
 music

 Music Recommender System

 Music Recommender System}

With the rise of digital content distribution, we have access to a huge music collection. With millions of songs to choose from, we sometimes eel overwhelmed. Thus, an efficient music ecommender system is necessary in the interest of both music service providers and customers.

Our study is based on Million Song Datase Challenge in Kaggle. Our music recommender system is large-scale and personalized. We learn from users' listening history and features of songs and predict songs that a user would like to listen to.

Dataset

We are mainly using 2 datasets.

1. Data A: Dataset provided by Kaggle users ID, songs ID and triplets (user,song,count)
$1,200,000$ users, more than 380 000 songs and 48 million triplets gathered from users' listening histories in total

- We only work on 10,000 users listening history.
We create a Matrix M from the triplets.

2. Data B: Feature files extracted by ourselves from meta data of song from the website of labrosa.ee.columbia.edu/millionsong/㫜

- Each song is represented by a feature vector of 10 components including year, duration, loudness, artist, danceability, etc.
Due to memory limitations, we ony get features of 10,000 songs(3 GB)

Popularity based Model

Collaborative based Model

Idea 2
-Users who listen to the same songs in the past tend to have simiar interests and will probably listen t.
songs in future.

User based Model

e.g. user-based

$\boldsymbol{W}_{u, v}=\mathbf{P}(\mathbf{v} \mid \mathbf{u})^{\alpha} \cdot \mathbf{P}(\mathbf{u} \mid \mathbf{v})^{1-\alpha}$ wetween two users
ocality of scoring function:
Emphasize similar items, determine how individual scoring componen
influences overall scoring: $f(w)=w^{q}$ with $q \in N$
Stochastic aggregation of two lists, randomly chooses one of lists scored items of lists not yet inserted in final recommendation.
When the song history of a user is too small to leverage the power of he user-based recommendation alogorithm everage the power of of ecommendations base
smaller song histories
Using play count does not give good result because similarity model
biased to few songs played multiple times, calculation noise is generated by few very poopular songs.
-There's no personalization and majority of songs have too few listeners

Analysis

-There is not enough data for the algorithm to arrive at a good prediction. The median number of songs in a user's play coun history is fourteen to fifteen, this sparseness does not allow the SVD objective function to converge to a global optimum

KNN Model

Idea

-From data B, we create a feature space of songs (features are normalized)
-In this space, we find the k nearest neighbors for each song by calculating their Euclidean Distance
Look at each user's profile and suggest songs which are their
neighbors

Evaluation Metric

Mean average precision(mAP)

Proportion of correct recommendations with more weight to top
precision is much more important than recall because false
positives can lead to a poor user experience
. Precision at k : proportion of correct recommendations Precision at k : proportion of correct recommendations
within the top -k of the predicted ranking $P_{k}(u, y)=\frac{1}{k} \sum_{j=1}^{k} M_{u, y}(j), \forall k \leq t$
2. For each user, the average precision at each recall point:

$$
A P(u, y)=\frac{1}{n_{w}} \sum_{j=1}^{t} P_{k}(u, y) \cdot M_{u, y}(k)
$$

3. Mean average precision: $\mathrm{mAP}=\frac{1}{m} \sum A P\left(u, y_{u}\right)$

Conclusion

Building a recommender system is not a trival task The fact that it's large scale dateset makes it difficult in many aspects.
1.Recommending 500 « right» songs out of 380 million songs for different users is not easy to get a high precision. That's why we didn't get any result better than 10 \%. Even the Kaggle winner has only got 17%.
2.The meta data includes huge information and when exploring it, it is difficult to extract relevant features for song
3.Processing such a huge dataset is memory and CPU intensive

Future work

* Run the algorithms on a distributed system, like Hadoop or Condor, to parallelize the computation, decrease the runtime and leverage distributed memory to run the complete MSD.
* Combine different methods and learn the weightage for each method according to the datase
- Automatically generate relevant features
* Develop more recommendation algorithms based on different data (e.g. the how the user is feeling, social recommendation, etc)

