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Abstract

Distributional Semantics Models (DSMs) have become widely ac-
cepted as successful models for lexical semantics. However their ex-
tension to handling larger structural units such as entire sentences re-
mains challenging. Compositional DSMs (CDSMs) aim to successfully
model sentence semantics by taking into account grammatical structure
and logical words, which are ignored by simpler models. We explore a
recursive matrix-vector space model, where each word or phrase has
associated with it a vector capturing its semantics, as well as a matrix
capturing how it alters the meanings of other words or phrases in its
vicinity. We proceed to test this proposed CDSM on the tasks of seman-
tic relatedness score prediction and semantic entailment classification,
over the SICK data set of approximately 10,000 sentence pairs.

1 Introduction

Semantics is essentially the study of meaning, and how it may be gleaned
from language. Distributional semantic models (DSMs) have been widely
applied to understand the semantics of words or lexemes. DSMs are based
on the Distributional Hypothesis which essentially states that “words that
are used and occur in the same contexts tend to purport similar meanings”
[4]. Or as explained by Firth, ”a word is characterized by the company it
keeps”.

DSMs approximate the meanings of words by studying the distribution
of the word across different contexts in the given training corpus. This distri-
bution, learned in an unsupervised manner, characterises lexical semantics
and is specified for every word in the form of a high dimensional vector.
Semantic similarity at the lexical level may then be modelled as distances
between these semantics vectors.
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Although DSMs have found a number of successful applications, their
extension to model the semantics of larger grammatical structures such as
phrases or sentences has proved challenging. Simple approaches, such as
modelling the semantic vector for a sentence as a weighted sum of the se-
mantic vectors for it’s constituent words, give poor results failing to account
for grammatical structure and ‘operator words’ (words like adverbs and ad-
jectives which alter the behavior of other words in their neighborhood).

Compositional DSMs (CDSMs) seek to overcome these limitations and
successfully model sentence semantics. In this project, we seek to apply
CDSMs to the tasks of semantic relatedness and entailment, both of require
an underlying understanding of semantics. This is the first task of SemEval-
2014. [1]

2 Related Work

In their work Grefenstette’s and Sadrzadeh[3] implement a compositional
DSM that makes use of Lambek pregroup grammars, training it over the
entire BNC. The evaluation is based on the word disambiguation task de-
veloped by Mitchell and Lapata[5], and the results obtained match or better
those of other competitors. They take an unsupervised learning approach
to learn the matrices corresponding to relational words (suitably identified)
as well as the distribution vectors corresponding to other words. Relational
words are modeled as matrices to allow them to act on the vectors cor-
responding to the semantics of other words, thus modelling how ‘operator
words’ alter the meanings of other words. This is needed while composing
the semantics of the sentence as a whole, which is a function (linear map)
of the Kronecker product of the word vectors.

However our work is primarily based on the recursive matrix-vector
spaces model proposed by Socher, Huval, Manning and Ng[6]. In this model
each word has associated with it a vector and a matrix. The vector captures
the semantics of the word itself and is obtained from the underlying Distri-
butional Semantics Model. The matrix captures how the word can alter the
semantics of other words in its neighborhood, essentially approximating the
effects the effects of ‘operator words’ on semantics.

The authors then outline a two step procedure for evaluating sentence
semantics:

1. Build the parse tree for the given sentence

2. Recursively combine the words according to the syntactic structure
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of the parse tree, proceeding in a bottom up manner to obtain the
semantic representations for the entire sentence

The evaluation of the matrix and the vector at each combination step in
the recursive procedure is done in such a way that the dimensions of both
are preserved, making the bottom up recursive approach to combination
feasible.

3 Dataset and Task Description

We have chosen the first task of SemEval-2014, which has two subtasks -
semantic relatedness and semantic entailment prediction. These need to be
performed over the SICK (Sentences Involving Compositional Knowledge)
dataset, specifically designed for this challenge.

3.1 Dataset

• The dataset consists of a little under 10,000 sentence pairs hand labeled
with semantic similarity scores (on a scale of 1 to 5) and the nature
of semantic entailment (entailment, contradiction, or other) between
them.

• As mentioned in the task guidelines, the SICK dataset is specifically
designed to include “sentence pairs that are rich in the lexical, syn-
tactic and semantic phenomena that CDSMs are expected to account
for, but do not require dealing with other aspects of existing sentential
data sets that are outside the domain of CDSMs (such as multiword
expressions, named entities and telegraphic language).”

• A sample sentence pair from the dataset would look like: Sentence A:
A man in a black jacket is doing tricks on a motorbike. Sentence B:
A person in a black jacket is doing tricks on a motorbike. Related-
ness Score: 4.9 (indicates that the two sentences are highly similar)
Entailment Relationship: Entailment (Sentence A entails Sentence B)

3.2 Semantic Relatedness Score Prediction

• To predict the semantic relatedness score for 500 sentence pairs from
the dataset.

• We estimate the performance of our model by comparing our predicted
scores, with the actual scores (which are known as the data is labeled).
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3.3 Semantic Entailment Classification

• To predict the semantic entailment relationship for the same 500 sen-
tence pairs as used above.

• Once again performance is measured by comparing our predicted re-
lationship with the actual one.

4 Approach

We took a two step approach to solve each sub-task:

1. Obtain the vectors representing the semantics of all sentence pairs
(training, validation and test sets) using our chosen CDSM model.

2. Applying appropriate regression and classification techniques to pre-
dict the semantic similarity score and semantic entailment relationship
respectively.

4.1 Obtaining Sentence Semantics Vectors

Socher provides code for this model to solve the problem of classifying rela-
tions between words in a sentence[6]. We have suitably modified this code for
obtaining the required sentence semantics vectors. Socher’s implementation
uses of the Stanford Parser[2] to obtain the required parse trees.

4.2 Predicting Semantic Similarity Scores

Regression techniques are used to estimate the relatedness score between
the sentence pairs in the test set. The regression model was trained using
the samples for the training set, whose sentence semantics vectors are cal-
culated above, and whose similarity scores are known.We have explored two
techniques - logistic regression and neural networks.

4.3 Predicting Semantic Entailment Relationship

Classification techniques are used to predict the nature of the semantic en-
tailment relationship between the sentence pairs in the test set. Once again
we train the classification model using labeled samples from the training set.
We have explored the technique of neural networks for this purpose.
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5 Results

5.1 Semantic Similarity

5.1.1 Logistic Regression

For logistic regression we divided the data into the following two parts

• Training set = 9427 samples

• Test Set = 500 samples

The hypothesis function was calculated without using regularisation.
The mean of the absolute difference between the actual and predicted se-
mantic similarity scores over the test set = 2.96

5.1.2 Neural Networks

For neural networks the data was divided into the following three parts:

• Training set = 7070 samples

• Validation Set = 1885 samples

• Test Set = 500 samples

Here we kept the test set fixed and from the remaining samples, the valida-
tion and the training set are chosen at random. We used a neural network
consisting of one hidden layer containing 200 neurons. The weights of
the neural net converged after 15 iterations, as no further reduction in error
was observed over any of the three sets.
The mean of the absolute difference between the actual and pre-
dicted semantic similarity scores over the test set = 0.71
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Figure 1: Plot of error vs. number of epochs

Figure 2: Error histogram
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5.2 Semantic Entailment

Semantic Entailment relationship prediction over the test set is carried out
using a trained neural net. The division of the data into training, validation
and test sets is done as discussed in Section 5.1.2 The neural network
makes use of a single hidden input layer of 700 neurons, as seen in the
image below:

Figure 3: Neural Network

The classification accuracy obtained over the test data set of 500
samples = 67.3%

6 Conclusion

In this project we explored the limitations of DSMs in modelling the se-
mantics of entire sentences, in spite of their success in modelling lexical
semantics. We introduce the idea of CDSMs that seek to overcome these
limitations, and successfully model sentence semantics by accounting for
grammatical structure. We explore competing CDSMs based on the ideas
of Lambek pregroup grammars and recursive matrix-vector spaces. We pro-
ceed to modify an existing implementation of the matrix-vector spaces based
model, to test the performance of this model over the tasks of semantic re-
latedness and semantic entailment prediction. The results we obtain are
promising for a first attempt to fit this model to these specific tasks, and
by varying the many underlying parameters, we can hope for incremental
improvements in performance.

7 Future Work

• The sentence semantics vectors produced by our modified version of
Socher’s code at times produces very similar vectors for loosely related
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sentences. We could explore whether this can be overcome by chang-
ing the underlying DSM or the non linear function used to combine
semantics vectors. Greater differentiation between such vectors would
allow for better regression and classification performance.

• Alternately we could explore whether the use of classification and re-
gression that make use of deep belief networks would produce better
results, than the single hidden layer neural networks used by us.

• Lastly we could explore whether the use of further linguistic resources,
beyond the Stanford Parser, such as WordNet or POS could be used
to boost performance over the tasks discussed.
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