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Objectives

The task is to predict the connectivity in neu-
ral structures monitored through calcium-
based fluorescence imaging. We investigate
various algorithmic techniques used for inferring
statistical causality.

In the process, we come across some interest-
ing features exhibited by biological neural net-
works. We also successfully mitigate a few chal-
lenges particular to the problem.

Introduction

Understanding the topology underlying the neurons
promises to be a step forward to unravelling the
working of the brain and shed some light on its
learning capabilities. The study of how the net-
work structure is modified by diseases could catal-
yse the research on neuro-pathologies, eg. epilepsy,
Alzheimer’s disease. However, the traditional meth-
ods of axonal tracing do not scale enough of be
practical value; and electron microscopy is very cost-
intensive and lacks the benefit of in vivo operation.

A promising approach is to observe neural activ-
ity sampled at different time points through fluores-
cence imaging. We tackle the task of detecting the
presence of excitatory connections among neurons
given the imaging data.

Figure 1: Network reconstruction of neural cultures imaged with
fluorescent calcium imaging.[Credits:connectomics.chalearn.org]

Data

The data set contains synthetic time series activity
of 100 neurons sampled at 1,70,000 points with a
resolution of 20 ms, along with the ground topology
and position of neurons.

Algorithmic Techniques

To infer the directed connections between a pair of neurons X and Y , we use the following techniques.
•Cross Correlation: Reconstruction is based on the standard Pearson cross-correlation.

XCY→X = max∆t=0...tmaxcorr(XS, YS−∆t)
•Mutual Information: It is a measure of how much excess information does the joint distribution of 2
variables contain over the product of marginals.
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•Granger Causality: The idea is to see if the current value of X gives a better fit with a linear model, if
the past of Y is taken as a covariate.
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•Generalized Transfer Entropy: It is a measure of distance between the conditional distribution of X
given its past and the conditional distribution of X given both its own past, as well as past of Y .

TEY→X = ∑
n(P (Xn+1, X

(k)
n , Y (k)

n ) log P (Xn+1|X (k)
n , Y (k)

n )
P (Xn+1|X (k)

n )
)

• Information Gain: This is a general causality inference framework, parameterized to support any
function on the distribution of X and Y . In particular, we use Entropy and Gini Index.

IGY→X = I(X)− I(X|Y )
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•Combined Linear Model: We use the probability output by other methods to learn a linear model
which outputs probability of existence of a directed edge, given the above measures as covariates.

Figure 2: ROC curves for {GTE, Gini Index, Granger Causality}, {Cross Correlation, Information Gain (Entropy), Random Guess},
and {Combined Linear Model, Mutual Information}

Figure 3: (1) Neural Activity vs. Time (2) Heat Map of Neural Activity

Challenges and Solutions

Figure 4: Spikes in neural activity indicate collective synchrony.

•Low Signal-to-noise Ratio: We observe
small random spikes in the data, which do not
map with activation of neurons. For this, we
discretize the input, after setting a proper
threshold.

•Collective Synchrony: There are identifiably
prominent region where the net global activity
suddenly increases. In these time regions of
collective synchrony, mono-synaptic connections
are difficult to infer. We discard such regions of
high neural activation.

•Low Resolution: Since the time series is
heavily under-sampled, for each algorithmic
technique, we include “same bin” interactions.

Results

Algorithm AUC
Generalized Transfer Entropy 0.83
Combined Linear Model 0.83
Cross Correlation 0.81
Information Gain (Gini) 0.78
Information Gain (Entropy) 0.76
Mutual Information 0.75
Granger Causality 0.49
Random Guess 0.50
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