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Abstract In adding syntax to statistical machine translation, there is a tradeoff
between taking advantage of linguistic analysis and allowing the model to exploit
parallel training data with no linguistic analysis: translation quality versus coverage.
A number of previous efforts have tackled this tradeoff by starting with a commitment
to linguistically motivated analyses and then finding appropriate ways to soften that
commitment. We present an approach that explores the tradeoff from the other direc-
tion, starting with a translation model learned directly from aligned parallel text, and
then adding soft constituent-level constraints based on parses of the source language.
We argue that in order for these constraints to improve translation, they must be fine-
grained: the constraints should vary by constituent type, and by the type of match or
mismatch with the parse. We also use a different feature weight optimization tech-
nique, capable of handling large amount of features, thus eliminating the bottleneck of
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feature selection. We obtain substantial improvements in performance for translation
from Arabic to English.

Keywords Machine translation - Syntax - Soft constraints - Arabic - Parsing -
Statistical methods

1 Introduction

In adding syntax to statistical machine translation (SMT), there is a tradeoff be-
tween taking advantage of linguistic analysis and allowing the model to exploit
mappings learned from data without linguistic analysis (except perhaps word seg-
mentation). This is a tradeoff of translation quality versus coverage, analogous
to precision versus recall. This work combines these two knowledge sources,
starting with a synchronous context-free grammar-based translation model learned
directly from aligned parallel text, and then adding soft constituent-level con-
straints based on syntactic parses of the source language. We argue that in
order for these constraints to improve translation, they must be fine-grained.
This article draws together work by Marton and Resnik (2008) and subsequent
work by Chiang et al. (2008), revising and extending these previous publica-
tions with analysis based on Chapter 2 of the first author’s doctoral dissertation
(Marton 2009).

The statistical revolution in machine translation (Brown et al. 1990, 1993) replaced
an earlier paradigm of detailed language analysis with automatic learning of shal-
low source-target mappings from large parallel corpora. Over the last several years,
however, the pendulum has begun to swing back in the other direction, with research-
ers exploring a variety of statistical models that take advantage of syntactic analysis,
especially in the target language (e.g., Cowan et al. (2006); Zollmann and Venugopal
(2006); Marcu et al. (2006); Galley et al. (2006); Cherry (2008); Mi et al. (2008);
Xiong et al. (2009); Venugopal et al. (2009); DeNeefe and Knight (2009) and numer-
ous others).

Chiang (2005) distinguishes statistical machine translation approaches that are
syntactic in a formal sense from those that are syntactic in a linguistic sense: For-
mally syntactic approaches go beyond the finite-state underpinnings of phrase-based
models, using grammars such as synchronous context-free grammar (SCFG). Lin-
guistically syntactic approaches take advantage of a priori language knowledge in
the form of annotations derived from human linguistic analysis or treebanking. The
two forms of syntactic modeling are doubly dissociable: current research frame-
works include systems that are finite state but informed by linguistic annotation
prior to training (e.g., Koehn and Hoang (2007); Birch et al. (2007); Hassan et al.
(2007)), and also include systems employing context-free models trained on paral-
lel text without benefit of any prior linguistic analysis (e.g. Chiang (2005, 2007);
Wu (1997)). Over time, however, there has been increasing movement in the direc-
tion of systems that are syntactic in both the formal and linguistic senses (see
Table 1).
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Table 1 Formally and linguistically syntactic SMT approaches are doubly dissociable

Data-driven Linguistically syntactic
Word-based or flat TBM models (Brown et al. 1993), Koehn and Hoang (2007), Birch et al.
phrase-based Pharaoh (Koehn 2004), Moses (Koehn (2007), Hassan et al. (2007), Cherry
et al. 2007) (2008),...
Hierarchical, ITG (Wu 1997), SCFG: Hiero (Chiang Cowan et al. (2006), Zollmann and
formally 2005, 2007),... Venugopal (2006), Marcu et al. (2006),
syntactic Galley et al. (2006), Marton and

Resnik (2008), Chiang et al. (2008),
Xiong et al. (2009), DeNeefe and
Knight (2009),...

In any such system, there is a natural tension between taking advantage of lin-
guistic analysis versus allowing the model to use mappings learned from non-anno-
tated parallel training data. The tradeoff often involves starting with a system that
exploits rich linguistic representations and relaxing some part of it. For example,
Zollmann and Venugopal (2006) begin with a string-to-tree model using tree-
bank-based target language analysis, and relax the notion of syntactic constitu-
ency in a manner similar to categorial grammar, in order to admit more translation
rules.

Here we address this challenge from a less explored direction. Rather than starting
with a system based on linguistically motivated parse trees, we begin with a model
that is syntactic only in the formal sense. We then introduce soft constraints that
take source-language parses into account to a limited extent. Introducing syntactic
constraints in this restricted way allows us to take maximal advantage of what can
be learned from parallel training data, while effectively factoring in key aspects of
linguistically motivated analysis. As a result, we obtain substantial improvements in
performance for Arabic—English translation.

We build on the Hiero SMT framework (Chiang 2005, 2007), briefly reviewed
in Section 2, including Chiang’s initial effort to incorporate soft source-language
constituency constraints for Chinese-English translation. We suggest that an insuf-
ficiently fine-grained view of constituency constraints was responsible for Chiang’s
lack of strong results. Our contribution is to introduce finer-grained constraints into
the model, and a novel type of syntactic constraint, penalizing source-side transla-
tion units that cross the boundaries of syntactic constituents (Section 3). We carry
out experiments on Arabic—English translation (Section 4), and show gains when
optimizing the models using the standard Minimum Error Rate Training (MERT)
weight optimization algorithm, and also when using the more recent Margin In-
fused Relaxed Algorithm (MIRA), one of whose advantages is handling a large
amount of features. We then discuss the results (Section 5), review related work
(Section 6), and conclude with a summary and potential directions for future work
(Section 7).
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2 Background
2.1 Hierarchical phrase-based translation (Hiero)

Hiero (Chiang 2005, 2007), which is used in the experiments reported here, is a
hierarchical phrase-based SMT framework that generalizes phrase-based models by
permitting phrases with gaps. Formally, Hiero’s translation model is a weighted syn-
chronous context-free grammar (SCFG). Hiero employs a generalization of the stan-
dard non-hierarchical phrase extraction approach in order to acquire the synchronous
rules of the grammar directly from word-aligned parallel text. Rules have the form
X — (e, f) where & and f are phrases containing terminal symbols (words) and pos-
sibly co-indexed instances of the nonterminal symbol X.! For example, the translation
rule

X — (the green X sleeps X3, la X1 verte dort X5)

could translate the English “the green caterpillar sleeps under a leaf” to the French “la
chenille verte dort sous une feuille”, or translate the English “the green idea sleeps furi-
ously” to the French “la idée (I’idée) verte dort furieusement”. All co-indexed occur-
rences of X would have to be translated with another such rule, e.g., X — (idea, idée)
or X — (furiously, furieusement). The English (source) side of the nested rule will
substitute a source side occurrence of X in the containing rule, while the target side
of the nested rule will synchronously substitute the occurrence of X in the contain-
ing rule which was co-indexed with the substituted source side X. Since Hiero is
SCFG-based, the choice of what nested rule to use is independent of the containing
rule.

Associated with each rule is a set of translation model features, ¢; (e, f ); for exam-
ple, one intuitively natural feature of a rule is the phrase translation log-probability
¢(e, f) =log p(e | f),directly analogous to the corresponding feature in non-hierar-
chical phrase-based models like Pharaoh (Koehn et al. 2003). In addition to this phrase
translation probability feature, Hiero’s feature set includes the inverse phrase transla-
tion probability log p( f 1 @), lexical weights lexwt( f | &) and lexwt(¢ | f), which are
estimates of translation quality based on word-level correspondences (Koehn et al.
2003), and a rule penalty allowing the model to learn a preference for longer or shorter
derivations; see Chiang (2007) for details.

These features are combined using a linear model, with each rule contributing

> i@ ) M

to the total score of a derived hypothesis. Each X; is a weight associated with fea-
ture ¢;, and these weights are typically optimized using minimum error rate training

! This is slightly simplified: Chiang’s original formulation of Hiero has two nonterminal symbols, X and
S. The latter is used only in two special “glue” rules that permit complete trees to be constructed via
concatenation of subtrees when there is no better way to combine them.
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(Och 2003). As noted in Section 1, Hiero is only formally syntax-based, in that it
assigns a hierarchical structure to a sentence, but it is not linguistically syntax-based,
in that it has no knowledge of verb phrases or other syntactic constituents. Next, we
discuss past and present attempts to make Hiero syntactically aware in the linguistic
sense as well.

2.2 Soft syntactic constraints

When looking at Hiero rules, which are acquired automatically from parallel text, it is
easy to find many cases that seem to respect linguistically motivated boundaries. For
example,

X — (jinnian X1, X this year),

seems to capture the use of “jinnian”/“this year” as a temporal modifier when build-
ing linguistic constituents such as noun phrases (“the election this year”) or verb
phrases (“voted in the primary this year”). However, observe that nothing in the
Hiero framework actually requires nonterminal symbols to cover linguistically sensi-
ble constituents, and in practice they frequently do not. This rule could just as well be
applied with X; covering the phrase “submitted and” to produce the non-constituent
substring “submitted and this year” in a hypothesis like “The budget was submitted
and this year cuts are likely”.

Chiang (2005) conjectured that there might be value in allowing the Hiero model to
favor hypotheses whose derivation respects linguistically motivated source-language
constituency boundaries, as identified using a parser. He tested this conjecture by
adding a soft constraint in the form of a constituency feature: if a rule X — (&, f)
is used in a derivation, and the span of f is a constituent in the source-language
parse, then a term A is added to the model score in expression (1).> A hard constraint
would prevent the application of any rule violating syntactic boundaries, whereas a
soft constraint (implemented as a weighted feature) merely encourages rule applica-
tions matching syntactic constituent boundaries in the source language by boosting
the associated scores. The weight ., like all the other A;, is set during a tuning step,
which determines empirically the extent to which the constituency feature should be
trusted.

Figure 1 illustrates the way the constituency feature (denoted here all-labels™)
worked, treating English as the source language for readability. In this example, the
reward A, would be added to the hypothesis score for any rule used in the hypoth-
esis whose source side covers one of the spans indicated by the top five horizontal
bars: “the minister”, “a speech”, “yesterday”, “gave a speech yesterday”, or “the
minister gave a speech yesterday.” A rule translating, say, “minister gave a” (bottom
horizontal bar) would receive no reward.

2 Formally, ¢.(, f) is defined as a binary feature, with value 1 if f spans a source constituent and 0
otherwise. In the latter case Ac¢c(e, f) = 0 and the score in expression (1) is unaffected.
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The minister gave a speech yesterday

I NP=
I NP=
all-labels™ s ADVP=
VP~
S=

] NPJr s VPt

(Chiang, 2005) (Our model)

Fig. 1 Translation rules whose source side exactly spans any constituent type (top five horizontal bars) are
equally rewarded by Chiang’s feature all-labels™, while a rule translating “minister gave a” (bottom bar)
is not rewarded. Our models give separately weighted rewards for each constituent type (top five bars) and
penalties for crossing each constituent type (bottom bar). This example is in English for ease of readability

Chiang tested the constituency feature for Chinese-English translation, and obtained
no significant improvement on the test set. The constituency feature was not pursued
again in a later discussion (Chiang 2007).

3 Soft syntactic constraints, revisited

Why did the soft constraints in Chiang (2005) yield negative results? On the face
of it, there are any number of possible reasons, including practical issues like the
quality of the Chinese parses (although it turned out not to be the issue, as we see
in Section 4). We focus here on two conceptual issues underlying the use of source
language syntactic parses there.

First, the constituency feature treats all syntactic constituent types equally, making
no distinction among them. In Fig. 1, the same reward is applied to all of the spans
indicated by the top five horizontal bars, even though they have different syntactic
categories. For any given language pair, however, there might be some source constit-
uents that tend to map to the target language as units more naturally than others (Fox
2002; Eisner 2003; Koehn 2003). Moreover, a parser may tend to be more accurate
for some constituents than for others. Assigning a high weight to noisy parsing tags or
to inconsistent source-target constituent pairing may cause more damage than benefit
to the overall translation quality.

Second, the Chiang (2005) constituency feature gives a rule additional credit only
when the rule’s source side overlaps exactly with a source-side syntactic constituent.
Logically, however, it might make sense not just to give arule X — (e, f) extra credit
when f matches a constituent, but also to incur a penalty when f violates a constituent
boundary. For example, in Fig. 1, one might want to penalize hypotheses containing
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rules whose f is “minister gave a” (or “minister gave”, “the minister gave a”, and
so forth).

These observations suggest a finer-grained approach to the constituency feature
idea, retaining the idea of soft constraints, but applying them using various soft-con-
straint constituency features. Our first observation argues for distinguishing among
constituent types (NP, VP, etc.). Our second observation argues for distinguishing
the benefit of matching constituents from the cost of crossing constituent bound-
aries. We therefore define a set of new features: for each nonterminal symbol X €
{SBAR, S, NP, VP, .. .},

— X~ fires when ]i matches a constituent of type X in the source-language parse
— X fires when f crosses a constituent of type X in the source-language parse

For example, ¢np= would denote a binary feature that fires whenever the span of a
rule’s source side f exactly matches an NP in the source-side parse tree, resulting in
Anp= being added to the hypothesis score (equation (1)). In Fig. 1, this feature would
reward rules with spans indicated by the top two horizontal bars, but not the other
bars. Similarly, ¢yp+ would denote a binary feature that fires whenever the span of f
crosses a VP boundary in the parse tree, resulting in Ayp+ being added to the hypoth-
esis score. > In Fig. 1, this feature would fire on the span indicated by the bottom bar.
For readability from this point forward, we will omit ¢ from the notation and refer to
features such as NP= (which one could read as “NP match”), VP (which one could
read as “VP crossing”), etc.

For completeness, one might want a set of features that characterizes all possible
relationships that f can have to the input parse tree. Such a set might include not only

- f matching a constituent exactly (X~)
—  f crossing a constituent boundaries (X ™)

but also

—  f being properly contained within the constituent span (e.g., in Fig. 1, the second
bar “a speech” for the VP “gave a speech yesterday”),

— f properly containing the constituent span (e.g., the fourth bar “gave a speech
yesterday” for the NP “a speech”), or

—  f being outside the constituent span entirely (e.g., the fourth bar “gave a speech
yesterday” for the NP “the minister”).

Often, when one of these latter three possibilities occur, f will exactly match or
cross the boundaries of some other constituent, and therefore, a feature of the first two
kinds will fire. For example, in Fig. 1 again, “a speech” (second horizontal bar) is
properly contained in the span of the VP “gave a speech yesterday”, but is also a NP;
therefore, although neither VP= nor VP would fire on a rule with this span, NP~
would. The span “gave a speech yesterday” (fourth bar) properly contains the NP “a
speech”, but is also a VP; although neither NP~ nor NPT would fire on a rule with
this span, VP~ would. Finally, “the minister” (first bar) is entirely outside the span

3 This binary feature always fires with a positive value, but discriminative training should, and generally
does, assign Ayp+ a negative value, resulting in a penalty associated with this feature.
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of the VP, but is a NP; neither VP= nor VP would fire on a rule with this span, but
NP~ would.

If the parse trees are binary-branching, then our existing feature set is complete in
the sense that any span of f will cause one of our features to fire (it must either be a
constituent or cross a constituent). But for trees with higher maximal fan-out, spans
such as “gave a speech” and “a speech yesterday” in Fig. 1 are neither rewarded nor
penalized by our features. We could handle such spans by binarizing the trees using
simple heuristics; alternatively, we could add more feature types. For example, there
could be a feature that fires when a rule’s source side matches only the left or right
boundary of a node of type X, or several children of a node of type X. Some of these
possibilities are explored in work subsequent to ours (Xiong et al. 2009).

In addition to the individual features defined above, we define the following vari-
ants:

— For each constituent type, e.g. NP, we define a conflated feature NP_ that ties the
weights of NP~ and NPT. If NP= matches a rule, the model score is incremented
by Anp ,and if NPT matches, the model score is decremented by the same quantity.

— For each constituent type, e.g. NP, we define a version of the model, NP5, in which
NP= and NP are both included as features, with separate weights Axp= and Axp-+.

— The following nonterminal labels were selected based on their frequency in the
tuning data, whether they frequently cover a span of more than one word, and
whether they represent linguistically relevant constituents: SBAR, S, NP, VP, PP,
ADJP, ADVP, and QP. Let XP be this set of nonterminals, and define feature XP=
as the disjunction of {X= | X € XP}, i.e., its value equals 1 for a rule if the span
of f exactly covers a constituent having any of the standard labels in XP. The
definitions of XP*, XP_, and XP; are analogous.

— Similarly, since Chiang’s original constituency feature can be viewed as a disjunc-
tive all-labels= feature, we also defined all-labels™, all-labels,, and all-labels_
analogously.

4 Experiments

We describe below two sets of experiments with soft syntactic constraints as weighted
features in a linear model. Section 4.1 describes experiments optimizing the feature
weights with the de facto standard minimum error rate training (MERT). Section 4.2
addresses the feature selection problem that arises in Section 4.1 using another weight
optimization method, and revalidates our approach with another tuning set and a much
larger training set.

4.1 MERT experiments

We carried out experiments for translation from Arabic to English,* using the Hiero
system (Chiang et al. 2005). Language models were built using the SRI Language

4 We refer the reader to Marton and Resnik (2008) for details of related Chinese to English experiments.
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Table 2 Training corpora for

Arabic—English translation LDCID Description
LDC2004T17 Ar News Trans Txt Pt 1
LDC2004T18 Ar/En Par News Pt 1
LDC2005E46 Ar/En Treebank En Translation
LDC2004E72 eTIRR Ar/En News Txt
Z:;izs:: S;l;r:ii;;rsliiuning ’ Use Set Size (sentences)
Arabic-English translation Training See Table 2 100,000
Tuning NIST MT02 663
Test NIST MTO03 1,357
Test NIST MTO06 (NIST part) 1,797
Test NIST MTO08 1,357

Modeling Toolkit (Stolcke 2002) with modified Kneser-Ney smoothing (Chen and
Goodman 1998). Word-level alignments were obtained using GIZA++ (Och and
Ney 2000). The baseline model used the feature set described in Section 2.

In order to compute syntactic features, we analyzed source sentences using the
state of the art, treebank-trained Stanford parser v.2007-08-19 (Klein and Manning
2003a,b). In addition to the baseline condition, we added experimental conditions of
the baseline model augmented with the original constituency feature (Chiang 2005),
or with one of the other features as described in Section 3.

All models were optimized and tested using the NIST definition of the BLEU metric
(Papineni et al. 2002) (shortest effective reference length), on lowercased, tokenized
outputs and references. Statistical significance of difference from the baseline BLEU
score was measured by using paired bootstrap re-sampling (Koehn 2004), with a
sample size of 2000 pairs. Statistical significance was determined in case the 95%
confidence interval (CI) of the systems’ BLEU score difference did not include zero.
For conciseness, this is denoted as p < .05 below. Similarly, a 99% CI is denoted
as p < .01. The word “significant” is used below as a shorthand for “statistically
significant” (at p < .05 unless specified otherwise).

We used the training corpora in Table 2, approximately 100,000 sentence pairs
after GIZA++ length-ratio filtering. We trained a trigram language model using the
English side of this training set, plus the English Gigaword v2 AFP and Gigaword v1
Xinhua corpora. Weight tuning with minimum error rate training was done using the
NIST MTO02 set. Details are given in Table 3.

Table 4 presents the results. We first tested on the NIST MTO03 and MTO06 (nist-
text) sets. On MTO3, the original, undifferentiated constituency feature did not improve
over the baseline. Two individual finer-grained features (PP and ADVP~) yielded
statistically significant gains up to .4 BLEU points, and feature combinations AP,
XP; and all-labels, yielded significant gains up to 1.0 BLEU. XP; and all-labels;
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Table 4 MERT Arabic—English results, sorted by MT06 BLEU score

Arabic MTO03 MTO06 MTO08
Baselines

Baseline 48.0 35.7 35.7
all-labels= (Chiang 2005) 47.9 36.8%* 36.8%*

Single features

VPt 48.0 34.8
APT 48.6 35.0
St 482 352
SBAR= 482 35.2
NP= 485 35.4
NPt 48.0 35.5
AP= 48.0 35.7
ADVPT 485 35.7
SBAR™T 47.6 358
S= 48.1 36.4%% 36.5%%
PP= 48.0 36.5%* 36.6%*
A\ 48.0 36.6%* 36.9%*
PPt 48 4+ 37.1%% 37.0%*
ADVP= 482+ 37.1%% 37.2%%

Feature combination

XPt 47.7 35.2

all-labels; 49.0%++ 35.4 35.7
all-labels_ 48.3 355

VP, 483 35.5

NP, 483 35.6

ADVP.VP.PP.S= 48.3 35.7

VP_ 483 36.0

all-labels 483 36.0

XP, 48.6%+ 36.1 36.1%%
S> 47.9 36.1* 35.9

S_ 47.9 36.4* 36.5%%
XP= 48.1 36.6%+* 37.0%%F
VP=.PP+.ADVP= 48 3% 36.8%* 37.2%%
AP, 48 4% 36.9%+ 37.2%%
PPT.ADVP= 47.8 37.1%% 36.8%+
ADVP, 48.0 37. 7%+t 37 45t

Boldface scores indicate statistical significance: *,**: Better than baseline (p < .05, p < .01, respec-
tively). TF+: Better than all-labels= (p < .05, p < .01, respectively). The dot in conditions such as
PPt .ADVP= denotes a model combining several features, here both PPt and ADVP=
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also improved significantly on the undifferentiated constituency feature, by .7 and 1.1
BLEU, respectively.

For MTO06, Chiang (2005) all-labels= feature improved over the baseline signifi-
cantly; this is a new result, since Chiang (2005) did not experiment with Arabic. Our
individual features S=, PP~, and VP~ also improved over the baseline significantly,
with PP and ADVP~ achieving highest individual improvements up to 1.4 BLEU
over the baseline.

More importantly, several conditions combining features achieved statistically sig-
nificant gains up to almost 2 BLEU points: XP;, Sj, S, VP=_PPt.ADVP=, AP,,
PPt.ADVP=, and ADVP;. (The dot in conditions such as PPT.ADVP= denotes a
model augmented with several features, here both PP™ and ADVP~). Of these, ADVP,
is also a significant gain over the undifferentiated constituency feature all-labels™
(p < .0l1). We tested the best-performing models on a new test set, NIST MTO8.
Similar patterns reappeared: gains up to 1.7 BLEU (p < .01) over the baseline, with
ADVP; again in the lead, also outperforming all-labels= (p < .05).

4.2 MIRA experiments

One major weakness of the experiments described in Section 4.1 was the need for fea-
ture selection: no single constituent-sensitive feature, single constraint type (matching
or crossing syntactic constituent boundaries), or single combination performed the best
in all test sets. Moreover, feature combination often resulted in a performance drop.
Feature selection was necessary because the commonly used MERT algorithm (Och
2003) performs poorly when attempting to optimize weights of more than 20-25 fea-
tures, in the experience of many researchers and our own. This section sidesteps the
feature selection problem by using the Margin-Infused Relaxed Algorithm.> Soft syn-
tactic constraint features, similar to those described in Section 4.1, are tested in an
Arabic-English translation task. Unlike in Section 4.1, here MIRA makes it possible
to tune all syntactic features in a single model. It is also worth noting that this experi-
mentation is on a considerably larger scale than what is described in Section 4.1 and
Marton and Resnik (2008)—and yet our approach shows gains here as well.

The Margin Infused Relaxed Algorithm (MIRA) is a large-margin training algo-
rithm for structured classification, similar in spirit to more familiar large-margin meth-
ods like support vector machines. Moreover, MIRA is an online algorithm, updating
model weights training example by training example. The convexity of the objective
function combined with online training result in dramatically improved scalability
as compared with MERT. See Crammer and Singer (2003); Watanabe et al. (2007);
Chiang et al. (2008, 2009) for detailed discussion.

The baseline model was Hiero with the following baseline features: 1. two language
models; 2. phrase translation probabilities p(f|e) and p(e| f); 3. lexical weights in
both directions (Koehn et al. 2003); 4. penalties for: (a) length (word penalty); (b)

5 This section mainly draws on Chiang et al. (2008), which includes Chiang’s re-implementation of the
features described in Marton and Resnik (2008), and the implementation of MIRA. Chiang et al. (2008)
also introduce structural distortion features, which are not covered in this article.
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Table 5 Training corpora for Arabic—English translation (MIRA)

LDC ID Description

LDC2004T172 Arabic News Translation Text Part 1
LDC2004T18 Arabic English Parallel News Part 1
LDC2005E462 Arabic Treebank English Translation
LDC2004E13 UN Arabic English Parallel Text
LDC2006E24% GALE Y1 - Interim Release: Translations
LDC2006E252 GALE Y1 - Arabic English Parallel News Text
LDC2006E34% GALE Y1 Q2 Release - Translations V2.0
LDC2006E85% GALE Y1 Q3 Release - Translations
LDC2006E86* GALE Y1 Q3 Release - Word Alignment
LDC2006E92% GALE Y1 Q4 Release - Translations
LDC2006E93? GALE Y1 Q4 Release - Word Alignment
LDC2007E07 IST Arabic—English Automatically Extracted Parallel Text

The permissible parallel texts from the NIST MT 2008 evaluation (http://www.itl.nist.gov/iad/mig/tests/
mt/2008/doc/mt08_constrained.html)
4 Used for hierarchical phrase extraction

automatically extracted rules (rule penalty), (c) identity rules (translating a word into
itself), (d) two classes of number/name translation rules, and (e) glue rules. The proba-
bility features were base-100 log-probabilities.® The rules were extracted from all the
allowable parallel text from the NIST MT 2008 evaluation (152+175 million words
of Arabic+English, in 6,561,091 parallel sentences), aligned by IBM Model 4 using
GIZA++ (union of both directions). Hierarchical rules were extracted from the most
in-domain corpora (4.2+5.4 million words in 170,863 parallel sentences), and phrases
were extracted from the remainder. See Table 5.

Two language models were trained, with the only difference being that one was
trained on data similar to the English side of the parallel text, and the other on 2 billion
words of English, mainly from the LDC English Gigaword 2. Both were 5-gram mod-
els with modified Kneser-Ney smoothing, lossily compressed using a perfect-hashing
scheme similar to that of Guthrie et al. (2010).

The documents of the NIST MT 2004 (newswire) and 2005 Arabic—English eval-
uation data were randomly partitioned into a tuning set (1178 sentences) and a devel-
opment set (1298 sentences). The test data was the NIST MT 2006 Arabic—English
evaluation data (NIST part, newswire and newsgroups, 1529 sentences). See Table 6.

Here, both MERT and MIRA were run on the tuning set using 20 parallel proces-
sors. MERT was stopped when the score on the tuning set stopped increasing, as is

6 MIRA can, like the perceptron, be thought of as a gradient-descent optimization of the SVM primal objec-
tive function (generalized hinge loss). As such, it is sensitive to the relative scales of individual features.
Language models tend to have large feature values, and therefore there would be large differences in feature
Footnote 6 continued

values between hypothesis translations and (what is treated as) the correct translation, which in turn would
likely cause large updates to their weights; but the model is highly sensitive to changes in the language
model weights. So we scale the weights of some features down by using base-100 log-probabilities.
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Table 6 Training, tuning, development and test set sizes for Arabic—English translation (MIRA)

Use Set Size (sentences)
Training See Table 5 6,561,091
Tuning NIST MT04 (newswire) 1,178
Development NIST MTO05 1,298

Test NIST MTO06 (NIST part, newswire and newsgroups) 1,529

common practice; MIRA was stopped when the score on the development set stopped
increasing, and after no more than 20 iterations.” In these runs, MERT took an average
of 9 passes through the tuning set and MIRA took an average of 8 passes. For com-
parison, Watanabe et al. (2007) report decoding their tuning data of 663 sentences 80
times.

To obtain syntactic parses for this data, it was tokenized according to the Arabic
Treebank standard using AMIRA (Diab et al. 2004), and parsed with the Stanford
parser. Then, the parsing trees were forced back into the MT system’s tokenization.®

The syntactic features in this section were organized into coarse-grained and fine-
grained sets, with minor differences in implementation from the features that were
used in the experiments described in Sects. 3 and 4.1. The coarse-grained feature set
included, in addition to the twelve features in the baseline model, XP= and XP*. For
the fine-grained feature set, the following nonterminal labels that appear more than
100 times in the tuning data were selected: all those in XP, plus WHNP, PRT, and
PRN. The labels that were excluded were mostly parts of speech, and non-constituent
labels like FRAG. For each of these labels X, we added features X= and X .

Table 7 shows the results of the experiments with the training methods and features
described above. All significance testing was performed against the first line (MERT
baseline). MIRA is shown to be superior or at least competitive with MERT when
both use the baseline feature set. Indeed, the MIRA system scores significantly higher
on the MTO06 test set; but when the test set is broken down by genre, one can see
that the MIRA system does slightly worse on newswire and better on newsgroups.
This is largely attributable to the fact that the MIRA translations tend to be longer
than the MERT translations, perhaps due to the “unclipped” BLEU used in searching
through the forest for high-BLEU or low-BLEU translations (Dreyer et al. 2007). Since
the newsgroup references are longer than the newswire references, longer translations
are better on newsgroups. Table 8 shows source:target length ratios.

When more features are added to the model, the two training methods diverge more
sharply. When training with MERT, the coarse-grained pair of syntax features yields a
small gain on MTO06, but the fine-grained syntax features do not yield any further gain.
Breaking down by genre reveals no gains on newswire, but increased gains with the

7 This MIRA training policy was chosen to avoid overfitting. However, it was possible to use the tuning
set for this purpose, just as with MERT: in none of these runs would this change have made more than a 0.2
BLEU difference on the development set.

8 The only notable consequence is that proclitic Arabic prepositions were fused onto the first word of their
NP object, so that the PP and NP brackets were co-extensive.
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Table 7 Comparison of MERT and MIRA on various feature sets

Train Features # Dev MTO06 (NIST part) MTO08?
nw nw ng nw-+ng

MERT Baseline 12 52.0 50.5 32.4 44.6 40.8
Syntax (coarse) 14 52.2 50.9 33.0% 45.0% 412
Syntax (fine) 34 52.1 50.4 3357 4438 412

MIRA Baseline 12 52.0 49.8~ 342F+ 453+ + 42.8
Syntax (coarse) 14 533+t 510tt 346t 4631+t 433
Syntax (fine) 34 531+ 51.3% 345+ 4641+ 433

Key: # number of features, nw newswire, ng newsgroups, T or T significantly better than MERT baseline
(p < 0.050r p < 0.01, respectively), ~ significantly worse than MERT baseline (p < 0.05)

4 All models were re-created for testing on MT08, because it was added at a later stage in order to provide
better comparison with Section 4.2; the new MERT-tuned models’ performance on MT06 was unfortunately
0.2-0.5 BLEU points lower than the original ones

Table 8 Source:target length ratios

Train Features Dev MTO06 (NIST part) MTO084
nw nw ng nw+ng

MERT Baseline 0.973 0.988 0.783 0.917 0.882
Syntax (coarse) 0.974 0.991 0.801 0.925 0.890
Syntax (fine) 0.978 0.994 0.815 0.932 0.920

MIRA Baseline 1.000 1.020 0.890 0.975 0.951
Syntax (coarse) 1.000 1.020 0.889 0.973 0.950
Syntax (fine) 1.000 1.020 0.888 0.974 0.953

@ All models were re-created for testing on MTO8; See Table 7

fine-grained syntax features. By contrast, when the fine-grained features are trained
using MIRA, they consistently yield substantial gains: over 2 BLEU points on news-
groups, and almost one point on newswire, relative to the MERT baseline (0.3 points
on newsgroups, and 1.5 points on newswire, relative to the MIRA baseline). Although
not clearly outperforming the coarse features, these fine-grained syntactic features
combine well with other features, yielding even further gains (Chiang et al. 2008).
Testing on MTO8 revalidates the contribution of our approach against this stronger
baseline, with either MERT or MIRA.

5 Discussion
The results in Section 4 demonstrate, to our knowledge for the first time, that signifi-

cant and sometimes substantial gains over baseline can be obtained by incorporating
source-side soft syntactic constraints into a state-of-the-art SCFG SMT system.
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One can also see considerable consistency across multiple test sets, in terms of
which constraints tend to help most.” In the Arabic-English task with MERT, the
top eight feature combinations show some minor rank permutations between MT06
and MTO08, although bigger permutations compared to MT03 (PP™.ADVP= and all-
labels, showing the largest discrepancies); and the top five single features on MT06
maintain the same ranking on MTO0S8, with only minor permutations on MTO03.

These results also provide some insight into why the original approach may have
failed to yield a positive outcome. For Chinese-English (reported in Marton and Resnik
(2008)), we found that when we defined finer-grained versions of the exact-match fea-
tures, there was value in biasing the model to favor matching some source language
constituency types. Moreover, we found that there was significant value in allowing
the model to be sensitive to violations (crossing boundaries) of source language sub-
trees, as opposed to only exact-matching of these syntactic constituent boundaries.
These results confirm that the failure of Chiang’s original experiment could not be
attributed solely to poor parsing quality, since in the experiments here the parser was
held constant. Finer-grained features yielded higher gains in Arabic—English tasks as
well, with weights tuned with either MERT or MIRA.

Looking at feature combinations, some models with non-conflated weights of both
exact-match and violation-sensitive features of the same parsing label (e.g., VP>, S»)
achieved large gains, although note that more is not necessarily better: many com-
binations of more features did not yield better scores, or yielded no gain at all. No
conflated feature reached significance, but it is not the case that all conflated features
are worse than their non-conflated same-label counterparts. For example, Sy and S_
achieve similar scores on the Arabic MTO03, and MTO06 test sets—but S_ is about half
a BLEU point higher than S, on MTO8.

We found no simple correlation between scores of finer-grained single feature
(and/or boundary type) conditions and scores of feature combination or conflation
conditions. Since some combinations seem to cancel individual contributions when
optimized with MERT, we can conclude that the higher the number of participant
features (of the kinds described here, optimized with MERT), the more likely a can-
cellation effect is.

A translation example is shown in Fig. 2, where the noun phrase (NP) for the Syr-
ian representative is broken in the baseline translation, but is correctly cohesively
translated in the PP model. Interestingly, this model is only sensitive to PPs, and yet
the soft syntactic constraints seemed to have contributed to the SMT output quality
nevertheless—perhaps due to a PP that contained the NP for the Syrian representative,
excluding the intervening NP for the United Nations. A more in-depth future analysis
is required to better understand this effect.

Some S and VP variants seemed to do generally well. This makes sense, since
clauses and verb phrases seem to correspond often on the source and target side.

We found it surprising that no NP variant yielded much gain in Arabic; it might be
due to poor NP parsing quality, especially subject NPs, since the prepositional (PP)
attachment problem in Arabic is very pervasive, presumably due to a higher structural

9 Certain consistency is also observed across language pairs—see the Chinese-English experiments reported
in Marton and Resnik (2008).
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PP
IN NP
\ /\
=
N NP DT NP
" /\ | /\
J
NN NP the NN NP
G ! /\
appointment NN NP nations NN "
\ \ \
[P /\ J 3aata
. NNP  NNP .
representative | | the united
L) g )
syria to
Reference: ...the appointment of the syrian representative to the united nations. . .
Baseline: .. .to appoint syria to the united nations representative. . .
PP+ ...to appoint a representative of syria to the united nations. . .

Fig. 2 Arabic—English translation example (MERT) for the PP model. The NP for the Syrian represen-
tative (underlined) is broken in the baseline translation, but is correctly cohesively translated in the PP™
model, even though this model is only sensitive to PPs, and the parse is noisy. The Arabic source tree is
presented word by word from left to right

ambiguity (more potential attachment sites on average) (Green et al. 2009; Carpuat
et al. 2010).

Qualitatively, the tuned weights’ signs (4+/—) indicate that the models learn to
prefer obeying matching constraints, and avoiding crossing syntactic constituency
boundaries. It is also worth noting that this source side soft syntactic constraints ap-
proach repeatedly yielded gains in at least three independent implementations: Marton
and Resnik (2008); Chiang et al. (2008); Xiong et al. (2009)—using SCFG/MERT,
SCFG/MIRA, and BTG/MERT (with inner sub-features set with MaxEnt), respec-
tively.

The source side soft syntactic constraints approach presented here is particularly
appealing because it can be used unobtrusively with any hierarchically-structured
translation model. In principle, it can also be used in flat phrase-based SMT systems
as well, with some modifications, as in the syntactic cohesion constraints applied by
Cherry (2008) and others. It is also appealing in requiring one to parse only the devel-
opment and test sets, which are relatively short, and not the training set, which would
result in a considerably longer training time. The main drawback of the approach as
presented in Section 4.1 was the problem of feature selection, which was removed
using MIRA as presented in Section 4.2. A concern that our approach might only be
effective with small training sets was largely put to rest using a large training set, also
in Section 4.2.

6 Related work

The amount of work involving syntactic knowledge with SMT is vast (see the compre-
hensive survey by Lopez (2008), and more recently, Koehn (2010)). We will concen-
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trate here on approaches that attempt to relax or soften syntactic constraints in SMT,
especially those pertaining to the source language. For ease of exposition, it is useful
to map the relevant literature along two axes: (1) use of syntactic parsing information
of the source language versus the target language, and (2) starting from a syntactic
commitment and relaxing it versus starting from a data-driven approach and adding
syntactic constraints. The quadrant adding source-side soft syntactic constraints had
been relatively unexplored before this work (Marton and Resnik 2008).

Much prior work has been on relaxation of target-side syntactic constraints in order
to better exploit shallow correspondences in parallel training data. Strategies include
restructuring (binarization) of target-side trees (Wang et al. 2007; DeNeefe et al. 2007),
adding intermediate nodes on the fly (Marcu et al. 2006), using extended syntac-
tic categories like NP/NN, inspired by categorial grammar (Zollmann and Venugopal
2006), or, more recently, adopting tree-insertion grammar as the underlying formalism
(DeNeefe and Knight 2009).

As for relaxing syntactic constraints on the source side, Quirk et al. (2005) and
Quirk and Menezes (2006) use phrasal SMT with example-based (EBMT) elements.
They use source-side syntactic dependency treelets that are projected onto flat target-
side phrases via unsupervised word alignments. They relax the sub-tree ordering by
using an ordering model on freely ordered sub-treelets. Attempting to relax syntactic
constraints on both sides, Riezler and Maxwell (2006) use LFG dependency trees on
both source and target sides, and relax syntactic constraints by adding a “fragment
grammar” for unparsable chunks.

Several related papers appeared concurrently with the original presentation of this
work (Marton and Resnik 2008). Mi et al. (2008) relax source-side constraints by
moving from a 1-best tree to a packed forest during decoding. Cherry (2008), later
extended by Bach et al. (2009), incorporate source-side syntactic dependency trees
as soft syntactic constraints in a weighted syntactic cohesion feature that penalizes
translations that reorders phrases in a way inconsistent with the dependency tree.

Subsequent to our original work, Xiong et al. (2009) re-implement our XP* feature
(see Section 3) in a phrase-reordering model using bracketing transduction grammar
system (Wu 1997), and obtain over 1 BLEU point gain over their syntax-unaware base-
line, in a Chinese-English translation task. They extend our features to a much more
sophisticated probability model to obtain gains of up to 1.7 BLEU.

Venugopal et al. (2009) use soft syntactic constraints to make syntactic similarities
between different derivations reinforce the similar parts, rather than have the entire
derivations compete, as is standardly done, including the work described here. This
technique alleviates the “spurious ambiguity” problem, but does not allow any new
derivations.

Zhang et al. (2008) use parses of both source and target languages, and relax the
syntactic constraint by allowing rules to translate tree sequences instead of single trees.
Hanneman and Lavie (2009) relax a tree-to-tree translation system by adding a parsing
tag for any non-syntactic constituent “phrase.” They use it to incorporate non-syntac-
tic phrase translations to increase coverage. Hassan et al. (2009) syntactically extend
a different model—the Direct Translation Model 2, which is a linear-time decoder.
They use an eager dependency parser, which linearly resolves the attachment ambigu-
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ity of the next word based on combinatory categorial grammar (CCG) part-of-speech
supertags.

The MIRA method we use for training and tuning our soft syntactic constraints
has been further applied to training many other kinds of features (Chiang et al. 2009;
Chiang 2010; Chiang et al. 2011). This line of work could be seen as a validation
of the learning method. Conversely, the learning method could be seen as a vehicle
for exploring new sources of information for SMT that are interesting in their own
right. Our focus here is on the use of source-side syntactic parses; a comparison with
features based on other sources of information is beyond the scope of this article.

7 Conclusion

When hierarchical phrase-based translation was introduced by Chiang (2005), it rep-
resented a new way to incorporate syntax into statistical MT, allowing the model to
handle non-local dependencies and lexically sensitive reordering without requiring
linguistically motivated parsing of either the source or target language. An approach
to incorporating parser-based constituents in the model was explored briefly, treating
syntactic constituency as a soft constraint, with negative results.

In the work presented here, we returned to the idea of linguistically motivated soft
constraints, and we demonstrated that they can, in fact, lead to substantial improve-
ments in translation performance when integrated into the Hiero framework. We
accomplished this using constraints that not only distinguish among constituent types,
but also distinguish between matching and crossing boundaries of syntactic constit-
uents. We demonstrated gains for Chinese-English translation in Marton and Resnik
(2008), and following that, we showed here substantial gains for Arabic—English trans-
lation, as well. This approach has repeatedly yielded positive results, not only when
using Hiero with MERT, but also when using Hiero with MIRA, and in subsequent
research by Xiong et al. (2009) using BTG with MERT.

These results contribute to a growing body of work on combining monolingual-
ly based, linguistically motivated syntactic analysis with translation models that are
closely tied to observable parallel training data. Consistent with other researchers, we
find that “syntactic constituency” may be too coarse a notion by itself; rather, there
is value in taking a finer-grained approach, and in allowing the model to decide how
far to trust each element of the syntactic analysis as part of the system’s optimization
process.
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