
Humanoid Robot: Throw Ball at a target
Bhavishya Mittal

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur, India

Email: bhavishy@iitk.ac.in

Pratibha Prajapati
Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur, India
Email: pratibap@iitk.ac.in

Advisor: Dr. Amitabha Mukerjee
Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur, India
Email: amit@cse.iitk.ac.in

Abstract—Our project aims to identify known target through
ALDEBARAN NAO and then to throw an object towards it.
In our project we first detect the known target using Image
Processing techniques, then we compute the position of that
object and finally we perform the throwing action. The throwing
object ability make a humanoid to manipulate the target or object
outside the movable reach of the robot. In the throwing action
the robot motion is quick and dynamic. There are many ways
to perform this action and this makes the inverse kinematics
very non-trivial. Also throwing action requires precision between
the timings of different part. This project proposes the linear
approximation model and feedback learning based approach to
throw objects towards target.

Index Terms—Humanoid Robot; Feedback Learning; Alde-
baran NAO; Image Processing; Robotics.

I. INTRODUCTION

The interest in humanoid robotics has increased manifold
especially in creating intelligent and autonomous bots. Hu-
manoids are expected to perform day to day task and actions
so that they become more interactive with humans.

Performing throwing action is one such task which fulfills
a whole lot of needs. It enable one to manipulate places out
of ones direct reach. This procedure has many applications in
army, humanoid game playing and several other fields.

In our project, we detect the known target, estimate the
depth and direction of the target using prior knowledge of
the target size and specifications and perform throwing action.
Instead of solving non-trivial inverse kinematics involved in
performing throwing for Aldebaran NAO we introduce a
Learning based Linear Approximation Model approach. To
incorporate errors involved with this method we try to capture
the movement of thrown object and process its path. Based on
the error involved we do feedback learning and perform the
throwing action again to reduce errors.

II. PREVIOUS WORK

There have been several attempts on developing a humanoid
or a robot to perform throwing actions at a target..
• In [1] authors discuss the control for throwing manipu-

lation by one joint robot. The paper proposes the control
strategy based on the iteration optimization learning to
perform the throwing action effectively.

• In [2] authors formulises the idea of task-level learning to
make a robot throw a ball at a target. Task-level learning
can compensate for the structural modelling error of the
robots lower control system.

• In [3] author shows that reinforcement learning can be
employed to refine the hitting skill acquired by imitation
learning according to a cost function.

• Object recognition and depth estimation is proposed in
[4].

• In Aldebaran Nao, there has been a project [5] on kicking
a ball to a particular direction, which involved bezier
curve interpolation between keyframes.

III. METHODOLOGY

We have implemented the ball throwing task using learning
based Linear Approximation Model and feedback learning.
The Nao is fixed at a position and the target can be placed
anywhere subjected to the conditions that it should be kept
at same ground level as NAO. The ball and the target are of
different colors. The whole methodology can be described in
four parts fig:1.
• Target detection
• Throw action
• Video capture and error estimation
• Feedback

A. Target Detection

We set the HeadYaw angle (φ1) of the nao head so that it can
view the entire target object if kept outside the field of view
of nao which is 60.9 ◦. Once the image is ready the following
processing is done to detect the target and it’s coordinates:
• Convert the RGB image fetched from the camera at the

chin of the nao to HSV image.
• HSV image produces better results for creating binary

image and it also makes the computing faster.
• Get the binary image from HSV in which the area of

the image which has HSV values in range of the given
color(we used green color in our experiments) of the
target is white and the rest of the image is black.

• Apply erosion and dilation, which gives clearer object
boundaries and removes noises in the image.

mailto:bhavishy@iitk.ac.in
mailto:pratibap@iitk.ac.in
mailto:amit@cse.iitk.ac.in


Fig. 1: Flowchart showing the working of our methodology

• From binary dilated image, get the x and y coordinates
of the target and thus the angle from camera line of
view(φ2).

• Angle of target in naos frame θ = φ1 + φ2

Fig. 2: RGB Image Fig. 3: HSV Image

Fig. 4: Erosion Image Fig. 5: Dilated Image

HSV Color Model: HSV color model has these three
parameters as described in [7].
• Hue The hue (H) of a color refers to which pure color

it resembles. All tints, tones and shades of red have the
same hue.

• Saturation The saturation (S) of a color describes how
white the color is. A pure red is fully saturated, with a
saturation of 1; tints of red have saturations less than 1;
and white has a saturation of 0.

• Value The value (V) of a color, also called its lightness,
describes how dark the color is. A value of 0 is black,
with increasing lightness moving away from black.

Erosion and Dilation: Erosion and dilation are the mor-
phological operations as mentioned in [8]
• Erosion The erosion of the binary image A by the

structuring element B is defined by: A 	 B = {z ∈
E|Bz ⊆ A} where Bz is the translation of B by the
vector z, i.e., Bz = {b+ z|b ∈ B},∀z ∈ E.

• Dilation The dilation of A by the structuring element B
is defined by: A⊕B =

⋃
b∈B Ab.

Determining Coordinates of the Target: From the binary
dilated image, we get the width(W ) and height of the target
in the image. From the prior knowledge of original height
and width(Wreal) of the target, we calculate the x and y
coordinates in nao torso frame as the following.

Xnao =

(
Ximg −

imgWidth

2

)
∗Wreal/W

Ynao = (imgHeight− Yimg) ∗ a

Here, a is a constant calibrated by experiment, imgWidth and
imgHeight are the frame size and Ximg and Yimg are the
coordinates of the center of the detected target in the image.
Angle of throw in camera frame

tan(φ2) = Xnao/Ynao

Therefore, Angle of throw in nao frame

= HeadY aw + Angle in camera frame
⇒ θ = φ1 + φ2

B. Throw action

For performing throwing action after the angle of throw has
been determined, there are two approaches namely Cartesian
control approach and Joint control approach.

Cartesian Control: In Cartesian control, one can directly
control the effectors of Nao, that is the 3D points of the Nao,
but to throw a ball, we not only need to control the effectors
of Nao, but also the trajectory on which Nao arm moves, as
this directs the trajectory of the ball after throwing. Therefore,
we used Joint control to move robot arm.

Joint Control: These API can control the position of Nao
joints directly. And hence can be used to give desired trajectory
to robot arm.

The joints used for the throwing actions are: RShoulder-
Pitch, RShoulderRoll, RElbowYaw. Table:I gives the motion
range of these joints.

TABLE I: Joints and their ranges

Joint Motion Range(in degrees)
RShoulderPitch Right shoulder joint front and back -119.5 to 119.5
RShoulderRoll Right shoulder joint right and left -76 to 18
RElbowYaw Right shoulder joint twist -119.5 to 119.5



Fig. 6: Nao performing throwing action while training

Initial Attempts: First, we tried to solve the inverse
kinematics for the naos right arm. But this resulted in a much
complex problem. As there are many ways to throw a ball in a
specific direction using three joints used, the problem clearly
didn’t have a unique solution. Also this is not some trivial
end-effector problem as nao need to move its arm in a defined
direction or projection to make the throw successful. This can
be understood as suppose somehow we have the coordinates
where the nao should leave the ball but the trajectory of the
ball after leaving naos hand has temporal dependency. Also,
the time of release matters a lot in out case because delay
in releasing the ball will lead to just dropping of the ball.
Therefore, we moved to a relatively new approach Learning
Based Approach

Learning Based Approach: In this model we used 8
parametes.

• 3 initial joint angles
• 3 final joint angles
• 1 for speed of motion
• 1 for time to release the ball

Now we assign random values to these 8 parameters repet-
itively and observe where the nao throws the ball. During this
learning phase following observation were made:

• Many combination resulted in nearly the same angle of
throw.

• Many combinations failed to throw the ball. Main reasons
for it was leaving the ball too soon or late then desired.
Leaving sooner results in slipping of ball from hand and
leaving late results in mere dropping of ball.

• Even for the same parameters, outcomes may very due
to hardware volatility.

From this nao learns parameters for performing throw in
specific angles. Fig-6 shows the throw action being performed.
Yellow markers in these image refers to the learned angles i.e.

parameters for these angle of throw are known apriori.

Now, for any test angle (any random angle, may not be
available in training set), we used Linear Approximation
Model.

Linear Approximation Model: This model assumes that
parameters for angles between any two nearest learned an-
gles can be approximated as a linear combination of their
parameters. Each of the 8 parameters are calculated this way
and perform the throwing action. The following procedure is
followed:

• Using binary search and find the containing learned
angles.

• Assuming linear model, estimate parameters for the given
theta from the parameters of the containing learned
angles.

• Perform throw actions following these parameters.

C. Video Capture and Error Estimation

As nao throws the ball, it simultaneously captures the video
of the trajectory of the ball for feedback learning. From this
video, we track the motion of the the ball. This gives the angle
in which the ball actually moves when thrown with the given
parameters. To track the ball in the video, first we tried the
following strategy,

Initial Attempt: As in our video only ball is dynamic and
the environment is static we tried to get the direction of the
motion of the ball by using the optical flow of ball pixels in
the video. But this didn’t work very well, as the quality of the
video obtained from nao camera was not of good quality and
the image of the ball was blurred in most of the video frames.
Another problem with this approach is that the ball bounces
several times on the ground, and hence the final direction may
be different from the initial angle at which ball was thrown.
So we implemented an alternate approach to track the ball.



Fig. 7: Detecting where ball bounced. It is visible here that the ball must have bounced first time between frame 2 and 3.

Alternate Approach: In this approach fig:7, we detected
the coordinates of ball center in each video frame. Whenever,
in three consecutive images, the ball center moves from a
higher point to lower point and then again moves to a higher
point, this means the ball has bounced on the ground at this
particular point. We compute the coordinates of the ball in
nao’s torso frame at this point and compute the angle of the
ball(φ) from nao. In case the ball doesn’t bounce, the last
image of the ball is considered for computing final angle
from nao. When we try to detect the ball in the video frame,
a blurred image of ball is captured. So to deal with this a
substantial HSV range has to be given to detect the ball.
But this also captures much noise from the environment. To
handle this noise, we used the curve nature of the ball as the
determining feature and also have thresholds for minimum and
maximum size for filtering noise.
The error e in the throw action is:

e = target angle− angle of ball motion
= θ − φ

D. Feedback Learning

If error in throw angle is very small(less than 5◦), we insert
the current used parameters for θ in the learning database. If
the error in throw angle is more than 10◦, we perform the
throw action again with corrected value of θ, which will be
θ+ e. We keep repeating this action until the error is reduced
to a very small threshold.

IV. RESULTS

The method was tested with random positions and there is
an average error of 5-10 degrees. The throw movement was
more effective when nao was in standing position rather than
couch. One reason for this is when standing, nao is more free
to move its arm in all direction. When in couch position and
the throw is to be made in cross direction, nao tends to hit its
knees with the arm.
Target was kept within a maximum distance of 1 meter from

nao. Depending upon the timing of releasing the ball different
trajectories are possible keeping other parameters constant.

V. CONCLUSIONS

Nao performs better when in standing posture then in
crouch. Linear Approximation Model has proved to be an

Fig. 8: Sequence of images showing the working of the ball
throwing humanoid robot

effective model. Based on just 5 initial learned angles varying
from (45◦ to −30◦), nao is able to hit it’s target kept between
this range effectively. Instead of solving the quite complex
and non-trivial inverse-kinematics involved here, this model
provides a simple alternative.
Linear Approximation Model and feedback learning can to-
gether be used to increase the database and add valid entries
of parameters for the test set. This will eventually lead to rich
database of learned points and the efficiency for further throws
will improve.

VI. FUTURE WORK

Future work includes :
• Able to throw at targets kept at a height.
• Detecting target of various geometry and shape.
• Able to throw directly at the target.

REFERENCES

[1] Miyashita, Hideyuki, Tasuku Yamawaki, and Masahito Yashima. “Con-
trol for throwing manipulation by one joint robot.” Robotics and
Automation, 2009. ICRA’09. IEEE International Conference on IEEE,
2009.

[2] Aboaf, Eric W., C. G. Atkeson, and D. J. Reinkensmeyer. “Task- level
robot learning.” Robotics and Automation, 1988. Proceedings., 1988
IEEE International Conference on IEEE, 1988.

[3] Kober, Jens, Katharina Muelling, and Jan Peters. “Learning throwing
and catching skills.” Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on IEEE, 2012.

[4] Masters Thesis of Toms Gonzlez Snchez,Dep. of Computer Science
and Mathematics, Universitat Rovira I Virgili, September 2009, 64-82

[5] Lovish, Rahul IIT Kanpur, “Detection(Partial)/Kicking the Ball with
Aldebran Nao”, 2013

[6] http://en.wikipedia.org/wiki/HSL and HSV
[7] http://infohost.nmt.edu/tcc/help/pubs/colortheory/web/hsv.html
[8] http://en.wikipedia.org/wiki/Mathematical morphology

http://en.wikipedia.org/wiki/HSL_and_HSV
http://infohost.nmt.edu/tcc/help/pubs/colortheory/web/hsv.html
http://en.wikipedia.org/wiki/Mathematical_morphology

	Introduction
	Previous Work
	Methodology
	Target Detection
	Throw action
	Video Capture and Error Estimation
	Feedback Learning

	Results
	Conclusions
	Future Work
	References

