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ABSTRACT
The process of extracting useful knowledge from large datasets
has become one of the most pressing problems in today’s so-
ciety. The problem spans entire sectors, from scientists to in-
telligence analysts and web users, all of whom are constantly
struggling to keep up with the larger and larger amounts of
content published every day. With this much data, it is often
easy to miss the big picture.

In this paper, we investigate methods for automatically
connecting the dots – providing a structured, easy way to
navigate within a new topic and discover hidden connec-
tions. We focus on the news domain: given two news arti-
cles, our system automatically finds a coherent chain link-
ing them together. For example, it can recover the chain
of events starting with the decline of home prices (January
2007), and ending with the ongoing health-care debate.

We formalize the characteristics of a good chain and pro-
vide an efficient algorithm (with theoretical guarantees) to
connect two fixed endpoints. We incorporate user feedback
into our framework, allowing the stories to be refined and
personalized. Finally, we evaluate our algorithm over real
news data. Our user studies demonstrate the algorithm’s
effectiveness in helping users understanding the news.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning; G.3 [Probability and Statis-
tics]

General Terms: Algorithms, Experimentation

1. INTRODUCTION
“Can’t Grasp Credit Crisis? Join the Club”, stated David

Leonhardt’s article in the New York Times. Credit crisis had
been going on for seven months by that time, and had been
extensively covered by every major media outlet throughout
the world. Yet many people felt as if they did not understand
what it was about.

Paradoxically, the extensive media coverage might have
been a part of the problem. This is another instance of
the information overload problem, long recognized in the
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computing industry. Users are constantly struggling to keep
up with the larger and larger amounts of content that is
being published every day; with this much data, it is often
easy to miss the big picture.

For this reason, there is an increasing need for techniques
to present data in a meaningful and effective manner. In this
paper, we investigate methods for automatically connecting
the dots – providing a structured, easy way to uncover hid-
den connections between two pieces of information. We be-
lieve that the ability to connect dots and form a logical,
coherent story lies at the basis of understanding a topic.

We focus on the news domain: given two news articles,
our system automatically finds a coherent story (chain of
articles) linking them together. For example, imagine a user
who is interested in the financial crisis and its effect on the
health-care reform. The user vaguely recalls that the finan-
cial crisis is related to the decline of home prices in 2007.
The user would then choose representative articles for those
two topics and feed them to our system. An output chain
may look like this (parenthesized text not part of output):�

�

�

�

1.3.07 Home Prices Fall Just a Bit
3.4.07 Keeping Borrowers Afloat

(Increasing delinquent mortgages)
3.5.07 A Mortgage Crisis Begins to Spiral, ...
8.10.07 ... Investors Grow Wary of Bank’s Reliance on Debt.

(Banks’ equity diminishes)
9.26.08 Markets Can’t Wait for Congress to Act
10.4.08 Bailout Plan Wins Approval
1.20.09 Obama’s Bailout Plan Moving Forward

( ... and its effect on health benefits)
9.1.09 Do Bank Bailouts Hurt Obama on Health?

(Bailout handling can undermine health-care reform)
9.22.09 Yes to Health-Care Reform, but Is This the Right Plan?

The chain mentions some of the key events connecting
the mortgage crisis to healthcare, including the bailout plan.
Most importantly, the chain should be coherent : after read-
ing it, the user should gain a better understanding of the
progression of the story.

To the best of our knowledge, the problem of connecting
the dots is novel. Previous research (e.g., [19, 13, 18, 17,
4, 6]) focused on organizing news articles into hierarchies or
graphs, but did not address the notion of output coherence.

Our main contributions are
• Formalizing characteristics of a good story and the no-

tion of coherence.
• Formalizing influence with no link structure.
• Providing an efficient algorithm for connecting two

fixed endpoints while maximizing chain coherence (with
theoretical guarantees).
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Clinton

Microsoft

Market

Palestinians

Vote

Clinton

Lewinsky

Impeachment

Gore

Vote

B1: Talks Over Ex-Intern's Testimony On Clinton 
Appear to Bog Down 

B2: Clinton Admits Lewinsky Liaison to Jury; 
Tells Nation ‘It was Wrong,’ but Private 

B3: G.O.P. Vote Counter in House Predicts 
Impeachment of Clinton

B4: Clinton Impeached; He Faces a Senate Trial, 2d 
in History; Vows to Do Job till Term’s ‘Last Hour’ 

B5: Clinton’s Acquittal; Excerpts: Senators Talk About 
Their Votes in the Impeachment Trial 

B6: Aides Say Clinton Is Angered As Gore Tries 
to Break Away

B7: As Election Draws Near, the Race Turns Mean

B8: Contesting the Vote: The Overview; Gore asks Public
For Patience; Bush Starts Transition Moves 

A1: Talks Over Ex-Intern's Testimony On Clinton 
Appear to Bog Down

A2: Judge Sides with the Government in Microsoft
Antitrust Trial 

A3: Who will be the Next Microsoft?  
trading at a market capitalization…

A4: Palestinians Planning to Offer Bonds on Euro. Markets

A5: Clinton Watches as Palestinians Vote to Rescind
1964 Provision

A6: Contesting the Vote: The Overview; Gore asks Public
For Patience; Bush Starts Transition Moves 
The Clinton administration has denied…

A1                A2              A3               A4                A5              A6 B1           B2           B3           B4           B5          B6           B7           B8

Figure 1: Two examples of stories connecting the same endpoints. Left: chain created by shortest-path (dashed lines

indicate similarities between consecutive articles). Right: a more coherent chain. Activation patterns for each chain

are shown at the bottom; the bars indicate appearance of words in the article above them.

• Incorporating feedback and interaction mechanisms into
our system, tailoring stories to user preferences.

• Evaluating our algorithm over real news data and demon-
strating its utility to news-readers via a user study.

Our methods are also directly applicable to many other do-
mains. Email, research papers, and military intelligence
analysis are but a few of the domains in which it would
be immensely useful to discover, extract, and automatically
connect the dots.

2. SCORING A CHAIN

2.1 What makes a story good?
Our goal is to find a good path between two articles, s and

t. A natural thing to do would be to construct a graph over
the articles and find the shortest s-t path. Since there are no
edges between articles, we will have to add them ourselves,
e.g., by linking similar articles together.

However, this simple method does not necessarily yield
a good chain. Suppose we try to find a coherent chain of
events between Clinton’s alleged affair and the 2000 election
Florida recount. We pick two representative documents,

s: Talks Over Ex-Intern’s Testimony On Clinton Appear to
Bog Down (Jan 1998)

t: Contesting the Vote: The Overview; Gore asks Public For

Patience (Nov 2000)

and find a shortest path between them. The result is shown
on Figure 1 (left). This chain of stories is rather erratic,
passing through the Microsoft trial, Palestinians, and Eu-
ropean markets before returning to Clinton and American

politics. Note that each transition, when examined out of
context, is reasonable: for example, the first and the second
articles are court-related. Those correlations are marked by
dashed lines in Figure 1.

The problem seems to lie with the locality of shortest-
path. Every two consecutive articles are related, but there
is no global, coherent theme to the chain as a whole. Rather,
shortest-path may exhibit stream-of-consciousness behaviour,
linking s and t by a chain of free associations. A better chain
is in Figure 1 (right). This chain tells the story of Clinton’s
impeachment and acquittal, the effect on Al Gore’s cam-
paign, and finally the elections and recount. In the following,
we identify the properties which make this chain better.

Let us take a closer look at these two chains. Figure 1
(bottom) shows word activation patterns along both chains.
Bars correspond to the appearance of a word in the articles
depicted above them. For example, the word ‘Clinton’ ap-
peared throughout the whole right chain, but only at the
beginning and the last two articles on the left. It is easy to
spot the associative flow of the left chain in Figure 1. Words
appear for very short stretches, often only in two neighbour-
ing articles. Some words appear, then disappear for a long
period and re-appear. Contrast this with the chain on the
right, where the stretches are longer (some words, like Clin-
ton and Lewinsky, appear almost everywhere), and transi-
tions between documents are smoother. This observation
motivates our definition of coherence in the next section.

2.2 Formalizing story coherence
Let D be a set of articles, and W a set of features (typically
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words or phrases). Each article is a subset of W. Given
a chain (d1, ..., dn) of articles from D, we can estimate its
coherence from its word activation patterns. One natural
definition of coherence is

Coherence(d1, ..., dn) =

n−1∑
i=1

∑
w

(w ∈ di ∩ di+1).

Every time a word appears in two consecutive articles, we
score a point. This objective has several attractive prop-
erties; it encourages positioning similar documents next to
each other and rewards long stretches of words. It is also
very simple to compute. However, this objective suffers from
serious drawbacks:

Weak links: They say that a chain is only as strong as its
weakest link; this applies to our chains as well. Sum-
ming over the transitions can lead to ‘broken’ chains
(having weak links), since a chain with many strong
links and few weak ones may still score very high. For
example, a chain in which all articles but the last one
are about the Lewinsky scandal will receive a good
score, while not connecting the endpoints in any way.

A more reasonable objective would consider the minimal
transition score instead of the sum.

Coherence(d1, ..., dn) = min
i=1...n−1

∑
w

(w ∈ di ∩ di+1)

However, other drawbacks still exist.

Missing words: Due to our noisy features, some words do
not appear in an article, although they should have.
For example, if a document contains ‘lawyer’ and ‘court’
but not ‘prosecution’, chances are ‘prosecution’ is still
a highly-relevant word. Considering only words from
the article can be misleading in such cases.

Moreover, even if our features were not noisy, an indicator
function is not informative enough for our needs.

Importance: Some words are more important than others,
both on a corpus level and on a document level. For
example, in the shortest-path chain, the first two ar-
ticles shared several words, among them ‘judge’ and
‘page’. Clearly, ‘judge’ is more significant, and should
affect the objective function more.

Combining Importance and Missing words, it becomes
clear that we need more than a simple word-indicator. Rather,
we need to take into consideration the influence of di on di+1

through the word w. We defer the formal definition of influ-
ence to Section 2.3; intuitively, Influence(di, dj | w) is high
if (1) the two documents are highly connected, and (2) w is
important for the connectivity. Note that w does not have
to appear in either of the documents. See Figure 2 for an
example: the source document d0 is

d0 :Judge Lance Ito lifted his ban on live television coverage
of the O.J. Simpson trial

We calculated word-influence from d0 to two other docu-
ments, using methods explained in Section 2.3. The blue
bars (in the back) represent word influence for document

d1 :O.J. Simpson’s defense lawyers told the judge they
would not object to the introduction of DNA evidence
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Figure 2: Word influence from an article about the OJ

Simpson trial to two other documents – one about foot-

ball and another about DNA evidence.

and the red bars (front) represent word influence for

d2 :Winning three consecutive Super Bowls would be a
historic accomplishment for San Francisco 49ers

First, note that the blue bars are generally higher. This
means that d1 is more relevant to the source article d0. The
influential words for d1 are mostly court-related, while d2’s
are sport-related (interestingly, the word ‘Defense’ is strong
in both documents, for completely different reasons). Note
that many of the influential words do not appear in either
of the three articles, thereby solving the Missing words
problem. With the new Influence notion, our objective can
be re-defined as

Coherence(d1, ..., dn) = min
i=1...n−1

∑
w

Influence(di, di+1 | w)

This new objective, while better, still suffers from the prob-
lem of Jitteriness.

Jitteriness: the objective does not prevent jittery activa-
tion patterns, i.e., topics that appear and disappear
throughout the chain.

One way to cope with jitteriness is to only consider the
longest continuous stretch of each word. This way, going
back-and-forth between two topics provides no utility after
the first topic switch. Remember, this stretch is not deter-
mined by the actual appearance of the word along the chain;
words may have a high influence in some transition even if
they are missing from one (or both) of the articles. Rather,
we define an activation pattern arbitrarily for each word,
and compute our objective based on it. The coherence is
then defined as the score under the best activation pattern:

Coherence(d1, ..., dn) = max
activations

min
i=1...n−1∑

w

Influence(di, di+1 | w) (w active in di, di+1) (∗)

Since influence is non-negative, the best solution is to ac-
tivate all words everywhere. In order to emulate the be-
haviour of the activation patterns in Figure 1, we constrain
the possible activation patterns we consider: we limit the to-
tal number of active words and the number of words that are
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active per transition. In order to avoid multiple stretches,
we allow each word to be activated at most once.

Instead of using binary activations (words are either active
or inactive), we propose a softer notion of continuous acti-
vations. A word’s activation is in the range [0, 1], signifying
the degree to which it is active. This leads, quite naturally,
to a formalization of the problem as a linear program.

2.2.1 Linear Program Formulation
The objective function (*) we defined in the previous sec-

tion can be readily formalized as a linear program (LP). The
LP is specified in Figure 3 and illustrated in Figure 4.

max minedge

Smoothness

//word w initialized at most once

∀w

∑
i

word-initw,i ≤ 1 (1)

//if w is active in the ith transition,

//either it was active before or just initialized

∀w,i word-activew,i ≤ word-activew,i−1 + word-initw,i (2)

//no words are active before the chain begins

∀w word-activew,0 = 0 (3)

Activation Restrictions

//no more than kTotal words activated
∑
w,i

word-initw,i ≤ kTotal (4)

//no more than kTrans words active per transition

∀i

∑
w

word-activew,i ≤ kTrans (5)

Objective

//minedge holds the minimum score over edges

∀i minedge ≤
∑
w

word-activew,i · influence(di, di+1 | w) (6)

∀w,i word-activew,i,word-initw,i ∈ [0, 1] (7)

Figure 3: Scoring a chain.

We are given a chain of n chronologically-ordered docu-
ments, d1, ..., dn. First, we define variables describing word
activation levels. We define a variable word-activew,i for
each document i = {1, ..., n − 1} and word w. Variable
word-activew,i measures the activation level of w during the
transition from di to di+1. In Figure 4, those variables are
represented by the height of the bars. When a word’s acti-
vation level increases between two consecutive transactions
(di−1 − di − di+1), we say it was initialized in di. We de-
fine another variable word-initw,i indicating the initialization
level of w in di. In the 0-1 case of Figure 1, word-initw,i = 1
means that w is first activated in di. In the continuous case
of Figure 4, word-initw,i corresponds to the increase of height
between two consecutive transitions.

The LP has three main parts. In Smoothness, we require
that the activation patterns are smooth: First, constraint
(1) requires that each word is activated at most once. Con-
straint (2) links the initialization and activation variables
together. It ensures that an active word w implies that ei-
ther w was active in the previous transition, or it just got

w1

w2

w3

D1                D2              D3               D4                D5              D6

word-init(w2,d3)=0 
word-act(w2,d3)=.25

word-init(w3,d4)=.1 
word-act(w3,d4)=.1

word-init(w3,d5)=.8
word-act(w3,d5)=.9

Figure 4: An illustration of the results of the linear pro-

gram, showing initialization and activation levels along

a chain for three words. Activation level is the height of

the bars. Initialization level is the difference in activa-

tion levels between two consecutive transactions, if the

activation level has increased.

activated. We also set word-activew,0 = 0 (3). Intuitively,
it means that no words were active before the beginning of
the chain.

In Activation Restrictions, we limit the total number
of active words (4) and the number of words that can be ac-
tive during a single transition (5). We use parameters kTotal
and kTrans to control the number of active words. The in-
terplay between those two parameters controls the length of
activation segments. For example, if kTotal ∼ kTrans · n,
the LP might pick different words for every transition, and
segments will be short.

Finally, we get to the Objective Function. For every
edge i, we calculate its influence. Based on Equation (*),
edge influence is the weighted influence of the active words:

∑
w

word-activew,i · influence(di, di+1 | w)

Our goal is to maximize the influence of the weakest link:
to do this, we define a variable minedge, which takes the
minimum influence across all edges (6). Our objective is to
maximize this variable.

As a sanity check, we tried the LP on real chains. Figure
5 (left) shows the best activation pattern found for a chain
connecting 9/11 and Daniel Pearl’s murder (top five words).
This pattern demonstrates some of the desired properties
from Section 2: the word ‘Terror’ is present throughout the
whole chain, and there is a noticeable change of focus from
Bin Laden to Pakistan and the kidnapped journalist. Figure
5 (right) shows activation × influence (rescaled). Notice
that words with the same activation levels can have different
levels of influence, and thus different effect on the score.

Figure 5: Activation patterns found by our algorithm

for a chain connecting 9/11 to Daniel Pearl’s murder.

Left: activation levels. Right: activation levels weighted

by the influence (rescaled). For illustrative purposes, we

show the result of the integer program (IP).
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2.3 Measuring influence without links
The LP from the previous section required evaluation of

influence(di, dj | w) – the influence of di on dj w.r.t. word w
(refer again to Figure 2 for intuition). Several methods for
measuring influence have been proposed. The vast majority
of them focus on directed weighted graphs (e.g., the web,
social networks, citations), where influence is assumed to
propagate through the edges. Methods such as authority
computation [8], random graph simulations [7] and random
walks [3] all take advantage of the edge structure.

However, in our setting no edges are present. Adding ar-
tificial edges (formally known as ‘link prediction’) is a com-
plicated and challenging task. In this section, we explore a
different notion of influence; despite the fact that this notion
is based on random walks, it requires no edges.

First, we construct a bipartite directed graph, G = (V, E).
The vertices V = VD ∪ VW correspond to documents and
words. For every word w in document d, we add both edges
(w, d) and (d, w). Refer to Figure 6 for a simple graph: there
are four (square) documents, and four (circle) words. The
leftmost article, about Clinton admitting Lewinsky liaison,
is connected to the words ‘Clinton’ and ‘Judge’.

Edge weights represent the strength of the correlation be-
tween a document and a word. The tool we used for word
extraction [1] assigns importance to each word; we use these
weights for document-to-word edges. Alternatively, we can
use TF-IDF weights. Since we interpret weights as random
walk probabilities, we normalize them over all words in the
document. For example, the rightmost article is mostly (.7)
about Al Gore, and somewhat about ‘Judge’ (.2) and ‘Clin-
ton’ (.1). The word-to-document weights are computed us-
ing the same numbers, but normalized over the documents.
The word ‘Gore’ can only be reached by a single document,
so the edge weight is .7

.7
= 1. We now use this weighted

graph to define influence between documents.
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Figure 6: A bipartite graph used to calculate influence.

As mentioned before, Influence(di, dj | w) should be high
if the two documents are highly connected, and w plays an
important role in this connection. Intuitively, if the two doc-
uments are connected, a short random walk starting from di

should reach dj frequently. We first compute the stationary
distribution for random walks starting from di. We control
the expected length with a random restart probability, ε.
The stationary distribution is the fraction of the time the
walker spends on each node:

Πi(v) = ε · (v = di) + (1 − ε)Σ(u,v)∈EΠi(u)P (v | u)

where P (v | u) is the probability of reaching v from u.
We now need to factor in the effect of w on these walks.

We turn w into a sink node: let P w(v | u) be the same prob-
ability distribution as P (v | u), except there is no way out

D1                D2

D3

w1

w2

w1

w2

w1

w2

w1

w2

node-act
(d3)=1

next-node
(d2,d3)=0

word-act
(w1,d1)=.9

trans-act
(w1,d1,d3)=.9

Figure 7: An illustration of the results of the second

linear program.

of node w. Let Πw
i (v) be the stationary distribution for this

new graph. If w was influencial, the stationary distribution
of dj would decrease a lot: in Figure 6, without the word
‘Judge’ article 1 is no longer reachable from article 2.

The influence on dj w.r.t. w it defined as the difference
between these two distributions, Πi(dj) − Πw

i (dj). Figure
2 shows an example of word-influence results calculated by
this method. Refer to Section 2.2 for a detailed explanation.

3. FINDING A GOOD CHAIN
In the previous sections we discussed a method to score a

fixed chain. However, we are still left with the problem of
finding a chain. One natural way is to use local search. In
local search, we start from a candidate chain and iteratively
move to a neighbour chain, chosen to maximize our scoring
function. Local search is easy to understand and to imple-
ment. However, it suffers from some known drawbacks, in
particular a tendency get stuck in a local optimum. In this
section we present a different approach. Instead of evalu-
ating many chains along the local-search path, we jointly
optimize over words and chains.

Similarly to Section 2, we formulate this problem as an LP.
The main difference is that neither the transitions nor the
articles are known in advance; therefore, we have to consider
all articles and edges as candidates for the chain.

Refer to Figure 7 for an illustration of the LP. The figure
depicts three articles d1, d2, d3. Articles which are a part of
the chain are indicated by a checkmark (in this example, d1

and d3). In the LP, this is denoted by variables node-activei

(i.e., node-active1 = 1, node-active2 = 0).
Figure 7 also shows all three possible edges between the

articles (since edges are in chronological order, we ignore
back-edges). In the figure, the edge from d1 to d3 is the
only active one, marked by a solid line. (In fact, this is the
only solution if d2 is inactive but d1 and d3 are.) Variables
next-nodei,j indicate whether there is a transition from di to
dj (i.e., next-node1,3 = 1).

Words have activation levels associated with each docu-
ment. Activation levels are depicted as two bars adjacent to
each article, corresponding to words w1, w2. For example,
w1 is high in d1 and d3. Since d2 is inactive, both words are
inactive in it. Variables word-activew,i indicate the activa-
tion level of word w in di. Note that i previously referred
to the ith transition in the chain; since we no longer know
the chain in advance, we cannot do this here. Instead, the
activation level per transition (bars adjacent to edges) is de-
noted by variables transition-activew,i,j . The activation of
w2 along the edge is low, since it was low in d1.

Like before, the score of an active edge is the sum of acti-
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vations along transitions, weighted by influence:

∑
w

transition-activew,i,j · influence(di, dj | w)

The LP has the same three main parts as before, plus an
extra module guaranteeing that a valid chain is formed. Let
us look at each of these modules in detail.

Chain Restrictions: This new module ensures a proper
chain: starts with s, ends with t, has K nodes (ordered
chronologically) and K − 1 edges. In addition, every node
(but s, t) has exactly one incoming and one outgoing edge.

//s and t are in the chain

node-active1 = 1,node-activen = 1 (8)

//there are K nodes, K − 1 edges,
∑

i

node-activei = K,
∑
i,j

next-nodei,j = K − 1 (9)

//Intermediate nodes have one in-edge and one out-edge.

//Inactive nodes have no edges.
∑

i

next-nodei,j = node-activej j �= s

∑
j

next-nodei,j = node-activei i �= t

//the chain is ordered chronologically

∀i≥jnext-nodei,j = 0 (10)

//a transition cannot be active if a middle document is

∀i<k<jnext-nodei,j ≤ 1 − node-activek (11)

Smoothness: The smoothness module is very similar to the
one in Figure 3, connecting the activation and initialization
levels of words. The only difference is that we only do not
know the transitions in advance.

//word w initialized at most once

∀w

∑
i

word-initw,i ≤ 1 (12)

//word w is active in dj if it was either initialized at dj

//or active in di, which is previous to dj in the chain

∀w,i,j word-activew,j ≤ word-initw,j + word-activew,i+

1 − next-nodei,j (13)

Activation Restrictions: As before, we restrict the num-
ber of active words per document and per chain. Moreover,
if a word is active in a transition, the transition itself has
to be active; the word’s activation level cannot exceed its
activation level in the originating document.

//no more than kTotal activated words
∑
w,i

word-initw,i ≤ kTotal (14)

//no more than kTrans words active per document

∀i

∑
w

word-activew,i ≤ kTrans (15)

//if w is active in the transition from i to j,

//it has to be active in i

transition-activew,i,j ≤ word-activew,i

//a word cannot be active in a non-active transition

transition-activew,i,j ≤ next-nodei,j (16)

Minmax Objective: As before, we define a variable minedge,
which takes the minimum weight of all active edges. Our

goal is to maximize this variable.

//minedge is the minimum of all active edge scores

∀i,j minedge ≤ 1 − next-nodei,j+∑
w

transition-activew,i,j · influence(di, dj | w) (17)

3.1 Rounding
In order to extract the best chain from the LP optimum,

we need a rounding procedure. Note that we only need to
round the node-activei variables (or alternatively, next-nodei,j).
We now present a randomized rounding schema with proven
guarantees:

First, we solve the LP. Let next-node∗i,j be the value of
next-nodei,j in the optimal solution. The LP solution defines
a fractional directed flow of one unit from s to t. We start
from node s, and iteratively pick the next node of the chain.
The next node is picked proportionally to the flow; in other
words, if our current node is di, the next node will be dj

with probability
next-node∗i,j∑
j next-node∗i,j

. The flow constraints ensure

that this process will stop at t. The ordering constraints
ensure that it runs in polynomial time. It is equivalent to
a decomposition of the flow into a collection of s-t paths,
{Pi}, and picking a path proportional to its weight (flow).

Claim 3.1. The expected length of a path is K.

Proof: E(path length) =
∑

i weighti · |Pi| =∑
v

∑
{i:Pi going through node v} weighti = K

Theorem 3.2. Let the optimal value of the LP be V . The
value of the rounded solution is at least (1 − c)V for c =√

2
V

ln(n/δ) with probability at least 1 − δ. We can replace

n by the number of nodes with non-zero activation in the LP
solution.

Proof Sketch: Define |W| + 1 Bernoulli random variables
for each edge (i, j) with probabilities 1 − next-node∗i,j and
transition-active∗w,i,j for each word w (stars denote the LP
value). The edge weight is expected sum of the Bernoulli
variables. We bound the probability that this weight is less
than (1 − c)V using Chernoff bound. c was chosen so that
the probability is at most δ/

(
n
2

)
. Taking a union bound, we

bound the probability that any edge is below (1− c)V by δ.

3.2 Scaling up
The joint LP from Section 3 has O(|D|2 · |W|) variables,

and therefore is not feasible for a large number of articles.
Certainly, it cannot handle the number of news articles put
out every day. In this section, we consider practical ways to
speed up the computation.

Selecting an initial set of documents As mentioned,
our approach may not be practical when the number of doc-
uments is large. However, it can be profitably invoked on
a carefully and efficiently selected subset of the documents.
We consider ways to restrict the number of candidate arti-
cles for the s-t chain.

Picking documents similar to s and t works well when s
and t are close, but breaks down for complex chains. For
example, impeachment is not an important word in s,t of
Figure 1, yet we should include these articles in our candi-
date subset. We propose to use the same bipartite graph
from Section 2.3, run random walks starting from s and t,
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Figure 8: Left: evaulating effectiveness. For each story and each technique, we average over users the fraction of

familiarity gap which closed after reading a chain. The number under the story indicates the average familiarity (on a

scale of 1 to 5) before reading any chain. Right: Relevance, coherence, and non-redundancy (broken down by simple

vs. complex stories). The y axis is the fraction of times each method was preferred, compared to another chain. Users

could say both chain are equally good, and therefore the numbers do not sum to 1. Our algorithm outperformed the

competitors almost everywhere, especially for complex stories.

and pick the top-ranked articles. Since random walks start
from s and t, we hope that documents which are frequently
reached from both will be ranked high. The same idea may
be used to restrict W, the set of words, as well.

We then solve the LP for the restricted set of articles. If
the resulting chain is not strong enough, we can iteratively
add articles to the set. We add articles from the time period
corresponding to the weakest part of the chain, hoping to
replace the weak links by stronger ones. This way, we obtain
an anytime algorithm which generates a stream of chains,
each one chosen from a larger set of candidate articles.

Speeding up influence calculation In Section 2.3,
calculating influence required O(|D| · |W|) calculations of
stationary distributions. We speed up the calculation by
using only one set of random walks for all w. For each doc-
ument di we simulate random walks on the original graph.
During each walk, we keep track of the word-nodes encoun-
tered. When calculating Influence(di, dj | w), we only con-
sider the number of times we reached dj without using w.
Thus, we only need O(|D|) random walks. Note that the
random walks are not independent anymore. However, the
results are still exact, since we only need the expectations.

4. EVALUATION
Evaluating the performance of information retrieval tasks

often focuses on canonical labeled datasets (e.g., TREC com-
petitions) amenable to the standard metrics of precision,
recall and variants thereof. The standard methods do not
seem to apply here, as they require labeled data, and we are
not aware of any labeled dataset suitable for our task. As a
result, we evaluated our methods by running them on real
data and conducting user studies to capture the utility of
our algorithms as they would be used in practice.

We evaluate our algorithm on real news data from the New
York Times and Reuters datasets (1995-2003). We prepro-
cessed more than half a million articles. These articles cover
a diverse set of topics, including world news and politics,
economy, sports and entertainment.

We considered some of the major news stories of recent
years: the OJ Simpson trial, the impeachment of Clinton,
the Enron scandal, September 11th and the Afghanistan

war. For each story, we selected an initial subset of 500 −
10, 000 candidate articles, based on keyword-search. The
size of the candidate subset depended on the search results.
For example, there were a lot more articles mentioning Clin-
ton than those mentioning Enron.

For each article, we extract named entities and noun phrases
using Copernic Summarizer [1]. In addition, the NYT dataset
includes important meta-data such as taxonomy and section.
We remove infrequent named entities and non-informative
noun phrases (e.g., common nouns such as “year”).

Our goal was to construct chains representing the stories,
and have users evaluate them. For each story, we chose
several pairs of articles. We then tried finding stories linking
each pair using the following techniques:

• Connecting-Dots As described in Section 3, but us-
ing the rounding technique we had at the time of the
user studies, based on iteratively removing articles.1

The typical value of K was 6 or 7. kTotal was set to
15, and kTrans was set to 4. We used the speed-up
methods of Section 3.2, and allowed ten minutes for
the creation of a chain.

• Shortest-path We constructed a graph by connect-
ing each document with its nearest neighbours, based
on Cosine similarity. If there was no such path, we in-
creased the connectivity of the graph until a path was
found. If the path was too long, we picked a subset of
K evenly-spaced documents.

• Google News Timeline [2] GNT is a web applica-
tion that organizes news search results on a browsable,
graphical timeline. The dataset is different, making
comparison hard. Also, the input is a query string.
We constructed such a string for each story, based on
s and t, and picked K equally-spaced documents be-
tween the dates of our original query articles.

1During each iteration, we solve the LP from Section 3. We
exclude the article with the lowest activation score from the
next iterations (setting node-activei = 0). We stop when
exactly K of the node-activei variables are set to 1. Since
at every iteration we remove one article, the process his is
guaranteed to stop after |D| −K + 1 iterations. In practice,
it reaches a solution within a few iterations.
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Google News Timeline:

Osama bin Laden is denounced by his family // Osama Family’s

Suspicious Site (Web designer from LA buys a bizarre piece of

Internet history) // Are you ready to dance on Osama’s grave?

(How should one react to the death of an enemy?) // Al-

Qaeda behind Karachi blast // LIVE FROM AFGHANISTAN:

Deadline of Death Delayed for American Journalist // Killed

on Job But Spared ‘Hero’ Label (About Daniel Pearl)

Connect the Dots: Dispatches From a Day of Terror and Shock //

Two Networks Get No Reply To Questions For bin Laden

(Coverage of September 11th) // Opponents of the War Are Scarce on

Television (Coverage of the war in Iraq and Afghanistan) // ‘Afghan

Arabs’ Said to Lead Taliban’s Fight // Pakistan Ended Aid to Taliban

Only Hesitantly // Pakistan Officials Arrest a Key Suspect in Pearl

Kidnapping (Pearl abducted in Paksitan while investigating links to

terror) // The Tragic Story of Daniel Pearl

Figure 9: Example output chains for Connect-Dots and Google News Timeline. Users were given access to the full

articles. The GNT chain is a lot less coherent, and includes several insignificant articles.

• Event threading (TDT)[13] is a method to discover
sub-clusters in a news event and structure them by
their dependency, generating a graph. We found a
path in this graph from the cluster including s to the
cluster including t, and picked a representative docu-
ment from each cluster along the path. Again, if the
chain was too long, we chose K equally-spaced articles.

First, we presented 18 users with a pair of source and tar-
get articles. We gauged their familiarity with those arti-
cles, asking whether they believe they knew a coherent story
linking them together (on a scale of 1 to 5). We showed the
users pairs of chains connecting the two articles, generated
by the above methods in a double-blind fashion. We asked
the users to indicate

• Relevance: which chain captures the events con-
necting the two articles better?

• Coherence: which chain is more coherent?
• Redundancy: which has more redundant articles?

In addition, we measured the effectiveness of the chains.
We asked users to estimate how their answer to the famil-
iarity question changed after reading each chain. Effec-
tiveness is the fraction of the familiarity gap closed. For
example, if the new familiarity is 5, this fraction is 1 (gap
completely closed). If the familiarity did not change, the
fraction is 0. This was meant to test whether users feel that
the chain helped them gain better understanding of the big
picture, which is, after all, our main goal.

Example output chains are shown in Figure 9. Figure
8 shows the results of our user-study. After analyzing the
results, we identify two types of stories: simple and complex.
Simple stories tend to focus around the same event, person
or institution (e.g., the OJ Simpson trial/ the Enron story).
Those stories can usually be summarized by a single query
string. In complex stories, however, the source and target
article are indirectly connected through one or more events
(e.g., Lewinsky-impeachment-elections, September 11th-
Afghanistan war-Daniel Pearl).

The left plot shows the effectiveness (closing the famil-
iarity gap) for each of the methods. Underneath each story
we display the average familiarity score before reading any
chain (e.g., the Enron story is not well-known).

Our algorithm does better than the competitors on all sto-
ries but Enron. The difference is especially pronounced for
complex stories. In simple stories, such as Enron, it seems
that the simple method of picking K evenly-spaced docu-
ments from GNT was sufficient for most people. However,
when the story could not be represented as a single query,
the effectiveness of GNT decreased.

Surprisingly, GNT did a lot worse on the OJ story than
on Enron (note that its score is lower despite the smaller
gap). A closer examination revealed that there were a lot

more stories about OJ, many of them esoteric at best, so
picking random K documents tended to produce poor results
(a book of a former juror made it to the best-selling list, etc).
Furthermore, more of our users were familiar with the OJ
story beforehand, so there was less room for improvement.

As expected, shortest path did badly. Event threading
did somewhat better; however, for simple stories, sometimes
the clusters were too big. In the Enron story, both s and
t belonged to the same cluster, rendering the chain useless.
Also, the fact that we pick a representative for each cluster
at random might have hurt its performance.

The plot on the right shows the percentage of times each
method was credited for relevance, coherence and
non-redundancy. Simple stories are grouped on the left,
complex – on the right. Users could credit one chain, both
or neither. Therefore, the numbers do not sum to 100%.
Our algorithm is amongst the best in all measures at a sta-
tistically significant level. Most importantly, it achieves the
best coherence scores (especially in the complex case). We
discuss some of the interesting findings below.

Relevance and Redundancy: As expected, for all
methods, relevance is good for simple stories but achieving
low redundancy is harder. There is a tradeoff – redundancy
is easy to avoid by picking random, possibly irrelevant arti-
cles. Relevance is easy to achieve by picking articles similar
to s or t, but then redundancy would be high.

Google News Timeline is doing well in terms of relevance
for simple stories. However, the chains it generates tend to
include somewhat insignificant articles, especially for com-
plex stories. The clusters of Event Threading seem to reduce
its redundancy, compared to shortest-path.

Coherence: Together with effectiveness, this is per-
haps our most important metric. Our algorithm outper-
forms the other methods, especially in the complex case.
This indicates that the notion of coherence devised in this
paper matches what the actual users perceive. Interest-
ingly, event threading outperformed GNT for complex sto-
ries. This is because the GNT keywords were based on s
and t, and did not capture the intermediate events.

5. INTERACTION MODELS
Thus far, we have defined a way to find chains connecting

two endpoints. However, the user may not find the result-
ing chain satisfactory. In information retrieval systems, the
solution is often to let the users revise their queries; for a
complex information need, users may need to modify their
query many times. In this section, we propose to take ad-
vantage of the structured nature of the chains, and explore
more expressive forms of interaction. We explore two dif-
ferent types of user feedback: refinement of a chain, and
tailoring to user interests.
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Refinement: When presenting a chain to a user, some
of the links in the chain may not be obvious. Moreover,
the user might be especially interested in a specific part of
the chain. For example, a user not familiar with the details
of the Lewinsky story might want to further expand the
first link of Figure 1 (right). We provide the user with a
mechanism to indicate areas in the chain which should be
further refined; a refinement may consist of adding a new
article, or replacing an article which seems out of place.

Since evaluating a single chain is quick, the refinment pro-
cess is very efficient. Starting from the original chain, we try
all possible replacement/insertion actions. We evaluate each
chain (see Section 2), and return the best one.�

�

�

	

Simpson Defense Drops DNA Challenge
Issue of Racism Erupts in Simpson Trial
Ex-Detective’s Tapes Fan Racial Tensions in Los Angeles
Many Black Officers Say Bias Is Rampant in LA Police Force
With Tale of Racism and Error, Lawyers Seek Acquittal
� In the Joy Of Victory, Defense Team Is in Discord �
� (Defense lawyers argue about playing the race card) �
The Simpson Verdict

Figure 10: Chain refinement. The starred article was

added in order to strengthen the last link.

In Figure 10, the starred article is the result of an inser-
tion request. Adding the article strengthened the end of the
chain, while maintaining the global theme.

Incorporate user interests: There can be many co-
herent ways to connect s and t, especially when they are
about similar topics. For example, consider the OJ Simp-
son trial story. Suppose the user is interested in the racial
aspects of the case, but our algorithm finds a chain focus-
ing on the verdict. We provide a mechanism for the user to
focus the chains around concepts they find important. In
our case, the user may increase the importance of ‘racial’ or
‘black’, and perhaps decrease the importance of ‘verdict’.

In order to take user’s feedback into account, we augment
our objective with importance weight πw for each word w:

∑
w

πwInfluence(di, di+1 | w) (w active in di, di+1)

πw are initialized to 1. When a user likes a word, its im-
portance is increased by a multiplicative factor. When they
dislike a word, its weight is decreased by a (perhaps dif-
ferent) factor. These factors were determined empirically,
and may change over time (similar to online learning tech-
niques). In order to avoid having to click many words, we
use word co-occurrence information to distribute the effect
amongst related words. E.g., when a user clicks on ‘DNA’,
the words ‘blood’ and ‘evidence’ increase a little too.

Figure 11 shows an actual output of the system. The
figure depicts four chains: for each, it shows activation levels
for the most important words and a few selected articles.
The top-left chain (before any interaction took place) focuses
on the verdict. The other chains are derived from it by
increasing the weight of ‘Black’ (top right) or ‘DNA’ (bottom
left). The bottom-right chain is the result of increasing the
weight of ‘DNA’ twice. As can be seen, increasing the weight
of a word causes the chain to change its focus. The ‘Black’
chain focuses on racial issues, and the ‘DNA’ chains focus
more and more on the testimony of the DNA expert.

Another way to interpret user’s feedback is as a constraint.
Under this interpretation, the user imposes constraints on

Simpson

Decision

LA

Murder

Verdict

Goldman

DNA

Murder

LA

Deoxy. acid

Verdict

DNA

Murder

Nicole

Simpson

No interaction More ‘Black’

More ‘DNA’ Even more ‘DNA’

• A Day the Country Stood Still
• In the Joy Of Victory, Defense Team …

• Black Officers Say Bias Is Rampant in LA Police
• Racial Split at the End, as at the Start

• Defense Cross-Examines State DNA Expert
•With Fiber Evidence, Prosecution …

• Defense Cross-Examines State DNA Expert
•With Fiber Evidence, Prosecution …
• … Not to Present Testimony by DNA Expert

TV

Black

Murder
Police

Detective Fuhrman

Figure 11: A demonstration of our interactive compo-

nent. The original chain is at the top left. The rest are

derived from it by requesting the words ‘black’, ‘DNA’,

and ‘DNA’×2. For each chain we show activation levels

for the most important words, and a few selected articles.

the accumulated influence of specific words in the chain.
We do not describe this mechanism in detail; intuitively,
if the user indicates that they want more of a word w, the
resulting chain will demonstrate higher levels of influence for
w, compared to the previous chain. The level of influence
measures how much the chain is about w. Note that this is a
property of the chain, and does not depend on the activation
levels. By letting users indicate desired influece levels, they
can change the focus of the chains.

Combining interaction types: The idea of personal
word-preferences might also be useful for the refinement
task. Suppose the user asked to replace an article di; if
there are many articles similar to di, local search is likely to
return one of them. We can implement a mechanism similar
to our work in [5] to find words which might be attributed
for the user’s dislike of di, and decrease their importance.
This way, the replacement article will not be similar.

5.1 Evaluation
We conducted another user study to evaluate how well

our algorithm personalizes the chains it selects in response
to user feedback. We tested both aspects of feedback:

Refinement: We showed the user a chain, and asked
them to perform a refinement operation (asking for inser-
tion/replacement). We then returned two chains, obtained
from the original chain by (1) our local search, (2) adding an
article chosen randomly from a subset of candidate articles
(Section 3.2), obeying chronological order. We asked the
user to indicate which chain better fit their request. Users
preferred the local-search chains 72% of the time.

User Interests: We showed users two chains – one ob-
tained from the other by increasing the importance of 2-3
words. We then showed them a list of ten words containing
the words whose importance we increased and other, ran-
domly chosen words. We asked which words they would pick
in order to obtain the second chain from the first. Our goal
was to see if users can identify at least some of the words.
Users identified at least one word 63.3% of the times.
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6. RELATED WORK
To the best of our knowledge, the problem of connecting

the dots is novel. There has been extensive work done on
related topics, from narrative generation to identifying and
tracking news events.

The narrative generation community [16, 14] has sought
to explore the notion of narratives and the ways to model
them. However, their task seems to be fundamentally differ-
ent. Much of the work involves producing natural-language
experiences for a user (e.g., a computer game), and focus
on planning-like operators and inferences. In contrast, we
do not try to generate any natural-language content, neither
do we make up new plots. Our contribution lies in finding
a good chain of documents within a given dataset. Never-
theless, some of the work done on evaluating narratives [15]
may be useful for our purposes.

For event tracking, some efforts have been made to classify
news stories into broad categories using pattern matching
and machine learning [11]. However, these methods assume
the labels are known in advance, and thus are not applicable.
Event detection [9, 19] deals with discovering new events,
but does not attempt to string different events together.

In contrast, email threading [10] tries to discover connec-
tions between related email messages. This is closer to the
task we have in mind, but much easier, since email usually
incorporates a strong structure of referenced messages.

In a work closest to ours, [13, 12] studied how to discover
sub-clusters in a news event and structure them by their
dependency, generating a graph structure. However, they
do not address the notion of coherence at all; constructing
a chain of coherent articles from the output graph is hard,
as we have seen in the experimental section. In addition, it
seems like the method is best-suited for simple news stories,
i.e., stories that can be summarized in one or two keywords
(“tsunami”, in [12]). It is not clear how well this method
does for more complex stories.

Our work differs from most previous work in two other
important aspects – expressing information needs and
structured output and interaction. Often, users know
precisely what they want, but it is not easy for them to
distill this down into a few keywords. Our system’s input
method (related articles) might facilitate this task. Our sys-
tem’s output is interesting, too – instead of the common
list of relevant documents, our output is more structured:
a chronological chain of articles, and the flow of influences
along it. Often, visually exploring a system’s results and in-
teracting with it can reveal new and interesting phenomena.

7. CONCLUSIONS AND FUTURE WORK
In this paper we describe the problem of connecting the

dots. Our goal is to help people fight information overload
by providing a structured, easy way to navigate between top-
ics. We explored different desired properties of a good story,
formalized it as a linear program, and provided an efficient
algorithm to connect two articles. Finally, we evaluated our
algorithm over real news data via a user study, and demon-
strate its effectiveness compared to other methods, such as
Google News Timeline.

Our system is unique in terms of input and output, and
incorporating feedback into it allows users to fully exploit its
capabilities. In the future, we plan to explore richer forms
of input and output, allowing for more complex tasks, e.g.,
creating a roadmap – a set of intersecting chains that covers
a topic from several aspects.

In addition, we plan to explore the behaviour of our sys-
tem under different query characteristics. For example, in
our evaluation we considered news stories which were associ-
ated with popular events. It would be interesting to test the
approach would work for news articles which do not have as
much coverage within the news corpus.

We believe that the system proposed in this paper may be
a promising step in the battle against information overload.
The ability to connect two pieces of information and form a
logical, coherent story has applications in many areas. Per-
haps most importantly, significant scientific discoveries can
come from forming connections between different fields. We
plan to extend our methods to scientific papers; we believe
that tools to automatically connect the dots can be a great
vehicle to enable new discoveries.

Acknowledgements: The authors would like to thank the

reviewers for their comments. This work was partially supported

by ONR YIP N00014-08-1-0752, ARO MURI W911NF0810242,

and NSF Career IIS-0644225. Dafna Shahaf was supported in

part by Microsoft Research Graduate Fellowship.

8. REFERENCES
[1] Copernic, http://www.copernic.com.
[2] Google news timeline, http://newstimeline.googlelabs.com/.
[3] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. In Computer Networks
and ISDN Systems, 1998.

[4] R. Choudhary, S. Mehta, A. Bagchi, and R. Balakrishnan.
Towards characterization of actor evolution and interactions
in news corpora. In Advances in Information Retrieval.

[5] K. El-Arini, G. Veda, D. Shahaf, and C. Guestrin. Turning
down the noise in the blogosphere. In KDD ’09, 2009.

[6] E. Gabrilovich, S. Dumais, and E. Horvitz. Newsjunkie:
providing personalized newsfeeds via analysis of
information novelty. In WWW ’04, 2004.

[7] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network. In KDD ’03.

[8] J. Kleinberg. Authoritative sources in a hyperlinked
environment, 1999.

[9] J. Kleinberg. Bursty and hierarchical structure in streams,
2002.

[10] D. D. Lewis and K. A. Knowles. Threading electronic mail:
A preliminary study. Information Processing and
Management, 33, 1997.

[11] B. Masand, G. Linoff, and D. Waltz. Classifying news
stories using memory based reasoning. In SIGIR ’92, 1992.

[12] Q. Mei and C. Zhai. Discovering evolutionary theme
patterns from text: an exploration of temporal text mining.
In KDD ’05, 2005.

[13] R. Nallapati, A. Feng, F. Peng, and J. Allan. Event
threading within news topics. In CIKM ’04, 2004.

[14] J. Niehaus and R. M. Young. A computational model of
inferencing in narrative. In AAAI Spring Symposium ’09,
2009.

[15] J. P. Rowe, S. W. McQuiggan, J. L. Robison, D. R. Marcey,
and J. C. Lester. Storyeval: An empirical evaluation
framework for narrative generation. In AAAI Spring
Symposium ’09, 2009.

[16] S. R. Turner. The creative process: A computer model of
storytelling and creativity, 1994.

[17] C. Yang, X. Shi, and C. Wei. Tracing the event evolution of
terror attacks from on-line news. In Intelligence and
Security Informatics.

[18] Y. Yang, T. Ault, T. Pierce, and C. Lattimer. Improving
text categorization methods for event tracking. In SIGIR
’00, 2000.

[19] Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. Archibald,
and X. Liu. Learning approaches for detecting and tracking
news events. IEEE Intelligent Systems, 14(4), 1999.

632


