
Grounded Acquisition of Containment Prepositions

Amitabha Mukerjee
Dept of Computer Sci and Engg

IIT Kanpur
amit@cse.iitk.ac.in

Mausoom Sarkar
Trilogy India

Pune
mausoom.sarkar@gmail.com

Abstract

We present a developmental approach
towards a) pre-linguistic learning of
grounded spatial schemas, and b) the ac-
quisition of spatial prepositions based on
association from these pre-linguistic con-
cepts. We learn from sentential data, pick-
ing out the words most frequently asso-
ciated with the concept, and show that
simple associative structures are adequate
for learning object names, or distinctions
such as “in” or “out”. A synthetic model
of visual attention is used to constrain
the set of objects in current focus. We
first learn perceptual-object labels from
simple 2D multi-agent visual streams co-
occurring with word-separated utterances.
We show that a notion of proximity be-
tween perceptual objects is sufficient to
obtain a pre-verbal notion of graded spa-
tial poses. We also demonstrate that the
spatial concepts learned on a single shape
generalize to other shapes, and correlate
the learned perceptual schema with human
precepts through a simple psychological
test.

1 Introduction

The human infant acquires words from a grounded
context, and forms perceptual schemas which re-
flect concepts that have arisen pre-linguistically,
and are therefore independent of the words used.
An important class of such concepts involves spa-
tial relations, which are basic to acquiring mo-
tion verbs and other referents. The schema mod-
eling such spatial relations are often fuzzy and
although they may be approximated by discrete
propositional structures, the grounded perceptual
schema remains available as a fallback for disam-
biguating conflicts. Such models, often calledIm-
age Schemain Cognitive Linguistics (Langacker,

1999) orPerceptual Schemain Experimental Psy-
chology (Mandler., 2004), involve abstractions
on low-level features extracted from sensorimotor
modalities. It is widely believed in cognitive sci-
ence that the process of category formation oper-
ates on these inputs to define the structure of our
conceptual space.

Today computational approaches to language
are moving increasingly towards richer models of
semantics, but hand-coded ontologies, like hand-
coded grammars, appear to be inadequate to cap-
ture the richness of user experience. If we are to
do with ontologies what we did with grammar, we
may need to learn the semantics of linguistic to-
kens from grounded experience. In this process, it
is important to start from the beginning, i.e. with
the grounded acquisition of the first few hundred
words, after which text processing (reading) can
quickly accelerate this natural process. Without
such grounded models, it is not clear how one can
eventually construct the empirically validated on-
tologies underlying language.

How difficult is it to learn such semantics? In
this work, we simplify the problem by providing a
relatively simple grounding - a video well known
in psychology (Heider and Simmel, 1944), from
which the system clusters the spatial relations in
an unsupervised manner based on a set of features
which are specified. Now, when linguistic com-
mentaries are added, the system finds that it is pos-
sible to first learn the symbol systems that map to
the main objects (nouns). Next, we show that it is
possible to learn mappings for basic prepositions
like “in” and “on” related to containment.

The visual search is pruned using a compu-
tational model of visual attention. No knowl-
edge of language or syntax is used at any point
(except the fact that the input comes as word-
separated chunks). Containment concepts are ac-
quired as perceptual schemas specific to the par-
ticular shapes present in the input, but we find that



the results generalize well for other shapes, both
for the containment object as well as the trajector.
These schemas embody the relationship between
the linguistic arguments (the containment object
and the trajector), as well as the spatial relation
(theme), hence it may also constitute a semantic
basis for subsequently learning grammatical struc-
tures.

We consider the system to be at the stage of a
learner who is able to identify frequent phoneme
sequences from the speech stream as words.

1.1 Language Acquisition from Sentential
input

Unlike other attempts which use single objects
(Roy, 2000) or single words (Steels, 1997), we try
to learn directly from sentential input which co-
occur with a simple visual input containing mul-
tiple objects. Like (Ballard and Yu, 2003), our
language learner learns from complete sentences
(though not speech inputs), in a scene with mul-
tiple objects. Attentive focus is used to constrain
the region of visual salience, and identify the con-
stituents participating in an action. However, the
learner is not in the presence of the speaker, and
cannot follow cues from the gaze of the speaker to
determine attentive focus. Instead, it is assumed
that the learner realizes that her attentive mech-
anisms are similar to that of the speaker, a hy-
pothesis we call thePerceptual Theory of Mind.
The computational model of visual attention is
based on the work of Koch and Ullman, as sub-
sequently refined in (Itti, 2000). The model in-
cludes a parallel feature extraction stage, saliency
map and winner-take-all (WTA) to obtain the con-
spicuous locations and an inhibition map which al-
lows scanning of the maxima. Our gaze predictor
incorporates extensions to dynamic image streams
which adds motion features in the saliency compu-
tation, and confidence maps indicative of the posi-
tional uncertainty of visual objects.

Unlike the Ballard/Yu treatment of attentive fo-
cus to isolate pixels of the scene corresponding to
a given term, our model uses motion based seg-
mentation to isolate the perceptual objects. The
problem of associating words with visual events is
equivalent to a word correspondence problem in
machine translation, as pointed out by (Duygulu
et al., 2002), except that attentive focus permits
much faster convergence even with the far simpler
association measures than adopted there.

1.2 The role of Pre-Linguistic Concepts

The main distinction of this work, compared to
other models of associative word learning (Roy,
2000; Regier, 1995) is that we assume that pre-
linguistic notions of the concepts being acquired
are already available. We first show how such
concepts may arise from the perceptual stream
alone. Thereafter, the language learner merely has
to associate the concepts with their correspond-
ing labels. The existence of pre-linguistic (percep-
tual) concepts for concrete objects is well known
(Spelke, 1990; Bloom, 2000). Here we demon-
strate that it is possible for a purely perceptual sys-
tem to form notions of containment, well recog-
nized as one of the earliest spatial concepts aris-
ing around the age of six months (Casasola et al.,
2003).

Computationally, the first question we face is
how to define a set of features for learning this no-
tion. There have been many attempts at defining
spatial relations based on different features. Ex-
cluding spatial formalisms that reduce an object to
a point, we may consider theStolen voronoi area
approach (Edwards and Moulin, 1998), force his-
tograms (R. Bondugula and Keller, 2004), or area-
overlap features (Vorwerg et al., 1997). Of these,
a cognitively plausible notion is that the learning
agent has only a notion of proximity, based on
which she can decompose the visual space into a
influence regions corresponding to an area voronoi
diagram. The introduction of a trajector into the
scene can now be captured in terms of the Stolen
Area (Edwards and Moulin, 1998) measure.

The basic developmental premise involving pre-
verbal concepts, where categorical abstractions for
spatial primitives are formed from pre-linguistic
perceptual inputs, is a position that appears to be
challenged by cognitive differences in spatial de-
scriptors that arise between linguistic groups. For
example, Korean speakers discriminate linguis-
tically between tight- and loose-fit containment
events, grouping tight-fit containment into the lex-
ical category “kkita,” (along with tight-fit support
events). English speakers do not perform as well
as Korean speakers on non-linguistic categoriza-
tion tasks involving such degree of fit relations
(Bowerman and Choi, 2001). However, recent
work seems to illustrate that pre-linguistic infants
at the age of 5 months, from both English and Ko-
rean speaking backgrounds, are able to discrimi-
nate the degree-of-fit relations, but English learn-



ers appear to lose some of this discrimination by
the time they start to speak (Hespos and Spelke,
2004). Thus there appears to be strong cognitive
evidence that some spatial relations such as con-
tainment may be pre-linguistic.

1.3 Learning Spatial Prepositions

In his pioneering work on preposition grounding
by (Regier, 1995), static and moving object scenes
labeled with single words are used, and learning
is achieved using a complex neural network based
architecture inspired from neuropsychological and
cognitive evidence. Orientation sensitive cells and
centre surround maps calculated features used by
motion buffers to segment the initial, final and
in-between positions of the trajector. The vari-
ous configurations and their corresponding closed
class labels were learned.

In our model, the presence of prelinguistic clus-
ters makes it unnecessary to learn the conceptual
models from language, thus enabling far simpler
algorithms running on much sparser data. Other
account of prepositions (e.g. (Feist and Gentner,
2003), (Coventry, 1999)) propose to show how
in/on judgments are affected by geometry and an-
imacy in the figure and the function of the ground,
and have led to theSpaceCasemodel (Lockwood
et al., 2005). Here however, we are trying to sim-
ulate a far more primitive learner, and while prior
concepts such as animacy may be available, func-
tionality of figure/ground are often built based on
the semantics of space, which is what we are try-
ing to acquire here. We have therefore focused on
simpler shape based measures.

As an unsupervised approach for discover-
ing such pre-linguistic concepts, we use Self-
Organizing Maps (SOM) (Kohonen, 1993). The
emergent clusters are associated with the preposi-
tions “in” and “out” from the running narrative us-
ing simple statistical measures based on mutual in-
formation. Both the pre-linguistic concepts as well
as the verbal associations are then learned based
on a single perceptual scene involving a single ge-
ometry and a few hundred configurations.

Another important issue for the beginning
learner is the question of generalizing the no-
tion of containment, learned on a single shape, to
other shapes, and evolving it to eventually match
the adult classification of containment. Here we
show how such shape generalization capability
may emerge and use five shapesBOX, DIAMOND ,

BOWL, MAZE, CSE-B, to test this generalizability.
The model assumes that the learner has the abil-

ity to segment the scene based on coherently mov-
ing blobs (Spelke, 1990), and that it has a mea-
sure of perceptual proximity. In addition, the
learner has the ability to assign degrees of per-
ceptual salience to different objects, which is sim-
ulated in this work by a computational model of
dynamic visual attention.

Input: Heider and Simmel Video

We use a 2D video derived from the social psy-
chology work of (Heider and Simmel, 1944). The
co-occurring text were collected as part of an ex-
periment on how users segment events into hi-
erarchical subtasks (Martin and Tversky, 2003)1.
In this task, users were asked to segment the ac-
tions in the scene and also to describe the action
in an unconstrained narrative. Consequently, the
linguistic input has the wide variety expected in
multiple articulations for the same scene (see Ta-
ble 1 below).

Figure 1: Input Video.Scene from the Chase sequence (de-
rived from (Heider and Simmel, 1944) - recreated by Brid-
gette Martin (Martin and Tversky, 2003)). Three agents, “big
square”, “small square” and “circle” play and chase each
other.

2 Synthetic models of Visual Attention

Computational models of Visual Attention involve
bottom-up and top-down processes. While top-
down processes vary depending on task require-
ments, bottom-up aspects are more stable and have
been encoded for static images (Itti, 2000) based
on parallel extraction of intensity, colour and ori-
entation contrast feature maps. Colour and inten-
sity contrast maps are obtained as feature pyra-
mids (maps at different scales), along with center-
surround maps (multi-scale difference of feature
maps). The center-surround feature processing is

1We are grateful to Bridgette Martin Hard and Barbara
Tversky for sharing this video as well as the Hide and Seek
video, both of which were prepared by Bridgette and her col-
leagues, and also for the transcriptions of the co-articulated
text collected by her.



Start End Subject One Subject Two
Frame Frame
617 635 the little square hit the

big square
they’re hitting each
other

805 848 the big square hit the
little square

and they keep hitting
each other

852 1100 the big square hit
the little square again;
the little circle moves
to the door; the big
square threatens the
little circle

now the circle is
blocking the entrance
for the big square;
now the circle is
inside the square

1145 1202 the big square goes in-
side the box; (and) the
door closes

another square went
inside the big square

Table 1: Description of Events in the [Chase video]. Differ-
ing statements by two subjects.

similar to the difference of gaussian convolved im-
ages (DOGs). For orientation specific processing,
gabor filters are used with different frequencies
and at different scales to generate the orientation
specific feature map.

The static model, which replicates saliency map
structures likely to be present in the LGN or V1 re-
gions of the mammalian cortex, has been extended
(Singh et al., 2006) to model dynamic scenes
based on motion saliency. Motion saliency is com-
puted from the optical flow, and a confidence map
is introduced to record the uncertainty accumulat-
ing at scene locations not visited for some time.
A small foveal bias is introduced to mediate in
favour of proximal fixations as opposed to large
saccadic motions. The saliency map is the sum of
the feature maps and confidence maps, mediated
by the foveal bias, and a Winner-Take-All (WTA)
isolates the most conspicuous location for the next
fixation. The overall architecture is shown in Fig-
ure [2]”.

2.1 Perceptual Theory of Mind

The Theory of Mind hypothesis (Bloom, 2000)
holds that the learner has a model for several as-
pect of the speaker’s mind, at various levels from
a sensitivity to the object being attending to, to be-
lief structures (e.g. children under three are found
to be incapable of entertaining false beliefs). In
this work, we focus at the lowest end of this spec-
trum, and focus on what we call thePerceptual
Theory of Mind. While much of the Theory of
Mind work has focused on gaze following based
on cues from the speaker’s eyes or her gaze di-
rection, the Perceptual Theory of Mind makes a

Color Orientation IntensityMotion

Focus of Attention

Features
Object

Foveal
Bias

Saliency
Map

Perceptual
Grouping

Confidence
Map

Scene Image

Bottom Up Saliency Map

Figure 2: Bottom-Up Dynamic Visual Attention Model. The
feature maps for static images (colour, intensity and orien-
tation) are extended with a motion saliency map (based on
optical flow). In addition a confidence map records which
sites have not been visited for a longer time. Winner-Take-
All determines the next fixation.

much weaker claim: in the absence of direct cues
from a speaker, it assumes that the speaker would
have attended to those parts of the scene that the
learner also finds salient. This is probably a valid
assumption for children from the age of about one
year 18 months onwards (Flavell, 2004), although
the mechanisms for perceptual salience are them-
selves being developed at this stage. In our work,
we do not specify a particular development status
for our learning agent, but assume this model to
infer that the scene objects being attended to by
the agent were also salient for the speaker at the
moment of utterance.

Figure 3: Focus of attentionin three scenes as computed by
the synthetic attention model (top row, circles) and as deter-
mined by gaze tracker on human viewer (bottom row, tall
oval).



Language Acquisition experiments tend to cast
doubts on the efficacy of a purely associationist
model of learning words, and it is true that a large
percentage of our vocabulary is not learned using
multimodal inputs but from reading. Nonetheless,
this work presents some evidence that for the be-
ginning learner, multimodal associations mediated
by attentional processes provide strong and reli-
able cues for learning nominals and their proper-
ties, verbs and their argument and event structures.

3 Learning Containment Descriptors

Before we learn spatial relation labels, we need
to identify the nouns describing the participants in
the relation. In considering the word association
task, one may assume that the learner has been ex-
posed to some other linguistic fragments, so that
highly frequent words like “the” and “is”, which
appear in many other contexts, are known to be
more general, and are not applied to this situation.
(In the British National Corpus, “the” occurs 1500
times more frequently than “square”). Using per-
ceptual equivalence relations based on shape, we
associate the objects with words from a second
video, Hide and Seek(another 2530 frames), us-
ing the probability measures outlined below.

The word-object association is estimated using
the product of mutual information of wordwi and
objectoj with their joint probability.

A = Pr (wi, oj) log
Pr (wi,oj)

Pr (wi) Pr (oj)

We calculate the product of joint probability and
mutual information because ifW andO ( W =
⋃

i wi andO =
⋃

i oi ) are two random variables
then their Mutual InformationI(W, O) would be

I(W, O) =
∑

i

∑
j Pr (w, oj) log

Pr (wi,oj)
Pr (wi) Pr (oj)

andPr (wi, oj) log
Pr (wi,oj)

Pr (wi) Pr (oj)
would be the con-

tribution of each word object pair. Results show a
high degree of correlation (Figure 4).

In the spatial domain, there have been sev-
eral attempts at defining spatial relations involv-
ing continuum measures defined over different ge-
ometric features on object pairs. Many of these
measures involve point attributes such as potential
fields, but our interest here is more on area mea-
sures since perceptually the objects constitute an
area.

The assumption of the existence a proximity no-
tion required a spatial representation (data struc-
ture) which can represent proximity between ob-
jects. The voronoi model of space is one structure

Figure 4: Association of nominals with the visual objects.
Big Square, Door, Little Square and Circle.

which can store proximity information. It stores
each site into a cell which is a locus of all points
closer to the enclosed site. The voronoi bound-
ary between two sites or objects shows adjacency
between those objects and the degree of proxim-
ity can be found using voronoi influence zones or
Stolen area(Edwards and Moulin, 1998; Edwards
et al., 1996). Our feature set uses the voronoi
model and is defined in terms of how much of the
zone of influence is lost by the insertion of the tra-
jector. The distinction between closed (bounded)
zones and open (unbounded) ones constitute a key
perceptual signature of containment.

The learned image schema for relative spatial
poses is in the nature of a topographical neural
net, also known as a kohonen map or a Self-
Organizing Map (SOM). This is an unsupervised
clustering method and requires no labels or other
priors. Once the clustering is obtained, it can be
mapped to linguistic data with very few exemplars.

In our work, we attempt to look at just two
spatial terms related to the containment concept -
the prepositions “in” and “out”, which are among
the earliest spatial terms learned (Bowerman and
Choi, 2001).

3.1 Spatial Prepositions of Containment

Grounded learning of spatial modifiers involves
defining concept classes to represent spatial dis-
tinctions. Clearly these classes are not discrete
but graded (or continuum). As stated earlier, we
chose the (stolen voronoi area) model of spatial
relation (Edwards and Moulin, 1998; Edwards et
al., 1996)as this requires very little of the learner
other than the capacity to identify the most proxi-
mal region, and it can also give a graded measure
of membership.



A voronoi representation of space divides the
space into tessellations (voronoi regions) where
each region contains a site - traditionally, this is a
point, but it may also be a line or an area. The di-
vision of space is based on the notion of proximity
such that all points in the voronoi region are closer
to its site than to any other site. Voronoi diagrams
in fig 5a, b shows a division of space in terms of
points proximal to each of the point sites, similarly
fig 5c is a division in terms of points proximal to
either the point site or a line site. The voronoi di-
agram for any arbitrary shape can be determined
by defining it as a voronoi diagram of points and
line segments. In our model for line segments, we
distinguish (as do most algorithms) the two end
points from the body of the line; this results in two
internal boundaries for the voronoi diagram - the
separator between this end-point and the interior
of the line - and are useful in discriminating the
nature of the intersection between zones, and are
retained.

(a) (b) (c) (d)

Figure 5: Voronoi diagrams of points and line segments:
Voronoi diagrams of a,b) point sites c) a Point and a line seg-
ment d)two line segments. Line segments are bounded by
two end “points”, resulting in two internal boundaries (as in
c andd)

The voronoi model of a space changes as agents
move in it. This dynamic nature results in quali-
tative changes as the boundary between two sites
or objects (reflecting adjacency of those objects)
shifts to some other objects. For theemptyspace,
each part of the boundary has its zone of influence.
Some zones may be bounded, reflecting proximity
with other objects, where as some zones may be
unbounded, reflecting an open nature. As an agent
enters this space, the areas of these zones are re-
duced or “stolen”, and these reductions function
as features of spatial pose (Edwards and Moulin,
1998), and these features are used to try to learn
the containership concept.

3.2 Learning Containment

Containment is one of the earliest concepts in our
repertory, yet it offers tremendous complexity. In
adult usage, containment is affected by function
which results in a wide variety of ramifications
(Coventry, 1999). However, to an early learner,

the prototypical interpretation of containment and
container emerges based on abstracting on per-
cepts, possibly earlier than six months (Casasola
et al., 2003).

The voronoi model used here as the learning
feature captures the influence of one object over
another. We use the ratio of stolen area from
bounded and unbounded voronoi regions as a bi-
nary feature. The ratio is calculated between the
voronoi area consumed by the introduction of the
new object and the initial voronoi area of the ref-
erence object fig 6, and distances between features
are determined in terms of an euclidean metric to
construct the kohonen map.

(a) (b) (c)

Figure 6: Stolen Voronoi area. Initial voronoi regions (a).
Dark area in (b) and (c) shows the stolen area.

3.3 Self Organizing Map

A self organizing map is an unsupervised learning
method based on associative memory, also known
as the kohonen map (Kohonen, 1993). A grid
of neurons is defined, each with a k dimensional
weight vector during the learning process so that
proximal regions represent “proximal” patterns in
the input data. From an initial assignment of ran-
dom weights, each data point finds its best match-
ing unit/neuron (BMU) and the weights of neu-
rons in the neighbourhood of BMU are modified
towards the weight vector of the input, using the
equation

W (t + 1) = W (t) + θ(t)α(t)(D(t) − W (t))

whereW (t) is the weight vector of the neuron,
D(t) id the input vector,θ(t) is the neighbourhood
function which constraints the amount of influence
on the neighbours, andα(t) is the learning rate.

We use a simple kohonen map with a gaus-
sian neighbourhood function and a linearly de-
creasing learning rate. The grid size of 30x40
nodes represents the clustering space. The SOM
visualizations are shown using the U-matrix ap-
proach which colours each cell according to the
the sum of the weights of all its neighbors. The 3D
landscape is visualized by mapping the U-matrix



height into the RGB space. uniform patches of
colour represent zones of uniform height reflect-
ing the possibility of a cluster.

Figure 7: SOM map of containment relations. The Self-
Organizing Map acts as our perceptual schema. Different
configurations of the trajector (square) have different exci-
tations in the SOM, reflected in a colourized map. The same
map can identify a cluster for an input pose, or given a con-
ceptual description it can generate a maximum likelihood
pose.

Maps were trained based on input data of differ-
ent spatial poses obtained from the video. Figure
7) shows a stabilized topographical distribution of
nodes in the feature space. Different positions of
the trajector w.r.t. the Enclosure(ENC) are shown
in different parts of the SOM map. Among the re-
gions that may be thought of as “in”, the points at
the center are furthest from the out region, and the
points near the door (bottom-center configuration
in fig.7) show a sharp gradation in colour. Simi-
larly, the out regions are also graded by distance
from the center. We also find finer distinctions
emerging that may be taken as “corner” or “cen-
ter”. For our task, we cluster this space using k=2,
and two clusters emerge, roughly corresponding to
configurations inside and outside the ENC.

The “perceptual schema” represented by the
SOM is learned only from a single trajector on a
single ENC. Words in a language however, refer to
a class and not such a specific instance. How gen-
eral is the learned perceptual schema? Changes
in trajector shape result in a slight redistribution
of the stolen areas, and do generalize well, but
changes in ENC are more complex. How do these
schemas generalize to general shapes? We explore
this question in section 4.

3.4 Mapping to Prepositions “in” and “out”

These spatial relation clusters are then matched
with all words occurring in the user commentaries,

using the same mutual information measure as
used for nouns. No grammatical or other knowl-
edge is assumed, but the nouns which have been
already learned are kept out of the words consid-
ered for this association.

Since containment structures involve two ob-
jects, phrases containing two nouns/object names
were considered and the feature vector relating the
two objects was calculated and checked for the
cluster they lie in. Similarly cluster labels for each
phrase were collected and automatas were con-
structed to represent the transition between clus-
ters for each phrase (e.g. circle coming out of
the room will transition from one state (in) to an-
other (out)). These automatas were then asso-
ciated with their corresponding phrases. Unlike
noun learning, very frequent words were not elim-
inated, since in (top 10) and out (top 50) are them-
selves very frequent.

Strong associations emerge between the words
“out” and “in”, and the state transitions “in to out”
and “out to in” respectively (fig 8). It seems that
while talking about a state transition, destination
state has communicative saliency, and matches the
matches the descriptive label. Words like “of” are
seen to be in a tie with “out” - this may be indica-
tive of the English construct “out of”. However,
the particle “of” occurs almost twice as frequently
as “off” in general text, so it is likely to drop off in
the specificity measure if we were to include other
(non-spatial) contexts.

4 Context Sensitivity of Containment
Schema

An important aspect of any concept and one that
contributes significantly towards the brittleness of
machine approaches is the degree of reliance on
context. In this instance, the shape of the enclosing
object ENC is an important and immediate aspect
of the context. In the training data the enclosure
was a squarish room with an opening the top left.
We investigated the effect of changing the enclo-
sure shape by computing the voronoi features on
four different ENC shapes.

Visualization of the feature vector calculated for
two different shapes shown in fig 9. The red area
is towards the “in” region and “out” is indicated
by a preference for blue.

Notice the colour gets darker near edges and
corners because the amount of stolen voronoi area
decreases.



Figure 8: Preposition Learning. Matches between clusters
and words in text category in-to-out (top); category out-to-in
(bottom).

Figure 9: Visualization of the feature vector. a) DIAMOND
shaped enclosure, and b) MAZE shape. The function does not
generalize well to the maze; but then neither did humans in
our psychological tests.

Classification of regions as “in or out” was done
using the SOM. The results are shown in fig10.
The feature vectors at each point were the inputs
to the SOM and colour was assigned according to
the top 5 best matching units (SOM neurons) and
their cluster.

An artifact of the feature computation that may
affect some results is the bounding box over which
the computation is performed. Cognitively, it ap-
pears, that this bounding box is not infinite - i.e.
each object exerts influence only to a certain dis-
tance. In fig 11 the shape has nearly parallel
voronoi edges. If the bounding box is large enough
(fig 11b), it would enclose the complete bounded
area or else it may be taken as a part of unbounded
area 11a.

Figure 12 shows the feature computation for a
shape with some nonconvexities. We use bound-
ing boxes which are 2x and 8x the size of the
minimum enclosing box for the shape. With the
smaller box, the lower area beneath the obtuse an-

Figure 10: SOM Perceptual Schema output.a) ShapeBOX,
b) ShapeDIAMOND , c) ShapeBOWL, and d) ShapeMAZE.
The SOM is undecided in the maze, but considers the space
in the inner cavity as “in”.

gle is clearly going to be “out”; in the larger box
it becomes doubtful. The circular space at the top
has a higher degree of “in”-ness in the first read-
ing. This sort of confusion was also found in our
human subjects (section 5).

Figure 11: Bounding box “Zone of Influence” effects. Con-
sider the three edges at the bottom. a) With a tight bounding
box, the voronoi edges hit the boundary and appear to be un-
bounded; b) with a larger bounding box, the voronoi edges
meet and constitute a bounded voronoi area.

Figure 12: Effect of bounding box on non-convex bound-
aries.Here, the visualization is different for the ShapeCSE-B
(floor plan of building). The lower part gets be classified “in”
for the map on the right (loose bounding box) because that
area is bounded in a wide space. On the other hand, when the
zone of influence is tight, the lower area is marked as “out”.
Some of this confusion also persists in human judgments.

5 Validation through Psychological Tests

In order to validate the semantic reality of
the model learned, we compared the perceptual
schema with human responses on the set of shapes.
Twenty student volunteers in the age group 19-23
were shown images of various shapes with a cir-
cle at randomly generated positions. They were



Figure 13: SOM Perceptual Schema output forCSE-B, a)
SOM with bounding box = 2× minimum enclosing box
(tight); b) SOM with 8x box (loose).

asked to decide whether it was “in” or “out” of
the box. For each configuration the “in”-ness was
computed as the percentage of in responses. This
was compared with the in/out ratio calculated by
using the top 5 best matching units (SOM neu-
rons). The comparative data is presented in in ta-
ble 2, 3.

The results reveal that mismatches are higher
with shapes likeCSE-B (and alsoMAZE), which
are the furthest from the convex box that was
the basis of the learning. However, in verbal re-
sponses, humans also indicate less confident about
their choices in these shapes than in the other (con-
vex) shapes. The zone of influence effect can be
seen at the top and the bottom of theCSE-B shape.
For theMAZE, containment decision may require
other features - based on path continuity, as op-
posed to merely proximity measures.

Shape human SOM (2x) SOM (8x)
90 100 100
90 100 100
90 100 100
90 100 100
35 100 100
10 20 20
0 0 0
0 0 0
0 0 0

Table 2: Degree of “in”-ness.Human responses vs SOM for
ShapeBOWL. Results from placing trajector in several ran-
dom positions; human responses tabulated against the learned
perceptual schema. Overall, a good degree of match.

Shape human SOM
(2x)

SOM
(8x)

5 100 100
100 100 100
5 40 40
5 40 20
100 100 100
0 0 100
0 20 0

Table 3: Degree of “in”-ness for ShapeCSE-B. human re-
sponses vary a good bit from the learned schema. There is
considerable uncertainty among humans also regarding these
containment for these complex shapes.

6 Conclusion

We have developed (from an extremely simple vi-
sual stimulus) a coherent approach to acquiring
object labels and spatial prepositions that build
on simple spatial features. In particular, we have
made no prior assumptions on knowledge about
the agents or domain of action; the only abilities
inherent in the learner is that it has a model of vi-
sual attention, and that it can identify perceptually
proximal regions. Based on this, we show how
pre-verbal conceptual schema may arise, which
are then mapped into labels for objects (nouns)
and spatial poses (prepositions).

Another key notion explored in this work is a
concretization of the image schema. Here it is
stored in a topographical neural net, which has
strong cognitive plausibility (Kohonen, 1993), and
is also one of the more effective unsupervised
clustering methods. A crucial aspect of the cur-
rent work is that the pre-linguistic concepts were
learned from a small corpus of data and could
be generalized to many novel shapes (and object
poses).

However, the perceptual schema learned are
clearly not independent of context, and although
some variation in context is tolerated (e.g. to other
convex enclosures), the system will need to be re-
trained for more general instances. Instead of 81
seconds of learning, however, the human learner
has days and months and years of exposure, and
clearly this can leqad to the construction of ex-
tremely rich and diverse schemata. In the con-
text of computational applications of language,
such schema can be maintained much more easily
than most traditional systems and provide a sim-
ple mechanism for updating world ontologies in
an empirically validated manner.

Learning the semantics immediately identifies
the participants in the prepositional predicate as
two distinguished entities - a trajector and an en-
closure or container. This leads to an asymmetric
“in” relation between square and box, which is at
the heart of the predicate in(circle, box). These
predicates are more flexible and robust than hand-
coded ones, and may thereby provide a begin-
ning for bottom-up semantic processing for infor-
mation retrieval, complementing present top-down
approaches.

The predicate and its argument structure are
also key notions in composing the notion of con-
tainment with other notions - and this process



gives rise to different structures in different natu-
ral languages in what is known as grammar. It may
be possible to apply such schema towards compo-
sitional operations - based on argument sharing,
conceptual blending, and other cognitive mecha-
nisms, leading to a semantic set of constraints on
experience, which may underlie the constraints on
language that we call grammar (Langacker, 1999).

The processes for combining schema is a key
hurdle in this path, and one that deserves close at-
tention. Some pointers to grammar discovery (on
a very different path) can be seen in the work of
(Ford, 2003). In our case, once the verbal heads of
various phrases are known, and with some knowl-
edge of the semantics of closed-class words, it
would be possible to identify some of the roles
played by grammatical elements in different con-
structions appearing in a narrative.

Another extension is to consider other spatial
modifiers such as directions (left, right), transi-
tional modifiers (around, through), etc. Concepts
referring to corner or center showed up in primary
perceptual schema as peripheral and central re-
gions - but when we tried to transfer this (esp. the
corners) to other shapes, they did not generalize
well. It would be important to explore the con-
ditions under which generalized corner and edge
concepts can be learned. Also work on verbs can
be extended using the spatial concepts learned in
this manner.
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