Potential Field Guided Sampling Based Obstacle Avoidance

Reid Rizvi Rahman , Sakshi Sinha
\{reidrr,sakshis\}@iitk.ac.in

Mentor: Prof. Amitabh Mukerjee
amit@cse.iitk.ac.in

PREVIOUS WORK

> Many Sampling Based methods like Probabilistic Roadmap(PRM), Rapidly Exploring Tree (RRT), RRT*,RRT-smart etc. have been developed which runs by generating a random new point for the tree growth
$>$ RRT does not provide an optimal solution
$>$ RRT* provides sure convergence and provides an optimal path. It has asymptotic optimality. But slow execution
$>$ Potential field path planning has been there which works by creating an artificial potential field for the source, destination and the obstacles in the workspace

NOVELITY

> The randomly generated points in the new algorithm are biased towards the goal.
>The new path tries to maximize the distance from the obstacle
$>$ It removes the problem of local minima.

PROBLEM MODELLING

$>$ Path is represented as a tree rooted at the source
$>$ For RRT* , all the obstacles are modeled as polygons
$>$ For Potential Field Method, all the obstacle polygons are approximated as a set of circles

- This approximation makes it easier to define potential due to obstacles' as they can be treated to be concentrated at the circle.

SAMPLING

$>$ Generate a random point (x)

$>$ Generate a new point which is at an incremental distance from the x and is biased towards the goal
$>$ This is done by moving x along the direction of decreasing potential.
$>$ It ensures that the point added to the tree is biased away from the obstacles and towards the goal.
> Implement the RRT* algorithm by adding this new point to the tree.
$>$ This finds the optimal path required

METHODOLOGY

$>$ Fix the number of sample nodes in the graph
$>$ Add the source node to the tree T
$>$ In each iteration, a new random $\operatorname{node}(x)$ is generated
$>$ Apply potential gradient to x to get a new node z
$>$ The navigation function used for the purpose is:

$$
\gamma(q)=\frac{d^{2}(q, \text { goal })}{\left[d(q, \text { goal })^{2 K}+\beta(q)\right]^{1 / K}}
$$

Where β is given by

$$
\beta_{i}(q)=\left\{\begin{array}{l}
-d^{2}\left(q, q_{i}\right)+r_{i}^{2}, i=0 \\
d^{2}\left(q, q_{i}\right)-r_{i}^{2}, i>0
\end{array}\right.
$$

$>$ Set S contains the k nearest neighbors of z in T
$>$ An edge is added between z and a node in S which minimizes the distance from source to z .

All the new distances are updated.
$>$ This gives a required path at the end of all iterations

Fig: Left node represents the start node and the right one the goal point. The triangle represents the obstacle and the circles are the

Fig: First path denotes RRT* with PRM path Second path denotes maximum distance from obstacle path

IMPROVEMENTS and FUTURE WORK

$>$ Changing the path measure
$>$ Finite size robot

REFERENCES

> http://www.cs.bilkent.edu.tr/~culha/cs548/

> Sampling-based Algorithms for Optimal Motion Planning by I S. Karaman and E. Frazzoli
$>$ Potential Guided Directional-RRT* for Accelerated Motion Planning in Cluttered Environments

