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Assumptions and Limitations 

This paper deals with improvements in robot motion panning that 

takes into account the uncertainty in sensors and control inputs. 

The path planning methods may provide an optimal path but they 

do not consider the errors that are caused due to external physical 

factors like uncertainty in environment, motors, sensors and 

incomplete information due to partial sensing which deviates the 

robot from the optimal path. Thus, the robot may not travers the 

optimal path and the errors could even lead to non feasible paths. 

The above errors suggest the need to integrate the path planning 

process with the input of the sensors and controllers and hence 

taking the physical factors into account.  

      𝜒 = ℝn – state space  𝑈 =  ℝm – control input space 

Standard formulation of model for LQG-control 

•   Stochastic Dynamics Model with motion uncertainty: 

xt = f(xt-1, ut-1, mt), mt ~ 𝑁 0,𝑀t  

• Stochastic Observation Model with sensor measurement noise: 

zt = h(xt, nt ), nt ~ 𝑁(0, Nt)  
a) Kalman filter provides the optimal state estimate using previous 

state estimate, measurements and control inputs. 

1. Process update- It propagates the applied control input 𝑢t  
 

2. Measurement update- It obtains sensor measurement zt  

b) LQR controller provides optimal control input using state 

estimate.   𝑢t  = Lt+1 𝑥t  

      where Lt+1 is the feedback matrix and 𝑥t  is the estimated state. 

Kalman gain matrices are calculated through forward recursion 

while LQR feedback matrices calculated through backward 

recursion in advance. 
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Claims 
A set of 1000 candidate paths are evaluated using path planning 

methods. The method used in the paper is Rapidly exploring 

Random Trees(RRT). Using the dynamics and observation model, 

the linear quadratic controller with Gaussian model of uncertainty 

calculates the a priori distribution of state and control of the robot 

along all the candidate paths. Thus, it optimizes the planned path 

for the robot. The method is also applied to pre-computed 

roadmaps to find optimal paths. 
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Fig2: Flow chart depicting the approach to find optimum path 

Car Like Robot 

Fig3: Robot has to move from start to goal position with 

sensing in only y-coordinate 

Roadmap 
Multi robots 

State: (x, y, Ɵ, v)  Control Input: (α, φ)  

Partial sensing- robot receives feedback only in y-direction 

Controller noise: 𝑚 = α ,φ  Sensing noise: 𝑛 =  𝑦  ~ 𝑁 0, 𝜎y
2  

We need to minimize the probability of collision with obstacles. For 

this, we find the number of standard deviations that the robot can 

deviate before collision with obstacles which is denoted by ct as 

shown in Fig1.  Quality of path =  Γ(
𝑛

2
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Fig1: (a) The maximum 

factor ct by which the 

ellipse can be scaled not 

intersecting with 

obstacles. 

(b) Ellipses show a priori 

distribution computed by 

LQG-MP. 

(a) (b) 

Results: Best path has 99% success rate using LQG-

MP in low noise level environment. 

8 robots with differential drive motion were used as 

shown in Fig4 which had to travel simultaneously 

avoiding mutual collisions. 

State x = (x, y, ϴ) Control Input u =  (vl, vr) 

Process noise m = (vl , vr ) ~ N(0, 𝜎v
2 I) 

5 beacons signals are used to provide sensing signal 

that decays quadratically with distance to beacon. 

n = (𝑏1 , . . , 𝑏5  ) ~ N(0, 𝜎b
2 I).  

The aim was to minimize probability of collisions. 

Results: Best path has 98.6% success rate using 

LQG-MP as compared to 2.13% for using the path 

obtained through RRT. 

Fig4: Priorities 

were assigned to 

each robot for 

path planning, 

thus higher 

priority robots 

acted as moving 

obstacles for 

lower ones. 

Kalman smoothing 

The aim is to maximize the likelihood of the end 

effector to reach goal position which is done by 

minimizing the variance of end-effector’s position at 

the last stage of path. 

Fig5: The top 

and side views 

are shown.  

(a) The 

cameras are 

placed beside 

the robot 

(b) The 

cameras are 

placed above 

the robot  
(a) (b) 

State x = (ϴ1,…, ϴ6) Control Input u = (ω1,.., ω6)  

Robot receives feedback from stereo camera. 

m = (𝝎𝟏 ,… ,𝝎𝟔 )  ~ N(0, 𝜎ω
2 I) n ~ N(0, 𝜎n

2 I) 

Results: The robot moves in the plane parallel to the  

viewing direction of the camera. It also stretches the  

end-effector fully. To bring the end-effector closer to  

camera for precise position. 

Randomized path planning algorithms generate non-

smooth paths which may lead to collisions with 

obstacles. A pseudo dynamics model is assumed and 

the constraint on the magnitude of kth order difference 

of control input u smoothens the path.  

• Linear dynamics and observation model is 

assumed. Non-linear models with local linearization 

is used. The linearization is valid for small noise 

factors and accurate measurements up to that can 

be practically achieved. 

• The noise is assumed to be Gaussian in nature. 

The results obtained in the simulation justify the 

assumption. 

• There should be no occlusion in the field of view 

and sensors should not be conditional in nature. 

• The experiment has only used the a priori 

distribution of sensors, the a priori distribution of  

control inputs is not used. 

• The planning times reported in the experiment do 

not permit real time applications. 

Conclusion 
The simulations achieve accurate results. Thus, 

the method of computing a priori probability 

distribution of the state of the robot to optimize a 

task precisely achieves its purpose. 

• Markov Decision process or partially observable Markov 

decision process were proposed for sensing uncertainty. ( Porta 

et al. 2006) 

• LaVale and Hutchinson use a global control policy in case of 

motion and sensing uncertainty. 

• There exists planners that take into account the sensing 

capability. The method proposed by Pepy and Lambert used 

extended Kalman filter to remove the uncertainty in the position 

of the robot. They used RRT algorithm to plan the path. Their 

method drawbacks included the time needed for finding a safe 

path. 

• Prentice and Roy also use Kalman filter style estimators to 

predict the paths and presented a variant of the probabilistic 

roadmap technique called the belief roadmap.  

The two above methods that are most closely related to this method 

use the maximum likelihood observations along the path rather than 

using the true probability distributions of the state of the robot and 

both the above papers did not take into account the controller 

uncertainty during execution of the path. 
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The motivation behind using roadmaps is to reduce 

the computation time significantly. A variant of 

Dijkstra’s algorithm is used to find a path which uses 

LQG-MP. The probability that the path is collision free 

is the product of probabilities along each edge which 

is maximized. 


