
Course Project on Artificial Intelligence

Insult Detection in Hindi

Advisor: Prof. Amitabha Mukherjee

Chetan Dalal(11218) ∗, Shivyansh Tandon(11690) †

Indian Institute of Technology, Kanpur

Abstract: The aim of our project is to detect comments in Hindi that may be considered as insulting to other participants

of conversation. We use feature selection tools like skip grams, n-grams, negation feature and second person

feature to build a vector model. We reduce the large number of featurers to an appropriate level by the
Chi-Squared test. We employ supervised learning like logistic regression and SVM for training and testingthe

data. We have also compared these techniques against the insults in English language. We create our own

datset for insults in English by using source materials from various blogs and by translating available English
insults to Hindi via Google Translate. Since the direct translation of source was not very efficient we had to

manually change to get a meaningful translation. We have also presented a qualitative study on accuracy of

Google Translate while translating from English to Hindi.

Keywords: Sentiment Analysis • Insult Detection• Hindi corpus• Supervised classification

c© Department of Computer Science & Engineering.

1. Introduction

The growth of internet has been immense in the past few years. According to The Telecom Regulatory Authority

of India (TRAI), the number of Internet subscribers in India are 164.81 million as of March 31, 2013, and is

now worlds third largest internet user. Even social networking sites like Facebook have over 100 million active

users in India (Times of India). Thus, detection of inappropriate use of language on internet which might harm

the user is of utmost importance. With the advent of technology many devices and operating systems are now

supporting Hindi, and hence there is a need for an insult detection system in Hindi. Insults act as a repelling

force for new users and also prevent regular users to participate in discussions in future. It is also frustrating to

find foul language when looking for something. It is also not possible to have a human moderator to monitor this

enormous amount of data.

We focus on comments that may be insulting or harmful for other participant. Insults can be of many types

like racial slurs, reference to handicap, foul language and provocative words. The indirect insults like sarcasm,

disguise and crude words are not identified by the method. We aim at detecting the direct and extreme insults.

∗ E-mail: chetand@iitk.ac.in, Department of Computer Science & Engineering
† E-mail: shivyans@iitk.ac.in, Department of Mathematics & Statistics

1



Insult Detection in Hindi

2. Related Works

Various works on Sentiment Analysis have been done for the English language. The work by Xiang, G., Hong [2]

dealt with offensive tweets with the help of Topical Feature Discovery over a Large Scale Twitter Corpus by using

Latent Dirichlet Allocation model. The work by Razavi [3], Inkpen have used a Insulting and Abusing language

dictionary along with features like frequency to run the three-level classification algorithm.

For Hindi, there has been a work on sentiment analysis in movie reviews by using a Semi-Supervised approaches

to train a Deep Belief Network. A recent work on Hindi Subjective Lexicon was done by Bakliwal et al., where

they worked on Hindi Polarity Classification. They used Hindi WordNet and used synonyms and antonyms of a

given word in Hindi.

These previous research works have not been able to detect insults on third persons. The research have been

directed on trivial and extreme second-person insults. However no research on Insult detection has been done

for the Hindi language due to small corpora. We aim at creating a classifier that detects peer-to-peer insults by

applying supervised learning techniques.

3. Datasets

One difficult part of our project was to obtain the dataset. Since there was no such database we manually created

one. We tackled this problem in different ways.

• Collected comments from various Hindi blogs and forums(400 entries).

• Employed Google Translate to convert the available Kaggle’s English dataset into Hindi(1000 entries) and

then manually modified it to retain the context.

• Around 70% of the input is negative strings(non-insults).

• Created a list of bad words in Hindi, procured from various Hindi websites.

• Did a qualitative study on how Google Translate works for English to Hindi.

3.1. Google Translate: A Qualitative Study

We used Google Translate to convert English dataset into Hindi. As opposed to what one might expect with

Google, it is not so awesome. It has its limitations but can at least help the user to understand the general

meaning of a foreign text. Some languages produce better results than others, and works especially well when the

target language is English and source language is one of the languages of European Union. The following were

our conclusions from the study we did on English to Hindi translation according to the general results.

• Word Translation

2



Chetan Dalal(11218) , Shivyansh Tandon(11690)

– Some of the English insults were not translated since the corpus avialabe was small.(Fig 1A)

– Severity of several insults got reduced. Also, there is a similar many-to-one mapping of many insults

to a single mid insult.(Fig 1B)

– Meanings of many insults get lost in the literal translation of the statement. (Fig 1C)

• Sentence Translation: Short sentences are good(Fig 2A) while long ones lose meaning(Fig 2B).

• Idioms: Some are translated well(Fig 3A) while some are translated word to word and their meanings get

lost(Fig 3B).

Figure 1: Examples of insult detection in Hindi

3



Insult Detection in Hindi

Figure 2: Examples of insult detection in Hindi

4. Implementation

Our method follows a 4-step process.

Figure 3: Implementation Model

4



Chetan Dalal(11218) , Shivyansh Tandon(11690)

4.1. Normalization

A raw source cannot be used directly as an input. The data from our dataset has to be modified before it can be

used for Insult detection. It also helps to reduce unnecessary computation. Although, we must be careful not to

lose useful information.

4.1.1. Removal of unwanted strings

First we remove the unwanted strings. The unwanted strings can be the encoding parts such as \\xa0, \\xc2,

\\n or some HTML tags or some English words that were not translated. We also remove words that have single

occurrence or come too frequently as they have no effect on insult but they are necessary for grammar.

4.1.2. Stemming

The second task that our code does is reducing words to their root. There are many words that have similar

meanings but due to grammar or usage are modified. Since this results in unnecessary increase in number of

features, we reduce them to their root. This helps to reduce the number of features and enables the code to

produce good results on lesser data. (Fig 6A)

4.2. Feature Extraction

The words have no meaning for a computer and thus have to be translated into a vector form to perform operations

on it. We convert the strings into vectors which are then used by Supervised Machine Learning algorithms.

4.2.1. Tokenizing

Split the data into tokens. The tokens can be characters, n-grams or words. The code uses words as tokens and

builds 2,3,4,5 n-grams for feature vector.

4.2.2. Counting

Enumerate the tokens generated in previous step for each text string. This way a matrix (generally sparse) is

created, representing our data (text strings) where the number of occurrence of each token is a feature for that

string. The size of matrix is S x F, where S is the size of training data and F is size of the vocabulary.

4.2.3. Skip-Grams

We can have long distance related features in the input data. So in addition to n-grams we use skip grams and

thus increase the size of our feature matrix. This feature has a parameter which determines the number of words

to skip between two words.

4.2.4. Second Person Feature

We also add to our feature the set of words that occur after a second person words. We use this based on our

observation of our dataset, which had insults based on similar structure. This feature is important as it improves

accuracy.(Fig 4A)

5



Insult Detection in Hindi

4.2.5. Negation Feature

We also added a feature that considers the words with negative implications which inverts the meaning of a string.

We then give extra weight to such sentences. This has significant improvement in results.(Fig 4B)

4.2.6. Normalization

Some words occur nearly in every comment and hence do not have any significance. So, we reduce its importance

by removing all such words with high frequency in the beginning and for the rest of the features we use a measure

of the relevance of the word by using TF-IDF.(Fig 6B)

4.2.7. TF-IDF

Some terms that appear frequently in a few statements but rarely in other comments tend to be more relevant

and specific for those comments and therefore more useful for detecting insults. Hence we multiply each term

with its corresponding inverse document frequency (IDF) and obtain a tf-idf vector for each string. This is also

called weighing each term based on its inverse document frequency.

4.3. Feature Selection

Since the number of features generated are high it will be inefficient to compute directly on all of them. They

might not be as important in deciding if a string is an insult or not. We use a feature selection algorithm Chi-

Squared test, to select k best features. We chose this parameter equal to be 200 for the current dataset. We apply

this statistical method to our feature matrix, constructed earlier.

4.3.1. Chi-Squared Test

This is a statistical test basically to find if a pair of variables on a data is statistically dependent or independent.

Our method uses:

• Label of string, i.e. insult or not

• Occurrence or Non-occurrence of a feature

as the pair of variable. The feature which scores high in this test is selected for the training classifiers, and rest

of the features are discarded. Thus we have optimized our model and selected only the relevant features and do

not perform unnecessary computation.

4.4. Classification

This is the final step. We now apply machine learning algorithms to learn a classifier. We are using SVM

and Logistic Regression to train our classifier and then combine the results of both algorithms to obtain a final

classifier. This classifier is then used to classify whether a given string is an insult or not.

6



Chetan Dalal(11218) , Shivyansh Tandon(11690)

5. Results

Feature Accuracy Recall Precision

Without second person and

Without negation

86.84 0.60 0.84

With second person and
Without negation

87.96 0.67 0.86

Without second person and

With negation

86.96 0.63 0.86

With second person and
With negation

87.71 0.68 0.84

The algorithm did not have any previous results to compare with, however, we have obtained good results in

comparison with insult detection in English. We have such high results mainly because of many-to-one mapping

while translating from English to Hindi. We have improved our database to include more negative text

strings (non insults) to check the efficiency of our algorithm. However, the results follow because of similar and

extreme nature of Hindi insults.

6. Conclusion and Future Work

In our attempt to detect inuslting comments, we have employed a supervised approach based on SVM and and

Logistic Regression. We also took care of special cases like negation and second person. We have created a good

dataset to further build our algorithms on.

We aim to increase the size of our dataset in future, and also look for alternative approaches that might be better

and faster than the current supervised approach. To make use of the large amounts of online data available, we

also plan on creating a model based on unsupervised approach. There is also a scope to identify insults that have

been tampered(Fig 5).

7. Acknowledgement

We would like to thank our professor Dr. Amitabha Mukherjee. The project wold not have been possible without

his encouragement and diligent efforts. We would also like to acknowledge the help of our TAs Ms. Sunaskhi

Gupta and Mr. Mamidela Seetha Ramaiah.

References

[1] Sentiment Analysis For Hindi Language, MS Thesis IIIT-H 2013, Piyush Arora. Vestibulum turpis quam,

tristique vel dapibus et, scelerisque luctus enim.

7



Insult Detection in Hindi

[2] Xiang G., Hong J., & Rose, C. P. 2012. Detecting Offensive Tweets via Topical Feature Discovery over a Large

Scale Twitter Corpus, Proceedings of The 21st ACM Conference on Information and Knowledge Management,

Sheraton, Maui Hawaii, Oct. 29- Nov. 2, 2012

[3] Amir H. Razavi, Diana Inkpen, Sasha Uritsky, and Stan Matwin. 2010 Offensive language detection using

multi-level classification. In Proceedings of the 23rd Canadian Conference on Artificial Intelligence, pages

1627.

[4] D. Das and S. Bandyopadhyay. Labeling emotion in bengali blog corpus a fine grained tagging at sentence level.

In Proceedings of the Eighth Workshop on Asian Language Resources, pages 4755, Beijing, China, August

2010. Coling 2010 Organizing Committee.

[5] Starter Code: http://www.kaggle.com/c/detectinginsults%25E2%2580%2593in-social-commentary/

forums

[6] Datasets:

http://www.kaggle.com/c/detecting-insults-in-social-commentary/data

http://khabar.ndtv.com/news/zara-hatke/90-per-cent-indians-are-idiots-justice-katju-357932

http://ek-ziddi-dhun.blogspot.in/2008/08/blog-post_22.html

http://www.bbc.co.uk/hindi/

http://loksangharsha.blogspot.com/

http://www.noswearing.com/

http://www.youswear.com/

8

http://www.kaggle.com/c/detectinginsults%25E2%2580%2593in-social-commentary/forums
http://www.kaggle.com/c/detectinginsults%25E2%2580%2593in-social-commentary/forums
http://www.kaggle.com/c/detecting-insults-in-social-commentary/data
http://khabar.ndtv.com/news/zara-hatke/90-per-cent-indians-are- idiots-justice-katju-357932
http://ek-ziddi-dhun.blogspot.in/2008/08/blog-post_22.html
http://www.bbc.co.uk/hindi/
http://loksangharsha.blogspot.com/
http://www.noswearing.com/
http://www.youswear.com/

	Introduction
	Related Works
	Datasets
	Implementation
	Results
	Conclusion and Future Work
	Acknowledgement
	References

