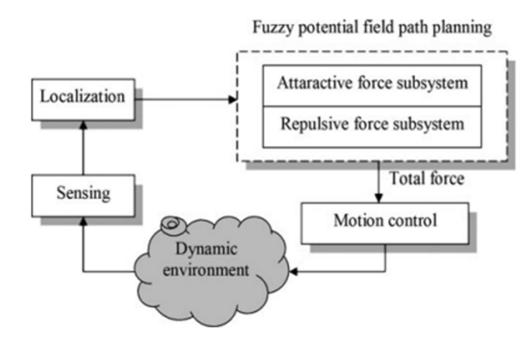
AUTONOMOUS MOBILE ROBOT DYNAMIC MOTION PLANNING USING HYBRID FUZZY POTENTIAL FIELD

Shujaat Ishaq Satyam Kumar Shivam shujaat@iitk.ac.in satyams@iitk.ac.in

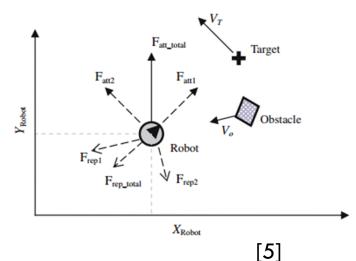
Description

Problem


Autonomous Robot Motion Planning

- Moving target and Obstacles
- Soft Landing

□ Assumptions

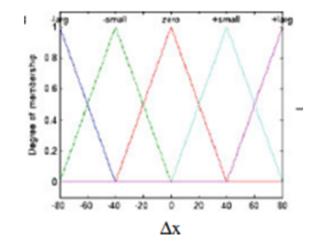

- Fully Observable
- Single Agent

Model

Model

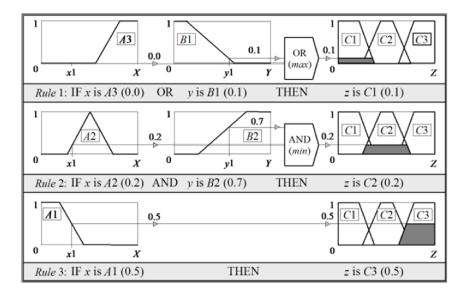
- Attractive force due to a target depends on
 - Relative position
 - Relative velocity
 - $Fattx = m \times \alpha_p \times \Delta x + n \times \alpha_v \times \Delta v_x$ $Fatty = m \times \alpha_p \times \Delta y + n \times \alpha_v \times \Delta v_y$
- Computationally expensive

- Modeled using Mamdani fuzzy Inference System
 - **\square** Fuzzy input variables { Δx , Δy , v_x , v_y }
 - Triangular Membership function

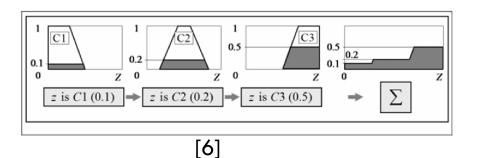

Mamdani Fuzzy Inference

□ 4 step method

Fuzzification of input variables


- { -large, -small, zero, +small, +large}
- Rule evaluation
 - 4 set of rules
 - R1: IF Δx is _ THEN Fatt_x is _
 - R2: IF v_x is _ THEN Fatt_v_x is _
 - **R3:** IF Δy is _ THEN Fatt_y is _
 - R4: IF v_y is _ THEN Fatt_v_y is _

Aggregation of rule outputs



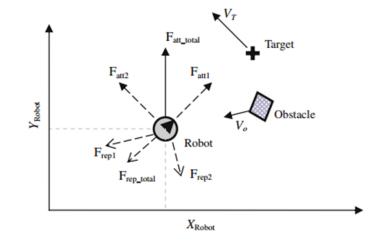
Mamdani Fuzzy Inference

Step 2: Mamdami Rule Evaluation

Step 3: Aggregation of Rule Outputs

Mamdani Fuzzy Inference

Defuzzification


Final output of a fuzzy system has to be a crisp number

Centroid

Locate the point where a vertical line would divide the aggregate set into two parts of equal areas.

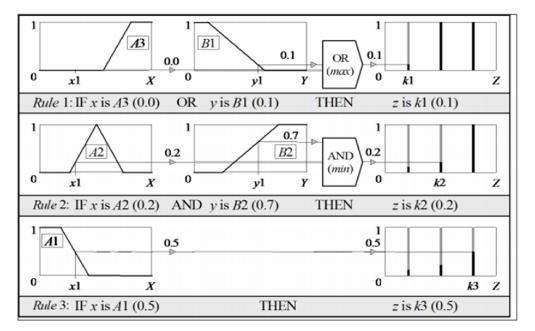
- Repulsive force due to an obstacle depends on
 - Relative position
 - Relative velocity

[5]

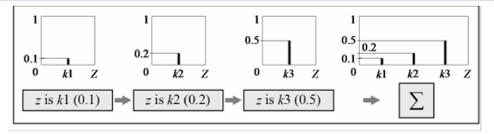
- Modeled using TSK fuzzy Inference System
 Fuzzy input variables { Δx , Δy }
 - Gaussian Bell Membership function

TSK Inference

- Similar to Mamdani except for the rule evaluation part.
- Michio Sugeno suggested to use a single value as the membership function instead of a slice as used in Mamdani.


□ IF
$$\Delta x$$
 is _ and Δy is _ THEN
 $f_{repulsive} = a_i \Delta x + b_i \Delta y + c_i$

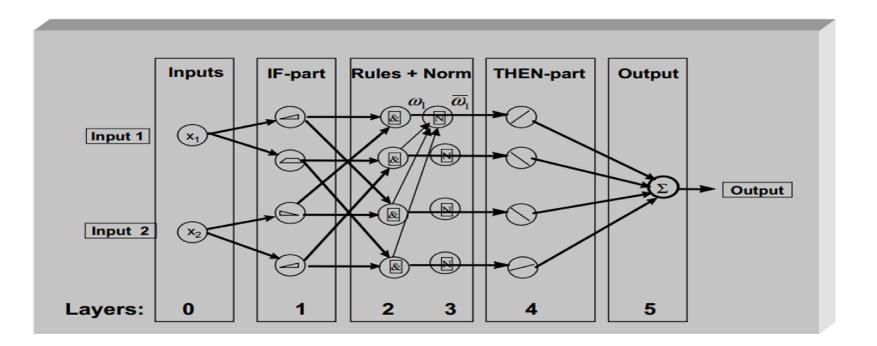
 \square How to determine a_i , b_i and c_i ?


ANFIS

TSK Inference

Sugeno-style rule evaluation

Sugeno-style aggregation



[5]

Adaptive Neuron Fuzzy Interference System

ANFIS Network

Adaptive Neuron Fuzzy Inference System (ANFIS)

- □ Layer 1: Each node is an adaptive fuzzification node.
- Gaussian bell membership functions

$$\mu_i(x) = \left(1 + \left|\frac{x - m_i}{\alpha_i}\right|^{2\beta_i}\right)^{-1}$$

- $\square \alpha_i$, $\beta_i \& m_i$ are the modifiable parameters to be tuned by the network.
- □ 11 membership functions for each input.

Adaptive Neuron Fuzzy Inference System (ANFIS)

Layer 2: Firing strength of each rule is determined using the T norm Operator.

- Product T norm Operator $w_i = \prod \mu_j$.
- Layer 3 normalizes the fired strength calculated from layer 2 over all nodes within this layer.

Adaptive Neuron Fuzzy Inference System (ANFIS)

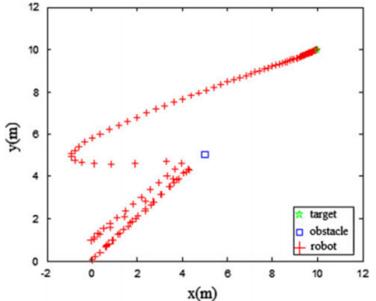
- □ Layer 4 is also an adaptive layer.
- Each node output is obtained using normalized weighted output of the linear fuzzy TSK IF-THEN rule of the following form.

$$\overline{w_i}f_i = \overline{w_i}(a_i\Delta x + b_i\Delta y + c_i).$$

- The parameters (a_i, b_i, c_i) are tuned during the training phase.
- Layer 5 sums all the normalized weighted outputs from the previous layer. Thus a final crisp value is obtained at layer 5.

- The training data set is gathered by simulating the repulsive force model presented in [1](Ge and Cui 2002).
- Difficult to generate a dataset that completely represents the dynamic system.
- Quantization of the work space of the mobile robot is done to limit the size of training set. Uniformity along all directions is ensured to prevent bias.

ANFIS Learning Algorithm


- ANFIS uses two sets of modifiable parameters say A1 and A2.
 - Al represents the parameters of Gaussian bell membership functions used in Layer 1.
 - A2 represents the coefficients of the linear functions as in Layer 4.

ANFIS Learning Algorithm

- □ ANFIS uses a two pass learning cycle.
- Forward pass
 - A1 is fixed and A2 is computed using a Least Squared Error algorithm
- Backward pass
 - A2 is fixed and A1 is computed using a gradient descent algorithm.

Local Minima Problem (LMP)

- Many ANFIS model has been chosen for optimal number of input membership functions so as to solve LMP.
- Finally, the ANFIS model with
 15 membership functions solves
 the local minima problem.

References

1. Ge SE, Cui YJ (2002) Dynamic motion planning for mobile robots using potential field method. Autonomous Robots 13:207–222.

2. Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

4. http://homepages.rpi.edu/~bonisp/fuzzy-course/Papers-pdf/anfis.rpi04.pdf

3. Matlab Inc. (2008) Matlab fuzzy logic toolbox.http://www.Mathwork.com

5. Jaradat, Mohammad Abdel Kareem, Mohammad H. Garibeh, and Eyad A. Feilat. "Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential field." Soft Computing 16.1 (2012): 153-164.

6. http://www.4c.ucc.ie/~aholland/udg/Girona_Lec5.pdf

Any Questions ??