection: width / lightness

Feature Selection

- Feature selection : which feature is maximally discriminative?
- Axis-oriented decision boundaries in feature space
- Length - or - Width - or Lightness?
- Feature Discovery: discover discriminative function on feature space : $\mathrm{g}($)
\square combine aspects of length, width, lightness

Feature Discovery : Linear

Decision Surface: non-linear

Decision Surface : non-linear

Learning process

- Feature set : representative? complete?
- Sample size : training set vs test set
- Model selection:
- Unseen data \rightarrow overfitting?
- Quality vs Complexity
- Computation vs Performance

Best Feature set?

- Is it possible to describe the variation in the data in terms of a compact set of Features?
- Minimum Description Length

"You spelled garbage wrong."
amitabha mukerjee iit kanpur

Reading

\square Reading:

1. Chapter 6 of Jurafsky \& Martin, Speech and Language Processing, "Spelling Correction noisy channel" (draft 2014 edition)
http://web.stanford.edu/~jurafsky/slp3/
2. P. Norvig, How to write a spelling corrector http://norvig.com/spell-correct.html

Spelling Correction

In [2], the authors used curvatures for accurate loacation and tracking of the center of the eye.

OpenCV has cascades for faces whih have been used for detcting faces in live videos.

- course project report 2013
black crows gorge on bright mangoes in still, dustgreen trees
$\rightarrow \quad$?? "black cows" ?? "black crews" ??

Single-typing errors

\square loacation : insertion error
\square whih, detcting : deletion
\square crows -> crews : substitution
\square the -> hte : transposition

Damereau (1964) : 80\% of all misspelled words caused by single-error of these four types

Which errors have a higher "edit-distance"?

Causes of Spelling Errors

\square Keyboard Based
$\square 83 \%$ novice and 51% overall were keyboard related errors

- Immediately adjacent keys in the same row of the keyboard (50% of the novice substitutions, 31% of all substitutions)
\square Cognitive : may be more than 1-error; more likely to be real words
\square Phonetic: separate \rightarrow separate
\square Homonym : piece \rightarrow peace ; there \rightarrow their;

Steps in spelling correction

Non-word errors:
\square Detection of non-words (e.g. hte, dtection)
\square Isolated word error correction
[naive bayesian; edit distances]

Actual word (real-word) errors:
\square Context dependent error detection and correction (e.g. "three are four types of errors")
[can use language models e.g. n-grams]

Nonword and Word errors

loacation, detecting \rightarrow non-words
crews / crows \rightarrow word error

Non-word error:
For alphabet Σ, and dictionary D with strings in Σ^{*}
given a string $s \in \Sigma^{*}$, where $s \notin D$,
find $w \in D$ that is most likely to have been input as s.

Word error: drop $s \notin D$

Probabilistic Spell Checker

$$
\begin{aligned}
& \text { w } x \\
& \left(w_{n}, w_{n-1}, \ldots, w_{1}\right) \text { Noisy Channel }\left(x_{m}, x_{m-1}, \ldots, x_{1}\right) \\
& \text { source }
\end{aligned}
$$

Given t, find most probable w :
Find that \hat{w} for which $P(w / t)$ is maximum,

Probabilistic Spell Checker

$\square \mathrm{Q}$. How to compute $P(w / t)$?
\square Many times, it is easier to compute $P(t / w)$

Bayesian Classification

\square Given an observation x, determine which class w it belongs to
\square Spelling Correction:
\square Observation: String of characters
\square Classification: Word intended
\square Speech Recognition:
\square Observation: String of phones
\square Classification: Word that was said

Example

AIDS occurs in 0.05% of population. A test is 99% effective in detecting the disease, but 5% of the cases test positive in absence of AIDS.
If you are tested +ve, what is the probability you have the disease?

Probability theory

Apples and Oranges

Sample Space

Sample ω = Pick two fruits,
e.g. Apple, then Orange

Sample Space $\Omega=\{(\mathrm{A}, \mathrm{A}),(\mathrm{A}, \mathrm{O})$, (O,A),(O,O)\} = all possible worlds

Event $\mathrm{e}=$ set of possible worlds, $\mathrm{e} \subseteq \Omega$

- e.g. second one picked is an apple

Learning = discovering regularities

- Regularity : repeated experiments: outcome not be fully predictable
- Probability p(e) : "the fraction of possible worlds in which e is true" i.e. outcome is event e
- Frequentist view : $\mathrm{p}(\mathrm{e})=$ limit as $\mathrm{N} \rightarrow \infty$
- Belief view: in wager : equivalent odds
$(1-p): p$ that outcome is in e, or vice versa

Why probability theory?

different methodologies attempted for uncertainty:

- Fuzzy logic
- Multi-valued logic
- Non-monotonic reasoning

But unique property of probability theory:
If you gamble using probabilities you have the best chance in a wager. [de Finetti 1931]
=> if opponent uses some other system, he's more likely to lose

Ramsay-diFinetti theorem (1931)

If agent X's degrees of belief are rational, then X 's degrees of belief function defined by fair betting rates is (formally) a probability function

Fair betting rates: opponent decides which side one bets on

Proof: fair odds result in a function pr () that satisifies the Kolmogrov axioms:

Normality : $\operatorname{pr}(S)>=0$
Certainty : $\operatorname{pr}(\mathrm{T})=1$
Additivity : pr (S1 v S2 v.. $)=\Sigma(\mathrm{Si})$

Kolmogrovian model

Probability space $\Omega=$ set of all outcomes (events)
Event A may include multiple outcomes - e.g. several coin-tosses.
F : a σ-field on Ω : closed under countable union, and under complement, maximal element Ω, emptySet= impossible event

In practice, $F=$ all possible subsets $=$ powerset of Ω
(alternatives to kolmogrovian axiomatization exist)

Axioms of Probability

A probability measure $p: F \rightarrow[0,1]$, s.t.

- p is non-negative : $p(e) \geq 0$
- unit sum $p(\Omega)=1$
i.e. no outcomes outside sample space
- additive : if e1, e2 are disjoint events (no common outcome):

$$
p(e 1)+p(e 2)=p(e 1 U e 2)
$$

Joint vs. conditional probability

Marginal Probability

$$
p\left(X=x_{i}\right)=\frac{c_{i}}{N} .
$$

Joint Probability

$$
p\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N}
$$

Conditional Probability

$$
p\left(Y=y_{j} \mid X=x_{i}\right)=\frac{n_{i j}}{c_{i}}
$$

Probability Theory

Sum Rule

$$
\begin{aligned}
& p\left(X=x_{i}\right)=\frac{c_{i}}{N}=\frac{1}{N} \sum_{j=1}^{L} n_{i j} \\
& \quad=\sum_{j=1}^{L} p\left(X=x_{i}, Y=y_{j}\right)
\end{aligned}
$$

Product Rule

$$
\begin{aligned}
p\left(X=x_{i}, Y=y_{j}\right) & =\frac{n_{i j}}{N}=\frac{n_{i j}}{c_{i}} \cdot \frac{c_{i}}{N} \\
& =p\left(Y=y_{j} \mid X=x_{i}\right) p\left(X=x_{i}\right)
\end{aligned}
$$

Rules of Probability

Sum Rule

$$
p(X)=\sum_{Y} p(X, Y)
$$

Product Rule

$$
p(X, Y)=p(Y \mid X) p(X)
$$

Example

parasitic Gap, a rare syntactic construction occurs on average once in 100,000 sentences.
pattern matcher : find sentences S w parasitic gaps.
if S has parasitic gap $(G), \rightarrow$ says (T) with prob 0.95 .
if S has no gap ($\sim G)$ wrongly says (T) w prob 0.005.
On a corpus of 100000 Sentences, How many are expected to be detected with G ?
$P(G)=10^{-5} . P(T \mid G)=0.95 P(T \mid \sim G)=0.005=5.10^{-3}$
truly $G=0.95$; falsely detected as $G=500$

Probabilistic Spell Checker

$\square \mathrm{Q}$. How to compute $P(w / t)$?
\square Many times, it is easier to compute $P(t / w)$
\square Related by product rule:

$$
\begin{aligned}
p(X, Y) & =p(Y \mid X) p(X) \\
& =p(X \mid Y) p(Y)
\end{aligned}
$$

Bayes' Theorem

$$
\begin{aligned}
p(Y \mid X) & =\frac{p(X \mid Y) p(Y)}{p(X)} \\
p(X) & =\sum_{Y} p(X \mid Y) p(Y)
\end{aligned}
$$

posterior \propto likelihood \times prior

Bayes' Theorem

Thomas Bayes (c.1750):
how can we infer causes from effects?
can one learn the probability of a future event from frequency of occurrance in the past?
as new evidence comes in \rightarrow probabilistic knowledge improves.
\rightarrow basis for human expertise?
Initial estimate (prior belief $P(h)$, not well formulated)

+ new evidence (support)
+ compute likelihood P (datal h)
\rightarrow improved posterior: P (h/ data)

Example

parasitic Gap, a rare syntactic construction occurs on average once in 100,000 sentences.
pattern matcher : find sentences S w parasitic gaps.
if S has parasitic gap $(G), \rightarrow$ says (T) with prob 0.95 .
if S has no gap $(\sim G)$ wrongly says (T) w prob 0.005.
If the test is positive (T) for a sentence, what is the probability that there is a parasitic gap?

$$
P(G)=10^{-5} . P(T \mid G)=0.95 P(T \mid \sim G)=0.005=5.10^{-3}
$$

truly $G=0.95$; falsely detected as $G=500$

Example

$$
\begin{aligned}
& P(G)=10^{-5} . \quad P(T \mid G)=0.95 P(T \mid \sim G)=0.0005=5.10^{-4} \\
& P(G \mid T)=P(T \mid G) * P(G) / P(T) \\
& \begin{aligned}
P(T) & =P(T, G)+P(T, \sim G)) \\
& =P(T \mid G) * P(G)+P(T \mid \sim G) * P(\sim G)
\end{aligned} \\
& \text { [Sum Rule] } \\
& \text { [Product Rule] } \\
& \begin{aligned}
\mathrm{P}(\mathrm{G} \mid \mathrm{T})= & 0.95^{*} 10^{\wedge}-5 /\left[.95^{*} 10^{* *}(-5)+5.10^{\wedge}-3 \cdot\left(1-10^{\wedge}-5\right)\right] \\
& =9.5 \mathrm{e}-4 /\left(9.5 \mathrm{e}-4+5^{*} 0.99999\right)\left[\text { div by } 10^{\wedge}-3\right] \\
& =0.0095 /(0.0095+4.9995)=0.0095 / 5.00945 \\
& =0.0019
\end{aligned}
\end{aligned}
$$

Bernoulli Process

\square Two Outcomes - e.g. toss a coin three times:
HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
\square Probability of k Heads:

Probability of success: p, failure q, then

$$
P(k)=\binom{n}{k} p^{k} q^{n-k}
$$

Permutations

$$
\frac{N!}{n_{1}!n_{2}!n_{3}!\ldots . n_{k}!} \stackrel{\text { def. }}{=}\binom{N}{n_{1}, n_{2}, n_{3}, \ldots, n_{k}}
$$

Multinomial Coefficient

$K=2 \rightarrow$ Binomial coefficient

PERMUTATIONS

Precision vs Recall

Precision:
A / Retrieved Positives

Recall:
A / Actual
Positives

Example

What is the recall of the test for parasitic gap?
What is its precision?

F-Score

Features may be high-dimensional

joint distribution $\mathrm{P}(\mathrm{x}, \mathrm{y})$ varies considerably though marginals $\mathrm{P}(\mathrm{x}), \mathrm{P}(\mathrm{y})$ are identical
estimating the joint distribution requires much larger sample: $O\left(n^{k}\right)$ vs $n k$

Entropy

\square Entropy: the uncertainty of a distribution.
\square Quantifying uncertainty ("surprisal"):

- Event x
\square Probability p_{x}
\square Surprisal $\log \left(1 / p_{x}\right)$
\square Entropy: expected surprise (over p):

$$
\mathrm{H}(p)=E_{p} \log _{2} \frac{1}{p_{x}}=p_{x} \log _{2} p_{x}
$$

NON-WORD SPELL CHECKER

Spelling error as classification

\square Each word w is a class, related to many instances of the observed forms x
\square Assign w given x :

$$
\hat{w}=\underset{w V}{\operatorname{argmax}} P(w \mid x)
$$

Noisy Channel : Bayesian Modeling

\square Observation x of a misspelled word
\square Find correct word w

$$
\begin{aligned}
\hat{w} & =\underset{w V}{\operatorname{argmax}} P(w \mid x) \\
& =\underset{w V}{\operatorname{argmax}} \frac{P(x \mid w) P(w)}{P(x)} \\
& =\underset{V}{\operatorname{argmax}} P(x \mid w) P(w)
\end{aligned}
$$

Non-word spelling error example

acress

Confusion Set

Confusion set of word w:
All typed forms t obtainable by a single application of insertion, deletion, substitution or transposition

Confusion set for acress

Error	Candidate Correction	Correct Letter	Error Letter	Type
acress	actress	t	-	deletion
acress	cress	-	a	insertion
acress	caress	ca	ac	transposition
acress	access	c	r	substitution
acress	across	o	e	substitution
acress	acres	-	s	insertion
acress	acres	-	s	insertion

Kernighan et al 90

Confusion set of word w (one edit operation away from w):
\square All typed forms tobtainable by a single application of insertion, deletion, substitution or transposition

Different editing operations have unequal weights Insertion and deletion probabilities : conditioned on letter immediately on the left - bigram model.

Compute probabilities based on training corpus of single-typing errors.

Unigram Prior probability

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

word	Frequency of word	$\mathrm{P}($ word $)$
actress	9,321	.0000230573
cress	220	.0000005442
caress	686	.0000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

Channel model probability

\square Error model probability, Edit probability
\square Kernighan, Church, Gale 1990
\square Misspelled word $x=x_{1}, x_{2}, x_{3} \ldots x_{m}$
\square Correct word $w=w_{1}, w_{2}, w_{3}, \ldots, w_{n}$
$\square \mathrm{P}(\mathrm{x} \mid \mathrm{w})=$ probability of the edit
\square (deletion/insertion/substitution/transposition)

Computing error probability: confusion matrix

del[x,y]:
ins[x,y]:
sub [x,y]:
trans[x,y]:
count (xy typed as x)
count (x typed as xy)
count (x typed as y)
count (xy typed as yx)

Insertion and deletion conditioned on previous character

Confusion matrix - Deletion [Kerni90]

$\operatorname{del}[\mathbf{X}, \mathbf{Y}]=$ Deletion of \mathbf{Y} after \mathbf{X}

 \mathbf{Y} (Deleted Letter)| X | Y (Deleted Letter) | |
| :---: |
| | a | b | c | d | e | f | g | h | j | k | | m | n | | p | 9 | r | s | t | u | v | w | x | y | |
| a | 0 | 7 | 58 | 21 | 3 | 5 | 18 | 861 | 0 | 4 | 43 | 5 | 53 | 0 | 9 | 0 | 98 | 28 | 53 | 62 | 1 | 0 | 0 | 2 | |
| b | 2 | 2 | 1 | 0 | 22 | 0 | 0 | 0183 | 0 | 0 | 26 | 0 | 0 | 2 | 0 | 0 | 6 | 17 | 0 | 6 | 1 | 0 | 0 | 0 | |
| c | 37 | 0 | 70 | 0 | 63 | 0 | 0 | 24320 | 0 | 9 | 17 | 0 | 0 | 33 | 0 | 0 | 46 | 6 | 54 | 17 | 0 | 0 | 0 | 1 | |
| d | 12 | 0 | 7 | 25 | 45 | 0 | 10 | 062 | 1 | 1 | 8 | 4 | 3 | 3 | 0 | 0 | 11 | 1 | 0 | 3 | 2 | 0 | 0 | 6 | |
| e | 80 | 1 | 50 | 74 | 89 | 3 | 1 | 16 | 0 | 0 | 32 | 9 | 76 | 19 | 9 | 1 | 237 | 223 | 34 | 8 | 2 | 1 | 7 | 1 | |
| f | 4 | 0 | 0 | 0 | 13 | 46 | 0 | 079 | 0 | 0 | 12 | 0 | 0 | | 0 | 0 | 11 | , | 8 | 1 | 0 | 0 | 0 | 1 | |
| g | 25 | 0 | 0 | 2 | 83 | 1 | 37 | $25 \quad 39$ | 0 | 0 | 3 | | 29 | 4 | 0 | 0 | 52 | 7 | 1 | 22 | 0 | 0 | 0 | 1 | |
| h | 15 | 12 | 1 | 3 | 20 | 0 | 0 | $25 \quad 24$ | 0 | 0 | 7 | 1 | 9 | 22 | 0 | 0 | 15 | 1 | 26 | 0 | 0 | 1 | 0 | 1 | |
| i | 26 | 1 | 60 | 26 | 23 | 1 | 9 | 01 | 0 | 0 | 38 | 14 | 82 | 41 | 7 | 0 | 16 | 71 | 64 | 1 | 1 | 0 | 0 | 1 | |
| j | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | , | 1 | 0 | 0 | 0 | 0 | |
| k | 4 | 0 | 0 | 1 | 15 | 1 | 8 | 15 | 0 | 1 | 3 | 0 | 17 | 0 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | |
| 1 | 24 | 0 | 1 | 6 | 48 | 0 | 0 | 0217 | 0 | | 211 | 2 | | 29 | 0 | 0 | 2 | 12 | 7 | 3 | 2 | 0 | 0 | 11 | |
| m | 15 | 10 | 0 | 0 | 33 | 0 | 0 | 42 | 0 | 0 | | 180 | 7 | 7 | 31 | 0 | 0 | 9 | 0 | 4 | 0 | 0 | 0 | , | |
| n | 21 | 0 | 42 | 71 | 68 | | 160 | 0191 | 0 | 0 | 0 | 17 | 144 | 21 | 0 | 0 | | 127 | 87 | 43 | 1 | 1 | 0 | 2 | |
| - | 11 | 4 | 3 | 6 | 8 | 0 | 5 | 04 | | 0 | 13 | | 70 | 26 | 20 | 0 | 98 | 20 | 13 | 47 | , | 5 | , | 1 | |
| p | 25 | 0 | 0 | 0 | 22 | 0 | 0 | $12 \quad 15$ | 0 | 0 | 28 | 1 | 0 | 30 | 93 | 0 | 58 | 1 | 18 | 2 | | 0 | 0 | 0 | |
| q | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | |
| r | 63 | 4 | 12 | 19 | 188 | 0 | 11 | 5132 | 0 | 3 | 33 | 7 | 157 | 21 | 2 | | 277 | 103 | 68 | 0 | 10 | 1 | 0 | 27 | |
| s | 16 | 0 | 27 | 0 | 74 | 1 | 0 | 18231 | 0 | 0 | 2 | | 0 | 30 | 30 | 0 | | 265 | 124 | 21 | 0 | 0 | 0 | , | |
| t | 24 | 1 | 2 | 0 | 76 | 1 | 7 | 49427 | 0 | 0 | 31 | 3 | 3 | 11 | | | 203 | 5 | 137 | 14 | 0 | 4 | 0 | 2 | |
| u | 26 | 6 | 9 | 10 | 15. | 0 | 1 | 028 | 0 | 0 | 39 | 2 | 111 | 1 | 0 | | 129 | 31 | 66 | . | 0 | 0 | 0 | 1 | |
| v | 9 | 0 | 0 | 0 | 58 | 0 | 0 | 031 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
| w | 40 | 0 | 0 | 1 | 11 | 1 | 0 | $11 \quad 15$ | 0 | 0 | 1 | 0 | 2 | | 0 | 0 | 2 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | |
| x | 1 | 0 | 17 | 0 | 3 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | | 0 | 6 | 0 | | 0 | 5 | 0 | 0 | 0 | 0 | 1 | |
| y | 2 | , | 34 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 17 | 1 | 0 | 0 | 1 | 0 | | |
| y | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | , | 0 | | |
| @ | 20 | 14 | 41 | 31 | 20 | 20 | 7 | 620 | 3 | 6 | 22 | 16 | 5 | 5 | 17 | | 28 | 26 | | 2 | | 24 | 0 | 0 | |

Confusion matrix : substitution

$\operatorname{sub}[\mathbf{X}, \mathrm{Y}]=$ Substitution of \mathbf{X} (incorrect) for \mathbf{Y} (correct)

X												(
	a	b	c	d e	f	g	h		j	k	1	m	n	0	p	q	r	s	t	u	v	w	x	y	
a	0	0	7	1342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5)
b	0	0	9	92	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	
c	6	5	0	160	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	
d	1	10	13	012	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
c	388	0	3	11	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	119	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3)
h	1	8	0	30	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	90	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	40	4	5	6	13	0	1	0	0	14		5	0	11	10	2	,	0	0	0		
m	1	3	7	80	2	0	6	0	0	4	4		180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	53	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	-	0	1	2	0	2
0	91	1	1	3116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	
p	0	11	1	20	6	5	0	2	9	0	2	7	6	15	0	0	1	,	6	0	4	1	0	0	
q	0	0	1	0	0	27	0	0	0	0		0	0	0	0	0	-	0	0	0	0	0	0	0)
r	0	14	0	$30 \quad 12$	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22		0	0	1	0	
s	11	8	27	3335	4	0	1	0	1	0	27		6	1	7	0	14	0	15	0	0	5	3	20	
t		4	9	427	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	044	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	
v	0	0	7	00	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	01	0	0	2	0	0	1	0	0	0	0	7	0	6		3	1	0	0	0	0	
x	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	
y	0	0	2	015	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	,	0	0
	0			70	0			0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	

Channel model

$$
P(x \mid w)= \begin{cases}\frac{\operatorname{del}\left[w_{i-1}, w_{i}\right]}{\operatorname{count}\left[w_{i-1} w_{i}\right]}, & \text { if deletion } \\ \frac{\operatorname{ins}\left[w_{i-1}, x_{i}\right]}{\operatorname{count}\left[w_{i-1}\right]}, & \text { if insertion } \\ \frac{\operatorname{sub}\left[x_{i}, w_{i}\right]}{\operatorname{count}\left[w_{i}\right]}, & \text { if substitution } \\ \frac{\operatorname{trans}\left[w_{i}, w_{i+1}\right]}{\operatorname{count}\left[w_{i} w_{i+1}\right]}, & \text { if transposition }\end{cases}
$$

Channel model for acress

Candidate	Correct	Error Correction	$\mathrm{x} \mid \mathrm{w}$	$\mathrm{P}(\mathrm{x} \mid$ word $)$
Letter	Letter			
actress	t	-	$\mathrm{c} \mid \mathrm{ct}$.000117
cress	-	a	$\mathrm{a} \mid \#$.00000144
caress	ca	ac	$\mathrm{ac} \mid c a$.00000164
access	c	r	r\|c	.000000209
across	o	e	e\|o	.0000093
acres	-	s	es \|e	.0000321
acres	-	s	ss \|s	.0000342

Noisy channel probability for acress

cress - al\# . $00000144 \underset{4}{.00000054} .00078$

| caress | ca | ac | ac\|ca | .00000164 | .00000170 | .0028 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| access | c | r | r\|c | .000000209 | .0000916 | .019 |

across	o	e	e\|o	.0000093	.000299	2.8
acres	-	s	es\|e	.0000321	.0000318	1.0
acres	-	s	ss\|s	.0000342	.0000318	1.0

Using a bigram language model

""a stellar and versatile acress whose combination of sass and glamour..."
\square Counts from the Corpus of Contemporary American English with add-1 smoothing
$\square P($ actress|versatile) $=.000021$
P(whose|actress) $=.0010$
$\square \mathrm{P}($ across|versatile) $=.000021$
$\mathrm{P}($ whose|across $)=.000006$
$\square P\left(\right.$ "versatile actress whose") $=.000021 * .0010=210 \times 10^{-10}$
$\square \mathrm{P}\left(\right.$ "versatile across whose") $=.000021 * .000006=1 \times 10^{-10}$

Multiple Typing Errors

Multiple typing errors

\square Measures of string similarity
How similar is "intention" to "execution"?
\square For strings of same length - Hamming distance
\square Edit distance (A,B):
minimum number of operations that transform string A into string B
\square ins, del, sub, transp : Damerau -Levenshtein distance

Minimum Edit Distance

\square Each edit operation has a cost
\square Edit distance based measures
\square Levnishtein-Damreau distance
\square How similar is "intension" to "execution"?

Three views of edit operations

Alignment
All views \rightarrow cost $=5$ edits

If subst / transp is not allowed
[their cost $=2$] \rightarrow
cost= 8 edits
Operation
List

Trace

$$
\begin{aligned}
& i n t e n \varepsilon t i o n \\
& \varepsilon \in x \in c u t i o n
\end{aligned}
$$

Levenshtein Distance

$\square \operatorname{len}(A)=m ; \operatorname{len}(B)=n$
\square create $\mathrm{n} \times \mathrm{m}$ matrix : A along x -axis, B along y
$\square \operatorname{cost}(\mathrm{i}, \mathrm{j})=$ Levenshtein distance ($\mathrm{A}[0 . \mathrm{i}], \mathrm{B}[0 . . \mathrm{j}]$)
= cost of matching substrings
\square Dynamic programming : solve by decomposition.
\square Dist-matrix $(\mathrm{i}, \mathrm{j})=\min \{$ costs of insert from (i-1,j) or (i,j-1); or cost of substitute from (i-1, j-1) \}

Levenshtein Distance

n	9	10	11	10	11	12	11	10	9	8
o	8	9	10	9	10	11	10	9	8	9
i	7	8	9	8	9	10	9	8	9	10
t	6	7	8	7	8	9	8	9	10	11
n	5	6	7	6	7	8	9	10	11	12
e	4	5	6	5	6	7	8	9	10	11
t	3	4	5	6	7	8	9	10	11	12
n	2	3	4	5	6	7	8	8	10	11
i	1	2	3	4	5	6	7	8	9	10
\#	0	1	2	3	4	5	6	7	8	9
	$\#$	e	x	e	c	u	t	i	o	n

WORD-FROM-DICTIONARY SPELL CHECKER

Real-word spelling errors

\square...leaving in about fifteen minuets to go to her house.
\square The design an construction of the system...
\square Can they lave him my messages?
\square The study was conducted mainly be John Black.
$\square \mathbf{2 5 - 4 0 \%}$ of spelling errors are real words Kukich 1992

Solving real-world spelling errors

\square For each word in sentence

- Generate candidate set
- the word itself
- all single-letter edits that are English words
- words that are homophones
\square Choose best candidates
- Noisy channel model
- Task-specific classifier

Noisy channel for real-word spell correction

\square Given a sentence $\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \ldots, \mathrm{w}_{\mathrm{n}}$
\square Generate a set of candidates for each word w_{i}
\square Candidate $\left(w_{1}\right)=\left\{w_{1}, w_{1}^{\prime}, w_{1}{ }_{1}, w^{\prime \prime \prime}{ }_{1}, \ldots\right\}$
\square Candidate $\left(w_{2}\right)=\left\{w_{2}, w_{2}^{\prime}, w_{2}^{\prime \prime}, w^{\prime \prime \prime}{ }_{2}, \ldots\right\}$
\square Candidate $\left(w_{n}\right)=\left\{w_{n}, w_{n}^{\prime}, w_{n}^{\prime \prime}, w^{\prime \prime \prime}{ }_{n}, \ldots\right\}$
\square Choose the sequence W that maximizes $\mathrm{P}(\mathrm{W})$

Noisy channel for real-word spell correction

Noisy channel for real-word spell correction

Norvig's Python Spelling Corrector

How to Write a Spelling Corrector
http://norvig.com/spell-correct.html

Simplification: One error per sentence

\square Out of all possible sentences with one word replaced
$\square W_{1}, w^{\prime \prime}{ }_{2}, W_{3}, W_{4} \quad$ two off thew
$\square \mathrm{w}_{1}, \mathrm{w}_{2}, \mathbf{w}_{3}, \mathrm{w}_{4} \quad$ two of the
$\square \mathbf{w}^{\prime \prime \prime}{ }_{1}, W_{2}, W_{3}, W_{4} \quad$ too of thew
\square Choose the sequence W that maximizes $\mathrm{P}(\mathrm{W})$

Where to get the probabilities

\square Language model

- Unigram
\square Bigram
\square Etc
\square Channel model
\square Same as for non-word spelling correction
\square Plus need probability for no error, $\mathrm{P}(\mathrm{w} \mid \mathrm{w})$

Probability of no error

\square What is the channel probability for a correctly typed word?
$\square \mathrm{P}($ "the" \mid "the" $)=1$ - probability of mistyping
\square Depends on typist, task, etc.
$\square .90$ (1 error in 10 words)
$\square .95$ (1 error in 20 words) \leqslant value used, say

- 99 (1 error in 100 words)
- . 995 (1 error in 200 words)

Peter Norvig's "thew" example

	w	x/w	P(x\|w)	P(w)	$\begin{aligned} & 10^{9} \\ & \mathrm{P}(\mathrm{x} \mid \mathrm{w}) \mathrm{P}(\mathrm{w}) \end{aligned}$
thew	the	ewle	0.000007	0.02	144
thew	thew		0.95	0.00000009	90
thew	thaw	ela	0.001	0.0000007	0.7
thew	threw	h\|hr	0.000008	0.000004	0.03
thew	thwe	ew/we	0.000003	0.00000004	0.0001

Choosing 0.99 instead of 0.95 (1 mistyping in 100 words) \rightarrow "thew" becomes more likely

State of the art noisy channel

\square We never just multiply the prior and the error model
\square Independence assumptions \rightarrow probabilities not commensurate
\square Instead: weight them

$$
\hat{w}=\underset{w V}{\operatorname{argmax}} P(x \mid w) P(w)
$$

\square Learn λ from a validation test set (divide training set into training + validation)

Phonetic error model

\square Metaphone, used in GNU aspell
\square Convert misspelling to metaphone pronunciation

- "Drop duplicate adjacent letters, except for C."

■ "If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter."

- "Drop ' B ' if after ' M ' and if it is at the end of the word"
- ...
\square Find words whose pronunciation is 1-2 edit distance from misspelling's
\square Score result list
\square Weighted edit distance of candidate to misspelling
- Edit distance of candidate pronunciation to misspelling pronunciation

Improvements to channel model

\square Allow richer edits (Brill and Moore 2000)

- ent \rightarrow ant
$\square \mathrm{ph} \rightarrow \mathrm{f}$
$\square \mathrm{le} \rightarrow \mathrm{al}$
\square Incorporate pronunciation into channel (Toutanova and Moore 2002)

Channel model

\square Factors that could influence p (misspelling |word)
\square The source letter
\square The target letter
\square Surrounding letters
\square The position in the word
\square Nearby keys on the keyboard
\square Homology on the keyboard
\square Pronunciations
\square Likely morpheme transformations

Nearby keys

Classifier-based methods

\square Instead of just channel model and language model
\square Use many more features - wider context build a classifier (machine learning).
\square Example:
whether/weather
■ "cloudy" within +- 10 words

- __ to VERB
-__ or not
\square Q. How can we discover such features?

Candidate generation

\square Words with similar spelling
\square Small edit distance to error
\square Words with similar pronunciation
\square Small edit distance of pronunciation to error

Damerau-Levenshtein edit

 distance\square Minimal edit distance between two strings, where edits are:
\square Insertion
\square Deletion
\square Substitution
\square Transposition of two adjacent letters

Candidate generation

$\square 80 \%$ of errors are within edit distance 1
\square Almost all errors within edit distance 2
\square Also allow insertion of space or hyphen
\square thisidea \rightarrow this idea
\square inlaw \rightarrow in-law

Language Model

\square Language modeling algorithms :
\square Unigram, bigram, trigram
\square Formal grammars
\square Probabilistic grammars

"You spelled garbage wrona."

CS 671 NLP NAÏVE BAYES AND SPELLING

amitabha mukerjee iit kanpur

HCl issues in spelling

\square If very confident in correction
\square Autocorrect
\square Less confident
\square Give the best correction
\square Less confident
\square Give a correction list
\square Unconfident
\square Just flag as an error

Noisy channel based methods

\square IBM
\square Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991. Context based spelling correction. Information Processing and Management, 23(5), 517-522
\square AT\&T Bell Labs
\square Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990. A spelling correction program based on a noisy channel model. Proceedings of COLING 1990, 205-210

